首页> 中国专利> 一种基于新型龙贝格观测器的感应电机转速估算方法

一种基于新型龙贝格观测器的感应电机转速估算方法

摘要

本发明公开的一种基于新型龙贝格观测器的感应电机转速估算方法,以模型参考自适应原理为基础,采用电流模型作为龙贝格观测器的参考模型,采用电机模型作为龙贝格观测器的可调模型;根据传统龙贝格观测器,设计了新型增益矩阵模块,改进了转速估算模块,从而实现了高性能的转速估算。此种转速估算方法抗负载干扰能力强、对参数变化的鲁棒性好,在感应电机低速运行时也能准确估计转速,估计转速的精确度更高,更稳定,波形更平滑。

著录项

  • 公开/公告号CN108512476A

    专利类型发明专利

  • 公开/公告日2018-09-07

    原文格式PDF

  • 申请/专利权人 武汉理工大学;

    申请/专利号CN201810395821.8

  • 申请日2018-04-27

  • 分类号

  • 代理机构武汉科皓知识产权代理事务所(特殊普通合伙);

  • 代理人齐晨涵

  • 地址 430070 湖北省武汉市洪山区珞狮路122号

  • 入库时间 2023-06-19 06:29:52

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2022-04-08

    未缴年费专利权终止 IPC(主分类):H02P21/18 专利号:ZL2018103958218 申请日:20180427 授权公告日:20200807

    专利权的终止

  • 2020-08-07

    授权

    授权

  • 2018-10-09

    实质审查的生效 IPC(主分类):H02P21/18 申请日:20180427

    实质审查的生效

  • 2018-09-07

    公开

    公开

说明书

技术领域

本发明涉及电机控制技术,具体是一种基于新型龙贝格观测器的感应电机转速估算方法。

背景技术

目前在电机的运用中,交流电机占90%左右,其中应用最多的是感应电机。与相同功率的直流电机比起来,感应电机具有制造方便、价格低廉、结构简单、运行可靠、转动惯量小、维护简单、坚固耐用、寿命长、可用于恶劣场合等优点。由于感应电机的转子与定子绕组之间没有任何接触,所以它不受直流电机中的一些固有因素的限制,能够广泛的运用于各种场合中,从一般工业技术到航天、航空军事工业,到家庭电器、智能机器人控制等。

为了提高感应电机控制系统的性能,电机转速控制的优化是最为核心的一个部分。通常的转速检测是通过光电码盘等速度传感器来进行的,但是速度传感器会使系统的成本增加,存在安装的问题,维护难度增加,受环境因素影响。因此为了解决转速检测的问题,无速度传感器控制技术的研究越来越受欢迎。目前,虽然模型参考自适应法被广泛用来实现感应电机无速度传感器的转速估计,但还是这种方法存在着一些不可避免的缺陷。模型参考自适应法中,电压参考模型有两个缺点:其一是电压模型的参数矩阵中含有定子电阻等参数,在实际情况中,电机的某些参数会因为温度等环境因素的变化而发生改变,导致磁链计算有误差;其二是电压模型中含有纯积分环节,当电机运行在低速状态时,积分运算产生较大的误差,影响电机控制的精度,偏离实际情况,收敛性比较差。采用龙贝格观测器估计转速可以改善模型参考自适应法中电压参考模型的不足之处。龙贝格观测器的优点是估计误差非常小,能对转速进行精确估算,具有良好的稳定性,收敛速度快,并且在低速范围能稳定运行,扩大了调速范围。

发明内容

本发明就是针对现有技术的不足,提供了一种基于新型龙贝格观测器的感应电机转速估算方法,此种转速估算方法抗负载干扰能力强、对参数变化的鲁棒性好,在感应电机低速运行时也能准确估计转速。与传统的龙贝格观测器相比,新型龙贝格观测器估计的转速具有精确度更高,更稳定,波形更平滑的优点。

本发明所设计的基于新型龙贝格观测器的感应电机转速估算方法,其特征在于,包括以下步骤:

S1建立龙贝格观测器:以模型参考自适应原理为基础,采用电流模型作为龙贝格观测器的参考模型,采用电机模型作为龙贝格观测器的可调模型,以定子电流和定子磁链为的龙贝格观测器的状态变量;

S2建立增益矩阵:将观测器的极点相对于电机极点向左平移一个常数距离,不改变极点的虚部,得到的增益矩阵中含有转速估计值。然后进一步简化新型增益矩阵使其中不含转速估计值,降低转速估计误差对龙贝格观测器的影响;

S3改进转速估计:在龙贝格观测器中转速模块中引入转矩观测,进一步提高估计转速的精确性和估计转速波形的平滑性。

进一步地,所述步骤s1的具体过程如下:

在α-β坐标系下以定子电流和定子磁链为状态变量的电机状态方程的分量形式如下:

式中:

C=[I O],

根据式(1)构造出龙贝格观测器,如下:

式中:

u=[u>sβ]T

式中:A为系统矩阵,B为输入矩阵,C为输出矩阵;

—定子磁链的估计值;—定子电流的估计值;

—定子电流在α轴上的分量;i—定子电流在β轴上的分量;

u—定子电压在α轴上的分量;u—定子电压在β轴上的分量。

更进一步地,步骤S2建立新型增益矩阵具体为:不改变龙贝格观测器极点的虚部,将极点的实部向左平移一个常数a(a>0),使得Pob=PIM-a,得到式(3):

式(3)中的值远大于式中其他参数的值,因此可以令消去增益矩阵中的相关变量,简化后的新型增益矩阵为:

再进一步地,所述步骤S3改进转速估计具体为:将电机方程式(1)减去龙贝格观测器模型式(2)得到式(5):

式中:

通过Lyapunov稳定性理论,确定Lyapunov函数V(x,t),函数V的定义如下:

通过求导和稳定性的判断可以计算出转速如式(7)。

在转速估计中引入转矩观测的速度辨识公式,引入转矩观测的速度辨识如式(8),转矩辨识的公式如式(9):

进一步地,本发明的电机转速估算方法的仿真条件为:首先对静止的电机进行直流预励磁,在0.1s时施加阶跃指令使转速突变为1500r/min,在1s时施加50%的额定负载,在1.5s时转速突变为-1500r/min,电机转速反转到给定值。

本发明的优点在于:

以电机模型为参考模型,以含有转速参数的电流模型为可调模型,然后参考模型和可调模式的输出均为磁链,将磁链通过变换输出为电流。当龙贝格观测器状态方程的参数与真实电机参数不符时,龙贝格观测器估计的输出电流与检测的真实电流is产生偏差,这个偏差经过增益矩阵G加权校正,设计合适的自适应律,将两个模型输出量的差值调节趋近于零,最后使辨识的转速实时跟随实际转速,从而估算出精确的转速。采用新型增益矩阵估计得转速误差以及超调量更小,在辨识稳定后采用新型增益矩阵估计的转速值在实际值的上下小幅度波动,更加贴近于实际值。引入转矩观测的龙贝格观测器所辨识的转速更加平滑,在负载改变时转速辨识的波动更小,噪声更小,精确度更高,估计值进一步接近实际值,动态响应得到了提高,动态过程中延时减小。

附图说明

图1为本发明的新型龙贝格观测器系统结构框图。

图2为本发明的感应电机控制原理图。

图3为本发明的硬件结构图。

图4为采用不同增益矩阵的转速辨识波形图。

图5为传统龙贝格观测器转速辨识波形图。

图6为引入转矩观测的龙贝格观测器转速辨识波形图。

具体实施方式

下面结合附图和具体实施例对本发明作进一步的详细描述:

本发明提供了一种基于新型龙贝格观测器的感应电机转速估算方法。如图1所示新型龙贝格观测器系统中包括感应电机、系统矩阵A、输入矩阵B、输出矩阵C、新型增益矩阵G和转速自适应律。根据传统龙贝格观测器,设计了新型增益矩阵模块,改进了转速估算模块,从而实现了高性能的转速估算。具体过程如下:

(1)建立龙贝格观测器,以定子电流和定子磁链为的龙贝格观测器的状态变量,式(1)是α-β坐标系下以定子电流和定子磁链为状态变量的电机状态方程的分量形式。

式中:A为系统矩阵,B为输入矩阵,C为输出矩阵;

—定子磁链的估计值;—定子电流的估计值

y=[i>sβ]T—定子电流在α轴上的分量;i—定子电流在β轴上的分量;

u=[u>sβ]T>sα—定子电压在α轴上的分量;u—定子电压在β轴上的分量;

式中:

C=[I O],

根据式(1)可以构造出龙贝格观测器,如下:

G—增益矩阵

^—表示可以由龙贝格观测估计出的量

式中:

u=[u>sβ]T

(2)建立新型增益矩阵,不改变龙贝格观测器极点的虚部,将极点的实部向左平移一个常数a(a>0),使得Pob=PIM-a,得到式(3)。

Pob—观测器的极点

PIM—电机的极点

在一般情况中式(3)中的值远大于式中其他参数的值,因此可以令消去增益矩阵中的一些变量,进一步简化增益矩阵,方便计算,易于实现。最终简化后的新型增益矩阵为:

(3)改进转速估计,具体的转速估计方法为:将电机方程式(1)减去龙贝格观测器模型式(2)得到式(5)。

式中:

通过Lyapunov稳定性理论,确定Lyapunov函数V(x,t),函数V的定义如下:

通过求导和稳定性的判断可以计算出转速如式(7)。

为进一步提高估计转速的精确性和估计转速波形的平滑性,实现高性能控制,本发明在转速估计中进行了改进,将转矩观测引入转速估计中。引入转矩观测的速度辨识如式(8),转矩辨识的公式如式(9)。

上述实施提供的基于新型龙贝格观测器的感应电机转速估算方法,其工作过程如下:

龙贝格观测器以电机模型为参考模型,以含有转速参数的电流模型为可调模型,然后参考模型和可调模式的输出均为磁链,将磁链通过变换输出为电流。当龙贝格观测器状态方程的参数与真实电机参数不符时,龙贝格观测器估计的输出电流与检测的真实电流is产生偏差,这个偏差经过增益矩阵G加权校正,设计合适的自适应律,将两个模型输出量的差值调节趋近于零,最后使辨识的转速实时跟随实际转速,从而估算出精确的转速。

在对本发明的方法进行仿真实时,首先对静止的电机进行直流预励磁,在0.1s时施加阶跃指令使转速突变为1500r/min,在1s时施加50%的额定负载,在1.5s时转速突变为-1500r/min,电机转速反转到给定值。

将采用传统增益矩阵方法的辨识转速与采用新型增益矩阵方法的辨识转速在同一个仿真波形图中进行比较,如图4所示。由图4可以看出采用新型增益矩阵估计得转速误差以及超调量更小,在辨识稳定后采用新型增益矩阵估计的转速值在实际值的上下小幅度波动,更加贴近于实际值。

将传统龙贝格观测器引入转矩观测的龙贝格观测器进行比较,如图5和图6分别是传统龙贝格观测器和引入转矩观测的龙贝格观测器对转速的辨识波形图。由图5和图6可以看出,引入转矩观测的龙贝格观测器所辨识的转速更加平滑,在负载改变时转速辨识的波动更小,噪声更小,精确度更高,估计值进一步接近实际值,动态响应得到了提高,动态过程中延时减小。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号