首页> 中国专利> 高强度热浸镀锌钢板的制造方法、高强度热浸镀锌钢板用热轧钢板的制造方法、高强度热浸镀锌钢板用冷轧钢板的制造方法以及高强度热浸镀锌钢板

高强度热浸镀锌钢板的制造方法、高强度热浸镀锌钢板用热轧钢板的制造方法、高强度热浸镀锌钢板用冷轧钢板的制造方法以及高强度热浸镀锌钢板

摘要

本发明提供成型性、表面外观和镀覆密合性优异的高强度热浸镀锌钢板的制造方法、高强度热浸镀锌钢板用热轧钢板的制造方法、高强度热浸镀锌钢板用冷轧钢板的制造方法以及高强度热浸镀锌钢板。含有Mn:2.00%~10.00%。距钢板表面深度5μm以内的固溶Mn浓度为1.50质量%以下,残留奥氏体中的平均Mn质量%除以铁素体中的平均Mn质量%而得的值为2.0以上。进行第1热处理、第2热处理,所述第1热处理在H

著录项

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2020-07-10

    授权

    授权

  • 2018-08-10

    实质审查的生效 IPC(主分类):C22C38/00 申请日:20161108

    实质审查的生效

  • 2018-07-17

    公开

    公开

说明书

技术领域

本发明涉及适于在汽车构件用途中应用的高强度热浸镀锌钢板的制造方法、高强度热浸镀锌钢板用热轧钢板的制造方法、高强度热浸镀锌钢板用冷轧钢板的制造方法以及高强度热浸镀锌钢板。

背景技术

近年来,由于地球环境的保护意识增强,因此,强烈要求面向汽车的CO2排放量削减的油耗改善。与此同时,使作为车身部件用材料的钢板高强度化而实现车身部件的薄壁化、使车身轻量化的动向较为活跃。然而,钢板的高强度化导致成型性的降低,因此,期望开发兼具高强度和高成型性的材料。

为了使钢板高强度化、使成型性提高,有效的是在钢板中添加大量的Mn。

另外,为了对钢板赋予防锈性而延长材料寿命,有用的是对钢板实施了热浸镀锌处理的热浸镀锌钢板。

但是,以大量添加了Mn的高强度钢板作为母材而制造热浸镀锌钢板时,存在镀覆表面外观劣化这样的问题。

通常,热浸镀锌钢板在还原气氛中进行热处理后,实施热浸镀锌处理。在此,在钢中添加的Mn为易氧化性元素,因此,在一般使用的还原气氛中也被选择氧化,富集于表面,在钢板表面形成氧化物。该氧化物使镀覆处理时的钢板表面与熔融锌的湿润性降低而产生不镀覆,因此,随着钢中Mn浓度的增加,湿润性急激降低,经常发生不镀覆。另外,即使在不产生不镀覆的情况下,由于在钢板与镀覆之间存在氧化物,因此,使镀覆密合性劣化。

针对这样的问题,在专利文献1中公开了如下方法:通过预先在氧化性气氛中对钢板进行加热,在表面形成氧化铁后,进行还原退火,由此改善与熔融锌的湿润性。另外,在专利文献2中公开了如下方法:在连续式热浸镀锌设备中,通过降低退火气氛中的露点、降低气氛的氧势能,由此抑制在钢板表面的氧化物形成。另外,在专利文献3中公开了如下方法:将母材在连续退火设备中进行再结晶退火后,通过酸洗除去钢板表面的氧化物,再次进行还原退火而进行镀覆处理。

然而,在这些方法中,为了改善镀覆外观,需要追加氧化工序、用于使氧势能降低的设备,或者需要用于镀覆处理的再退火工序等需要大幅的设备改造、追加热处理工序,导致最终制品的成本上升。另外,无法应对大幅的Mn添加量的增加。

现有技术文献

专利文献

专利文献1:日本特开昭61-157625号公报

专利文献2:日本特开2010-255110号公报

专利文献3:日本特开平7-70723号公报

发明内容

本发明鉴于该情况,目的在于提供成型性、表面外观和镀覆密合性优异的高强度热浸镀锌钢板的制造方法、高强度热浸镀锌钢板用热轧钢板的制造方法、高强度热浸镀锌钢板用冷轧钢板的制造方法以及高强度热浸镀锌钢板。

本发明人等为了制造含有Mn且成型性、表面外观和镀覆密合性优异的高强度热浸镀锌钢板,反复进行了潜心研究。其结果,发现以下方案。

将含有2.00质量%~10.00质量%的Mn的钢在热轧后,通过酸洗除去氧化皮,在650℃~850℃的温度区域保持600s(秒)~21600s,由此,使Mn在奥氏体中富集。其结果,能够提高残留奥氏体中的Mn浓度,提高延展性。

另外,在进行热轧并通过酸洗而除去氧化皮后,进行热处理(以下,称为第1热处理),所述热处理在H2浓度为0.1vol%~25.0vol%、露点为-45℃~0℃的气氛中,在将钢板表面暴露于气氛的状态下在650℃~850℃的温度区域保持600s~21600s,由此能够在钢板表面形成Mn的氧化物,在钢板表层形成Mn浓度低的区域。然后,在第1热处理后,根据需要以压下率30%以上实施冷轧,然后,在酸洗减少量以Fe换算计为0.03g/m2~5.00g/m2的条件下进行酸洗,由此除去钢板表面的Mn氧化物。其结果,能够抑制钢板中的固溶Mn向钢板表面的扩散,抑制钢板表面的Mn氧化物的形成。

然后,上述酸洗后,进行热处理(以下,称为第2热处理),所述热处理在H2浓度为0.05vol%~25.0vol%、露点为-10℃以下的气氛中,在600℃~830℃的温度区域保持20s~900s,接着,在冷却后实施热浸镀锌,由此将残留奥氏体中的平均Mn质量%除以铁素体中的平均Mn质量%而得的值控制在2.0以上。其结果,能够确保利用Mn稳定化的残留奥氏体,能够制造延展性等成型性优异的高强度热浸镀锌钢板。

本发明是基于上述见解的发明,特征如下。

[1]一种高强度热浸镀锌钢板,成分组成以质量%计含有C:0.030%~0.250%、Si:0.01%~3.00%、Mn:2.00%~10.00%、P:0.001%~0.100%、S:0.0001%~0.0200%、N:0.0005%~0.0100%、Ti:0.005%~0.200%,剩余部分由Fe和不可避免的杂质构成,距钢板表面深度5μm以内的固溶Mn浓度为1.50质量%以下,并且,残留奥氏体中的平均Mn质量%除以铁素体中的平均Mn质量%而得的值为2.0以上。

[2]根据上述[1]所述的高强度热浸镀锌钢板,其中,作为成分组成,以质量%计进一步含有选自Al:0.01%~2.00%、Nb:0.005%~0.200%、B:0.0003%~0.0050%、Ni:0.005%~1.000%、Cr:0.005%~1.000%、V:0.005%~0.500%、Mo:0.005%~1.000%、Cu:0.005%~1.000%、Sn:0.002%~0.200%、Sb:0.005%~0.100%、Ta:0.001%~0.010%、Ca:0.0005%~0.0050%、Mg:0.0005%~0.0050%、REM:0.0005%~0.0050%中的至少1种元素。

[3]一种高强度热浸镀锌钢板的制造方法,对钢坯进行热轧,酸洗后,进行第1热处理,所述第1热处理在H2浓度为0.1vol%~25.0vol%、露点为-45℃~0℃的气氛中,在暴露钢板表面的状态下,在650℃~850℃的温度区域保持600s~21600s,接着,冷却后,在酸洗减少量以Fe换算计为0.03g/m2~5.00g/m2以下的条件下进行酸洗,接着,进行第2热处理,所述第2热处理在H2浓度为0.05vol%~25.0vol%、露点为-10℃以下的气氛中,在600℃~830℃的温度区域保持20s~900s,接着,冷却后,实施热浸镀锌处理,所述钢坯作为成分组成,以质量%计含有C:0.030%~0.250%、Si:0.01%~3.00%、Mn:2.00%~10.00%、P:0.001%~0.100%、S:0.0001%~0.0200%、N:0.0005%~0.0100%、Ti:0.005%~0.200%,剩余部分由Fe和不可避免的杂质构成。

[4]根据上述[3]所述的高强度热浸镀锌钢板的制造方法,其中,进行所述第1热处理,冷却后,以压下率30%以上实施冷轧。

[5]根据上述[3]或[4]所述的高强度热浸镀锌钢板的制造方法,其中,对所述热浸镀锌处理后的钢板进一步进行合金化处理。

[6]根据上述[3]~[5]中任一项所述的高强度热浸镀锌钢板的制造方法,其中,作为成分组成,以质量%计进一步含有选自Al:0.01%~2.00%、Nb:0.005%~0.200%、B:0.0003%~0.0050%、Ni:0.005%~1.000%、Cr:0.005%~1.000%、V:0.005%~0.500%、Mo:0.005%~1.000%、Cu:0.005%~1.000%、Sn:0.002%~0.200%、Sb:0.005%~0.100%、Ta:0.001%~0.010%、Ca:0.0005%~0.0050%、Mg:0.0005%~0.0050%、REM:0.0005%~0.0050%中的至少1种元素。

[7]一种高强度热浸镀锌钢板用热轧钢板的制造方法,对钢坯进行热轧,酸洗后,进行热处理,所述热处理在H2浓度为0.1vol%~25.0vol%、露点为-45℃~0℃的气氛中,在暴露钢板表面的状态下,在650℃~850℃的温度区域保持600s~21600s,所述钢坯作为成分组成,以质量%含有C:0.030%~0.250%、Si:0.01%~3.00%、Mn:2.00%~10.00%、P:0.001%~0.100%、S:0.0001%~0.0200%、N:0.0005%~0.0100%、Ti:0.005%~0.200%,剩余部分由Fe和不可避免的杂质构成。

[8]根据上述[7]所述的高强度热浸镀锌钢板用热轧钢板的制造方法,其中,作为成分组成,以质量%计进一步含有选自Al:0.01%~2.00%、Nb:0.005%~0.200%、B:0.0003%~0.0050%、Ni:0.005%~1.000%、Cr:0.005%~1.000%、V:0.005%~0.500%、Mo:0.005%~1.000%、Cu:0.005%~1.000%、Sn:0.002%~0.200%、Sb:0.005%~0.100%、Ta:0.001%~0.010%、Ca:0.0005%~0.0050%、Mg:0.0005%~0.0050%、REM:0.0005%~0.0050%中的至少1种元素。

[9]一种高强度热浸镀锌钢板用冷轧钢板的制造方法,对钢板进行热轧,酸洗后,进行热处理,所述热处理在H2浓度为0.1vol%~25.0vol%、露点为-45℃~0℃的气氛中,在暴露钢板表面的状态下,在650℃~850℃的温度区域保持600s~21600s,接着,冷却后,以压下率30%以上实施冷轧,所述钢板作为成分组成,以质量%计含有C:0.030%~0.250%、Si:0.01%~3.00%、Mn:2.00%~10.00%、P:0.001%~0.100%、S:0.0001%~0.0200%、N:0.0005%~0.0100%、Ti:0.005%~0.200%,剩余部分由Fe和不可避免的杂质构成。

[10]根据上述[9]所述的高强度热浸镀锌钢板用冷轧钢板的制造方法,其中,作为成分组成,以质量%计进一步含有选自Al:0.01%~2.00%、Nb:0.005%~0.200%、B:0.0003%~0.0050%、Ni:0.005%~1.000%、Cr:0.005%~1.000%、V:0.005%~0.500%、Mo:0.005%~1.000%、Cu:0.005%~1.000%、Sn:0.002%~0.200%、Sb:0.005%~0.100%、Ta:0.001%~0.010%、Ca:0.0005%~0.0050%、Mg:0.0005%~0.0050%、REM:0.0005%~0.0050%中的至少1种元素。

应予说明,在本发明中,高强度热浸镀锌钢板是拉伸强度(TS)为590MPa以上的钢板,包含热浸镀锌处理后未实施合金化处理的镀覆钢板(以下,有时也称为GI)、实施合金化处理的镀覆钢板(以下,有时也称为GA)这两者。

根据本发明,能够得到具有590MPa以上的拉伸强度的成型性、表面外观和镀覆密合性优异的高强度热浸镀锌钢板。通过将本发明的高强度热浸镀锌钢板应用于例如汽车结构构件,能够实现因车身轻量化所带来的油耗改善,产业上的利用价值非常大。

具体实施方式

以下,对本发明的实施方式进行说明。应予说明,本发明并不限定于以下的实施方式。另外,表示成分量的“%”是指“质量%”。

首先,对成分组成进行说明。

含有C:0.030%~0.250%、Si:0.01%~3.00%、Mn:2.00%~10.00%、P:0.001%~0.100%、S:0.0001%~0.0200%、N:0.0005%~0.0100%、Ti:0.005%~0.200%,剩余部分由Fe和不可避免的杂质构成。另外,除上述成分以外,还可以进一步含有选自Al:0.01%~2.00%、Nb:0.005%~0.200%、B:0.0003%~0.0050%、Ni:0.005%~1.000%、Cr:0.005%~1.000%、V:0.005%~0.500%、Mo:0.005%~1.000%、Cu:0.005%~1.000%、Sn:0.002%~0.200%、Sb:0.005%~0.100%、Ta:0.001%~0.010%、Ca:0.0005%~0.0050%、Mg:0.0005%~0.0050%、REM:0.0005%~0.0050%中的至少1种元素。以下,对各成分进行说明。

C:0.030%~0.250%

C是用于使马氏体等低温转变相生成而提高强度的必要的元素。另外,C是对于提高残留奥氏体的稳定性、使钢的延展性提高有效的元素。C量小于0.030%时,难以确保期望的马氏体的面积率,得不到期望的强度。另外,难以确保充分的残留奥氏体的体积率,得不到良好的延展性。另一方面,如果超过0.250%而过量地含有C,则硬质的马氏体的面积率变得过大,马氏体的晶界处的微孔增加,进而,龟裂的传播发展,弯曲性、拉伸凸缘性降低。另外,焊接部和热影响部的硬化显著,焊接部的机械特性降低,因此,点焊性、电弧焊性等劣化。综上所述,C量为0.030%~0.250%。优选为0.080%以上。优选为0.200%以下。

Si:0.01%~3.00%

Si使铁素体的加工硬化能力提高,因此,对于确保良好的延展性有效。如果Si量小于0.01%,则其含有效果变得不足。因此,下限为0.01%。另一方面,超过3.00%的Si的过量含有不仅引起钢的脆化,而且因红色氧化皮等的产生而引起表面性状的劣化。因此,上限为3.00。综上所述,Si量为0.01%~3.00%。优选为0.20%以上。优选为2.00%以下。

Mn:2.00%~10.00%

Mn在本发明中是极其重要的元素。Mn是使残留奥氏体稳定化的元素,对于确保良好的延展性有效。进而,Mn是通过固溶强化而提高钢的强度的元素。在Mn量为2.00%以上时可以确认到这样的作用。另一方面,Mn量超过10.00%的过量的含有成为成本上升的主要原因。另外,如果Mn量超过10.00%,则即使具有本发明,也无法抑制镀覆外观的劣化。综上所述,Mn量为2.00%~10.00%。优选为3.00%以上。优选为9.00%以下。

P:0.001%~0.100%

P是具有固溶强化的作用、可以根据期望的强度而含有的元素。另外,由于促进铁素体转变,因此,是对于复合组织化也有效的元素。为了得到这样的效果,需要使P量为0.001%以上。另一方面,如果P量超过0.100%,则导致焊接性的劣化,并且对镀锌进行合金化处理时,使合金化速度降低,损害镀锌的品质。综上所述,P量为0.001%~0.100%。优选为0.005%以上。优选为0.050%以下。

S:0.0001%~0.0200%

S在晶界偏析而在热加工时使钢脆化,并且以硫化物的形式存在而使局部变形能力降低。因此,S量需要为0.0200%以下,优选为0.0100%以下,更优选为0.0050%以下。但是,从生产技术上的制约考虑,S量需要为0.0001%以上。因此,S量为0.0001%~0.0200%。优选为0.0001%~0.0100%,更优选为0.0001%~0.0050%。

N:0.0005%~0.0100%

N是使钢的耐时效性劣化的元素。特别是如果N量超过0.0100%,则耐时效性的劣化变得显著。N量越少越优选,但过量的脱氮使生产成本增加。综上所述,N量为0.0005%~0.0100%。优选为0.0010%以上。优选为0.0070%以下。

Ti:0.005%~0.200%

Ti对于钢的析出强化有效,此外,通过形成比较硬质的铁素体,能够减小与硬质第2相(马氏体或残留奥氏体)的硬度差,能够确保良好的拉伸凸缘性。其效果在0.005%以上时得到。另一方面,如果超过0.200%,则硬质的马氏体的面积率变得过大,马氏体的晶界处的微孔增加,进而,龟裂的传播发展,成型性降低。综上所述,Ti量为0.005%~0.200%。优选为0.010%以上。优选为0.100%以下。

剩余部分为Fe和不可避免的杂质。

此外,在本发明中,出于下述的目的可以含有下述的元素。

含有选自Al:0.01%~2.00%、Nb:0.005%~0.200%、B:0.0003%~0.0050%、Ni:0.005%~1.000%、Cr:0.005%~1.000%、V:0.005%~0.500%、Mo:0.005%~1.000%、Cu:0.005%~1.000%、Sn:0.002%~0.200%、Sb:0.005%~0.100%、Ta:0.001%~0.010%、Ca:0.0005%~0.0050%、Mg:0.0005%~0.0050%、REM:0.0005%~0.0050%中的至少1种元素

Al是使铁素体与奥氏体的双相区扩大、对退火温度依赖性的降低、即材质稳定性有效的元素。另外,Al是作为脱氧剂发挥作用、对于钢的洁净度有效的元素,优选在脱氧工序中含有。如果Al量小于0.01%,则其含有效果变得不足,因此,下限为0.01%。另一方面,如果超过2.00%,则连续铸造时的钢片裂纹产生的危险性增高,使制造性降低。综上所述,含有Al时,Al量为0.01%~2.00%。优选为0.20%以上。优选为1.20%以下。

Nb对于钢的析出强化有效,该效果在0.005%以上时得到。另外,与含有Ti的效果同样地通过形成比较硬质的铁素体,能够减少与硬质第2相(马氏体或残留奥氏体)的硬度差,能够确保良好的拉伸凸缘性。该效果在0.005%以上时得到。另一方面,如果超过0.200%,则硬质的马氏体的面积率变得过大,马氏体的晶界处的微孔增加,进而,龟裂的传播发展,成型性降低。另外,也成为成本上升的主要原因。综上所述,含有Nb时,Nb量为0.005%~0.200%。优选为0.010%以上。优选为0.100%以下。

B具有抑制铁素体从奥氏体晶界的生成和生长的作用,能够进行随机应变的组织控制,因此,可以根据需要含有。该效果在0.0003%以上时得到。另一方面,如果超过0.0050%,则成型性降低。综上所述,含有B时,B量为0.0003%~0.0050%。优选为0.0005%以上。优选为0.0030%以下。

Ni是使残留奥氏体稳定化的元素,对于确保良好的延展性有效。进而,Ni是通过固溶强化提高钢的强度的元素。这些效果在0.005%以上时得到。另一方面,如果超过1.000%,则硬质的马氏体变得过大,马氏体的晶界处的微孔增加,进而,龟裂的传播发展,弯曲性、拉伸凸缘性降低。另外,也成为成本上升的主要原因。综上所述,含有Ni时,Ni量为0.005%~1.000%。

Cr、V、Mo具有使强度与延展性的平衡提高的作用,因此,可以根据需要含有。该效果在Cr:0.005%以上、V:0.005%以上、Mo:0.005%以上时得到。另一方面,如果超过Cr:1.000%、V:0.500%、Mo:1.000%而过量地含有,则硬质的马氏体变得过大,马氏体的晶界处的微孔增加,进而,龟裂的传播发展,成型性降低。另外,也成为成本上升的主要原因。综上所述,含有Cr、V、Mo时,Cr量为0.005%~1.000%,V量为0.005%~0.500%,Mo量为0.005%~1.000%。

Cu是对于钢的强化有效的元素,只要在本发明中规定的范围内,就可以用于钢的强化。该效果在0.005%以上时得到。另一方面,如果超过1.000%,则硬质的马氏体变得过大,马氏体的晶界处的微孔增加,进而,龟裂的传播发展,成型性降低。综上所述,含有Cu时,Cu量为0.005%~1.000%。

从抑制由于钢板表面的氮化、氧化而产生的钢板表层的几十μm左右的区域的脱碳的观点考虑,Sn和Sb可以根据需要含有。如果抑制这样的氮化、氧化,则能够防止在钢板表面的马氏体的面积率减少,对于确保强度、材质稳定性有效。另一方面,如果过量地添加,则导致韧性的降低。综上所述,含有Sn时,Sn量为0.002%~0.200%。另外,含有Sb时,Sb量为0.005%~0.100%。

Ta与Ti、Nb同样地生成合金碳化物、合金碳氮化物而有助于高强度化。此外,认为具有一部分固溶于Nb碳化物、Nb碳氮化物,生成(Nb,Ta)(C,N)这样的复合析出物,从而显著抑制析出物的粗大化、使析出强化对强度的贡献稳定化的效果。因此,优选含有Ta。这些析出物稳定化的效果通过使Ta的含量为0.001%以上而得到。另一方面,即使过量地添加Ta,析出物稳定化效果也饱和,而且合金成本也增加。综上所述,含有Ta时,Ta量为0.001%~0.010%。

Ca、Mg和REM是用于使硫化物的形状球状化,改善硫化物对扩孔性(拉伸凸缘性)的不良影响的有效的元素。为了得到该效果,分别需要0.0005%以上。另一方面,如果分别超过0.0050%,则引起夹杂物等的增加而引起表面和内部缺陷等。综上所述,含有Ca、Mg和REM时,其含量分别为0.0005%~0.0050%。

接着,对组织进行说明。

对于本发明的高强度热浸镀锌钢板,距钢板表面深度5μm以内的固溶Mn浓度为1.50质量%以下,残留奥氏体中的平均Mn质量%除以铁素体中的平均Mn质量%而得的值为2.0以上。

距钢板表面深度5μm以内的固溶Mn浓度为1.50质量%以下

在钢板表面正下方存在固溶Mn浓度低的区域时,抑制第2热处理工序中在钢板表面形成Mn氧化物。其结果,能够得到表面外观和镀覆密合性优异的热浸镀锌钢板。另一方面,钢板表面正下方的Mn浓度高时,即距钢板表面深度5μm以内的固溶Mn浓度超过1.50质量%时,在第2热处理工序中,在钢板表面形成Mn氧化物,产生不镀覆等表面缺陷。因此,距钢板表面深度5μm以内的固溶Mn浓度为1.50质量%以下。

应予说明,距钢板表面深度5μm以内的Mn浓度可以使用EPMA(Electron ProbeMicro Analyzer;电子探针显微分析仪)对Mn的分布状态进行定量,由距钢板表面5μm以内的晶粒中的量分析结果的平均值求出。

另外,通过如后所述控制第1热处理和酸洗条件,能够使距钢板表面深度5μm以内的固溶Mn浓度为1.50质量%以下。

残留奥氏体中的平均Mn质量%除以铁素体中的平均Mn质量%而得的值为2.0以上

残留奥氏体中的平均Mn质量%除以铁素体中的平均Mn质量%而得的值为2.0以上对于在本发明中确保良好的延展性是极其重要的要件。残留奥氏体中的平均Mn质量%除以铁素体中的平均Mn质量%而得的值小于2.0时,残留奥氏体转变得不稳定,无法期望延展性的效果。

应予说明,它们的平均Mn质量%可以使用EPMA(Electron Probe MicroAnalyzer;电子探针显微分析仪),对在板厚1/4位置的轧制方向截面的各相中的Mn的分布状态进行定量,由30个残留奥氏体晶粒和30个铁素体晶粒的量分析结果的平均值求出。

另外,通过如后所述适当地控制第1热处理条件、酸洗条件和第2热处理条件,能够使残留奥氏体中的平均Mn质量%除以铁素体中的平均Mn质量%而得的值为2.0以上。

另外,本发明的组织除残留奥氏体以及铁素体和马氏体以外,还可以在面积率为10%以下的范围含有珠光体、渗碳体等碳化物(不包括珠光体中的渗碳体),不会损害本发明的效果。

接着,对本发明的高强度热浸镀锌钢板的制造方法进行说明。

本发明的高强度热浸镀锌钢板通过如下操作来制造:对由上述成分组成构成的钢坯进行热轧,酸洗后,进行第1热处理,所述第1热处理在H2浓度为0.1vol%~25.0vol%、露点为-45℃~0℃的气氛中,在暴露钢板表面的状态下,在650℃~850℃的温度区域保持600s~21600s,接着,冷却后,在酸洗减少量以Fe换算计为0.03g/m2~5.00g/m2的条件下进行酸洗;接着,进行第2热处理,所述第2热处理在H2浓度为0.05vol%~25.0vol%、露点为-10℃以下的气氛中,在600℃~830℃的温度区域保持20s~900s;接着,冷却后,实施热浸镀锌。另外,可以根据需要进行第1热处理,冷却后,以压下率30%以上实施冷轧。另外,可以根据需要对热浸镀锌处理后的钢板进一步进行合金化处理。

本发明的高强度热浸镀锌钢板用热轧钢板可以通过如下操作来制造:对由上述成分组成构成的钢坯进行热轧,酸洗后,进行热处理,所述热处理在H2浓度为0.1vol%~25.0vol%、露点为-45℃~0℃的气氛中,在暴露钢板表面的状态下,在650℃~850℃的温度区域保持600s~21600s。

热轧钢板的制造方法没有特别限定,只要使用公知的方法即可。例如,将由上述成分构成的钢坯以1100℃~1400℃的温度进行加热,然后,实施热轧。在热轧工序中,一般而言,在粗轧后、精轧间通过高压水喷射进行除垢,在精轧后卷取成卷材。

本发明的高强度热浸镀锌钢板用冷轧钢板可以通过如下操作来制造:对由上述成分组成构成的钢坯进行热轧,酸洗后,进行热处理,所述热处理在H2浓度为0.1vol%~25.0vol%、露点为-45℃~0℃的气氛中,在暴露钢板表面的状态下,在650℃~850℃的温度区域保持600s~21600s;接着,冷却后,以压下率30%以上实施冷轧。

以下,详细说明。

第1热处理:在H2浓度为0.1vol%~25.0vol%、露点为-45℃~0℃的气氛中,在暴露钢板表面的状态下,在650℃~850℃的温度区域保持600s~21600s

第1热处理为了在钢板表面形成Mn氧化物,在距钢板表面5μm以内形成Mn浓度低的区域而进行,另外,为了在距钢板表面10μm以上的区域,使Mn在奥氏体中富集而进行。

H2是抑制热处理中的钢板表面的Fe的氧化所必需的。H2浓度小于0.1vol%时,在热处理中,钢板表面的Fe氧化,即使进行后述的酸洗,也无法除去Fe氧化物,镀覆外观劣化。另一方面,如果超过25.0vol%,则导致成本上升。因此,H2浓度为0.1vol%~25.0vol%。

露点小于-45℃时,在钢板表面的Mn氧化物形成不会发展。另一方面,如果超过0℃,则Fe在钢板表面氧化,镀覆外观和密合性劣化。因此,露点为-45℃~0℃。

以小于650℃的温度区域或小于600s的保持时间进行第1热处理时,Mn在奥氏体中的富集不会进行,难以在最终退火后确保残留奥氏体中的充分的Mn质量%,延展性降低。进而,由于在钢板表面的Mn氧化物形成被抑制,因此,在第二热处理工序中无法形成抑制固溶Mn向钢板表面扩散所必需的贫Mn区域。另外,在超过850℃的温度区域保持时,Mn在奥氏体中的富集也不会进行,难以在第二热处理后确认充分的残留奥氏体中的Mn质量%,延展性降低。超过21600s地保持时,Mn在奥氏体中的富集饱和,不仅对第二热处理后的延展性的有效性变小,而且也成为成本上升的主要原因。另外,在钢板表面不仅形成Mn氧化物,而且形成Fe固溶而成的氧化物,在酸洗后也会残留,使镀覆处理工序中的镀覆湿润性劣化,使表面外观劣化。

为了在钢板表面形成Mn氧化物,需要形成将钢板表面暴露于热处理气氛、即暴露钢板表面的状态。对于将钢板暴露于热处理气氛的方法没有特别限定,可以举出使用连续退火炉的方法、在钢板卷材的分批退火中,使用通过将卷材缓慢地卷绕,从而气氛侵入到钢板表面间的间隙的状态的所谓松卷的方法。

冷却

没有特别限定

冷轧:压下率30%以上

进行第1热处理,冷却后,根据需要实施冷轧。通过使压下率为30%以上,在第2热处理时微细地生成奥氏体,最终得到微细的残留奥氏体相,因此,弯曲性提高。

另外,通过实施冷轧,在上述第1热处理工序中形成于钢板表面的Mn氧化物产生龟裂。由此,能够通过后述的酸洗工序更有效地进行Mn氧化物的除去。为此,压下率为30%以上,优选为50%以上。

酸洗:酸洗减少量以Fe换算计为0.03g/m2~5.00g/m2

为了清洁钢板的表面,并除去在第1热处理中形成于钢板的表面的氧化物(Mn氧化物)而进行。

酸洗减少量以Fe换算计小于0.03g/m2时,有时无法充分除去氧化物。另外,如果酸洗减少量超过5.00g/m2,则不仅钢板表面的氧化物溶解,而且有时溶解到达Mn浓度降低的钢板内部,有时无法抑制第2热处理中的Mn氧化物形成。因此,酸洗减少量以Fe换算计为0.03g/m2~5.00g/m2。应予说明,酸洗减少量的Fe换算值可以由通板前后的酸洗液中的Fe浓度变化和通板材的面积求出。

第2热处理:在H2浓度为0.05vol%~25.0vol%、露点为-10℃以下的气氛中,在600℃~830℃的温度区域保持20s~900s

第2热处理是为了进一步促进在奥氏体中的Mn浓化以及为了在对钢板表面实施热浸镀锌时将表面活化而进行。

H2是为了抑制热处理中的钢板表面的Fe氧化所必需的。H2浓度小于0.05vol%时,钢板表面的Fe氧化。另外,如果H2浓度超过25.0vol%,则导致成本上升。因此,H2浓度为0.05vol%~25.0vol%。

另外,如果气氛中的露点超过-10℃,则钢板内部的固溶Mn扩散到表层,容易在钢板表面形成氧化物,镀覆外观劣化。进而,为了在高温且长时间的热处理中也抑制Mn氧化物的形成,露点优选-40℃以下。

温度小于600℃或保持时间小于20s时,Mn在奥氏体中的富集不会进行,难以确保充分的残留奥氏体的体积率,延展性降低。另一方面,温度超过830℃时,Mn在奥氏体中的富集不会进行,因此,不仅延展性降低,而且Mn容易在钢板表面形成氧化物,因此,镀覆外观劣化。另外,保持时间超过900s时,钢板内部的固溶Mn扩散到表层,容易在钢板表面形成氧化物,因此,镀覆外观劣化。因此,温度为650℃~830℃、保持时间为20s~900s。

冷却

没有特别限定,但冷却速度优选为2.0℃/s以上。

热浸镀锌处理

热浸镀锌处理将钢板浸渍于热浸镀锌浴而实施热浸镀锌。

制造热浸镀锌钢板时,优选使用浴温为440℃~550℃、浴中Al浓度为0.14质量%~0.24质量%的镀锌浴。

浴温小于440℃时,有可能由于浴内的温度变动而在低温部产生Zn的凝固,因此,有时镀覆外观劣化。如果超过550℃,则浴的蒸发剧烈,气化的Zn附着于炉内,因此,有时在操作方面产生问题。进而,合金化在镀覆时进行,因此,容易过度合金化。

如果浴中Al浓度小于0.14质量%,则有时在浴中,Fe-Zn合金的形成在钢板表面进行,镀覆密合性劣化。如果超过0.24质量%,则有时产生由于形成于浴表面的Al氧化物而引起的缺陷。

镀覆处理后,进行合金化处理,制造合金化热浸镀锌钢板时,优选使用浴中Al浓度为0.10%~0.20%的镀锌浴。如果浴中Al浓度小于0.10%,则有时大量生成Γ相,镀覆密合性(粉化性)劣化。如果超过0.20%,则有时Fe-Zn合金化不会进行。

镀锌层中Al浓度优选0.1%~3.0%。

在热浸镀锌浴中,为了抑制浴中的Zn与Fe的合金反应、抑制浴中渣滓等而添加有规定量的Al。这是因为Al与Zn相比优先与钢板表面的Fe反应,形成Fe-Al系的合金相,抑制Fe与Zn的合金化反应。在未实施合金化的热浸镀锌钢板中,该Fe-Al合金相在镀覆层中以Fe-Al合金的形式存在。在实施合金化的合金化热浸镀锌钢板中,Fe-Al合金在镀锌层中分散地存在。为了得到这样的效果,镀锌层中Al浓度优选0.1%以上。另一方面,如果过量地添加Al,则在热浸镀锌浴的表面大量生成Al的氧化膜,成为镀覆表面的缺陷的原因,因此,镀锌层中Al浓度优选3.0%以下。

热浸镀锌浴中,通过上述Al添加而抑制了Zn-Fe合金反应,但由于Fe稍微固溶在Zn中,因此,在镀覆层中含有0.01%以上的Fe。另一方面,实施合金化时,因合金化而在镀覆层中形成ζ相、δ相,Γ相之类的Fe-Zn合金相,但如果过量地形成硬且脆的Γ相,则镀覆密合性降低。该镀覆密合性的降低在镀覆层中的Fe浓度为15.00%时变得显著。因此,镀覆层中的Fe浓度优选0.01%~15.00%。

合金化处理

根据需要对镀覆处理工序后的钢板进一步进行合金化处理。合金化处理的条件没有特别限定,合金化处理温度优选450℃~580℃。小于450℃时,合金化的进行慢,如果超过580℃,则由于过度合金化而大量生成在基体铁界面生成的硬且脆的Zn-Fe合金层(Γ相),镀覆密合性(粉化性)劣化。

实施例

将具有表1所示的成分组成且剩余部分由Fe和不可避免的杂质构成的钢利用转炉进行熔炼,通过连续铸造法制成板坯。将得到的板坯热轧后进行酸洗,在表2、表3和表4所示的条件下实施第1热处理,根据需要实施冷轧、酸洗、第2热处理。接下来,实施热浸镀锌处理,根据需要实施合金化处理,得到热浸镀锌钢板(GI)、合金化热浸镀锌钢板(GA)。

对得到的钢板,对截面微观组织、拉伸特性、镀覆性(表面外观、镀覆密合性)进行调查。

<截面微观组织>

对于距钢板表面深度5μm以内的Mn浓度,使用EPMA(ElectronProbe MicroAnalyzer;电子探针显微分析仪)对Mn的分布状态进行定量,采用距钢板表面5μm以内的晶粒中的量分析结果的平均值。

对于残留奥氏体中的平均Mn质量%和铁素体中的平均Mn质量%,使用EPMA(Electron Probe Micro Analyzer;电子探针显微分析仪)对在板厚1/4位置的轧制方向截面的各相中的Mn的分布状态进行定量,采用30个残留奥氏体晶粒和30个铁素体晶粒的量分析结果的平均值。

<拉伸特性>

使用以拉伸方向与钢板的轧制方向成直角方向的方式采取样品的JIS5号试验片,依据JIS Z 2241(2011年)进行拉伸试验,测定TS(拉伸强度)、EL(总伸长率)。对于拉伸特性,TS为590MPa级时EL≥34%,TS为780MPa级时EL≥30%,TS为980MPa级时EL≥24%,TS为1180MPa级时EL≥21%,且将TS×EL≥22000MPa·%的情况判断为良好。

<表面外观>

通过目视来判断有无不镀覆、针孔等外观不良,将没有外观不良的情况判定为良好(○),将稍微有外观不良但大致良好的情况判定为大致良好(△),将有外观不良的情况判定为(×),将大致良好以上:○、△设为合格。

<镀覆密合性>

热浸镀锌钢板的镀覆密合性通过落球冲击试验进行评价。用玻璃纸胶带将进行了落球冲击试验的钢板的加工部剥离,目视判定有无镀覆层的剥离。应予说明,落球冲击试验在球质量1.8kg、落下高度100cm的条件下进行。

○:没有镀覆层的剥离

×:镀覆层剥离

合金化热浸镀锌钢板的镀覆密合性通过试验耐粉化性来评价。对合金化热浸镀锌钢板粘贴宽度24mm、长度40mm的玻璃纸胶带,对胶带面实施90度弯曲、弯曲回复,将胶带剥离。相对于钢板板宽,在1/4、2/4和3/4的合计3处进行该镀覆剥离操作,以利用荧光X射线的Zn计数的形式测定附着于胶带的从钢板剥离的镀覆的量,对于将Zn计数换算为每单位长度(1m)的量,参照下述基准,将等级2以下的情况评价为特别良好(○),将等级3的情况评价为良好(△),将4以上的情况评价为不良(×),将等级3以下设为合格。

将通过以上操作得到的结果和条件一并示于表2、表3和表4。

本发明例的高强度热浸镀锌钢板的TS均为590MPa以上,成型性优异且表面外观和镀覆密合性也优异。另一方面,在比较例中,表面外观或密合性中的至少一方的特性差。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号