首页> 中国专利> 适于植入后膨胀的混合心脏瓣膜

适于植入后膨胀的混合心脏瓣膜

摘要

本发明公开了一种混合假体心脏瓣膜,其配置成置换天然心脏瓣膜并且具有配置成植入后膨胀的支撑框架以便在其中接收和/或支撑可膨胀假体心脏瓣膜(瓣中瓣程序)。假体心脏瓣膜可以配置成当初始植入以置换天然瓣膜(或其它假体心脏瓣膜)时具有大致刚性的和/或抗膨胀配置,但当受到诸如由扩张球囊或其它机械膨胀器提供的向外力时呈现大体膨胀形式。流入支架框架可膨胀以将瓣膜锚固在适当的位置,并且可以具有流出端,所述流出端可塌缩以用于递送并且植入后可膨胀以促进瓣中瓣程序。

著录项

  • 公开/公告号CN107735051A

    专利类型发明专利

  • 公开/公告日2018-02-23

    原文格式PDF

  • 申请/专利权人 爱德华兹生命科学公司;

    申请/专利号CN201680034461.8

  • 发明设计人 B·S·康克林;Q·曾;

    申请日2016-06-30

  • 分类号

  • 代理机构北京纪凯知识产权代理有限公司;

  • 代理人赵志刚

  • 地址 美国加利福尼亚州

  • 入库时间 2023-06-19 04:41:24

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2020-07-31

    授权

    授权

  • 2018-03-23

    实质审查的生效 IPC(主分类):A61F2/24 申请日:20160630

    实质审查的生效

  • 2018-02-23

    公开

    公开

说明书

本申请要求于2015年7月2日提交的美国申请第62/188,467号的权益,其全部公开内容通过引用并入本文。本申请涉及2016年6月30日提交的、名称为“一体式混合心脏瓣膜(INTEGRATED HYBRID HEART VALVES)”的美国专利申请,其全部公开内容通过引用并入本文。

技术领域

本公开涉及一种用于心脏瓣膜置换的混合心脏瓣膜,并且更特别地涉及改进手术心脏瓣膜的构造以使其能够在其中接收可膨胀假体心脏瓣膜。

背景技术

心脏是中空的肌肉器官,具有由四个心脏瓣膜分离的四个泵室:主动脉瓣,二尖瓣(或两尖瓣),三尖瓣,和肺动脉瓣。心脏瓣膜由称为瓣环的致密纤维环和附着到瓣环的小叶或尖瓣组成。

心脏瓣膜疾病是一种广泛的病症,其中一个或多个心脏瓣膜无法正常工作。在传统的瓣膜置换手术中,通常切除损伤的小叶,并且将瓣环塑造成接收置换假体瓣膜。

在组织型瓣膜中,整个异种移植瓣膜(例如猪)或多个异种移植小叶(例如牛心包膜)可以提供流体阻塞表面。已提出合成小叶,并且因此术语“挠性小叶瓣膜”是指天然和人造“组织型”瓣膜。在典型的组织型瓣膜中,两个或更多个挠性小叶安装在周边支撑结构内,所述周边支撑结构通常包括在流出方向上延伸的柱或连合以模拟天然瓣环中的天然纤维连合。有时称为“丝型件”或“支架”的金属或聚合物“支撑框架”具有支撑挠性小叶的尖瓣区域的多个(通常为三个)大半径尖瓣(例如,整个异种移植瓣膜或三个独立的小叶)。每一对相邻尖瓣的端部稍微渐近地会聚以形成终止于尖端的直立连合,每个尖端作为弓形尖瓣在相反方向上延伸并且具有相对较小的半径。瓣膜的部件通常与一个或多个生物相容性织物(例如聚酯,例如聚对苯二甲酸乙二醇酯(PET))覆盖物组装,并且织物覆盖的缝合环设在周边支撑结构的流入端上。

有时,在患者已经对相同的瓣膜进行了早期瓣膜置换之后,可能需要全瓣膜置换。例如,成功植入以置换天然瓣膜的假体心脏瓣膜本身可能在初始植入多年后遭受损伤和/或磨损。在先前植入的假体心脏瓣膜内直接植入假体心脏瓣膜可能是不切实际的,部分是由于新的假体心脏瓣膜(包括支撑结构和瓣膜组件)将不得不驻留在先前植入的心脏瓣膜的瓣环内,并且传统假体心脏瓣膜可能不配置成以以下方式容易地接收这样的瓣内瓣植入:所述方式为新瓣膜提供安全的座部,同时也在新瓣膜内具有足够大的瓣环以支持通过其中的适当的血液流动。

在旧瓣膜内植入新瓣膜的问题受到了一些关注。特别地,以下公开了用于瓣中瓣系统的各种解决方案:2008年9月19日提交的美国专利申请公报第2010/0076548号;2011年7月7日提交的美国专利第8,613,765号;以及2011年8月2日提交的国际公报第WO2012/018779号。这些公报的全部公开内容明确地通过引用并入本文。

尽管在瓣中瓣区域中取得了某些进展,但仍然需要一种假体心脏瓣膜,其促进该过程,同时最大化第一瓣膜的使用寿命并简化制造技术。

发明内容

本发明是一种假体心脏瓣膜,其配置成在其中接收假体心脏瓣膜,例如导管部署的(经导管)假体心脏瓣膜。在一个实施例中,假体心脏瓣膜具有支撑结构,当部署在患者的天然心脏瓣环中以置换天然心脏瓣膜(或置换另一假体心脏瓣膜)时所述支撑结构基本上抵抗径向压缩(并且可以基本上抵抗径向膨胀),但是配置成径向可膨胀,和/或转变成大致膨胀和/或可膨胀配置,以便在其中接收假体心脏瓣膜,例如经皮递送的假体心脏瓣膜。从抗膨胀到膨胀/可膨胀的转变可以通过使抗膨胀支撑结构受到诸如扩张力的向外力而实现,所述向外力可以由用于部署置换假体瓣膜的扩张球囊提供。

根据本发明的假体心脏瓣膜还可以是“混合”心脏瓣膜,其具有定位在假体心脏瓣膜的流入端处的支架框架的形式的附加支撑部分,所述附加支撑部分配置成当受到本身不足以导致主支撑结构膨胀的扩张力时塑性地膨胀成基本张开形状。支架框架定位在整个瓣膜部分的上游或流入端上。

第一示例性混合假体心脏瓣膜适于植入后膨胀并且具有流入端和流出端。瓣膜构件包括内结构支撑支架,所述内结构支撑支架具有在流出方向上延伸的与弓形流入尖瓣交替的直立连合柱。瓣膜构件的流入端上下波动,对应于连合柱和尖瓣。支撑支架限定在正常生理使用中不可压缩并且具有第一直径的植入物圆周,其中在从支撑支架内施加显著大于与正常生理使用相关的力的向外扩张力时,支撑支架允许从第一直径膨胀到大于第一直径的第二直径。而且,多个挠性小叶沿着连合柱和支撑支架的流入尖瓣附着,并且确保通过其中的单向血液流动。固定到支撑支架的流入端并从其突出的塑性可膨胀的流入支架框架具有需要预定的膨胀力以转换成膨胀状态的强度。支架框架的流出端随着峰和谷波动以至少部分地符合支撑支架的流入端,并且其中流出端具有有限的径向可压缩性以在递送心脏瓣膜期间使能够压缩支架框架。

第一假体心脏瓣膜支撑支架可以包括径向外带,所述径向外带同心地围绕径向内带定位并附接到径向内带,所述径向内带具有由位于尖瓣中的一个处的重叠自由端形成并且由滑动插入件分离的单个可膨胀段,并且还包括围绕外带的重叠自由端的挠性套筒以保持自由端的对准。单个可膨胀段理想地位于支撑支架的尖瓣中的一个处,并且内带配置成当外带膨胀时在每个连合柱下方膨胀。

适于植入后膨胀的第二混合假体心脏瓣膜具有流入端和流出端,以及瓣膜构件,所述瓣膜构件包括具有交替的尖瓣和连合的波状丝型件,所述尖瓣和连合支撑配置成确保通过其中的单向血液流动的多个挠性小叶。具有径向可膨胀的流入端和流出端的塑性可膨胀的流入支架框架固定到丝型件的流入端并从其突出。支架框架的流出端随着对应于丝型件的峰和谷波动,并且流出端还包括邻近小叶附着至其的丝型件连合并从其径向向外定位的一体式连合柱。流出端限定具有标称直径的植入物圆周,其使瓣膜构件在植入时能够起到生理功能,并且在从流出端内施加显著大于与正常生理使用相关的力的向外扩张力时支架框架流出端允许从标称直径有限膨胀到大于标称直径的第二直径。

在第二假体心脏瓣膜中,支架框架优选地配置成在施加向外扩张力时在每个连合柱下方膨胀。一体式连合柱可以分离用缝线固定到支架框架流出端的元件,或者可以由与支架框架的其余部分相同的均质材料一体形成。优选地,支架框架包括由一系列间隔的轴向列撑杆连接的多个圆周行撑杆,并且包括流出行撑杆,所述流出行撑杆围绕具有对应于丝型件的峰和谷的支架框架的周边连续地延伸,其中流出行撑杆具有允许有限的膨胀和收缩的一系列间隔的V形槽口。

适于植入后膨胀的第三示例性混合假体心脏瓣膜也具有流入端和流出端以及瓣膜构件,所述瓣膜构件包括具有交替的尖瓣和连合的波状丝型件,所述尖瓣和连合支撑配置成确保通过其中的单向血液流动的多个挠性小叶。具有径向可膨胀的流入端和流出端的塑性可膨胀的流入支架框架固定到丝型件的流入端并从其突出。支架框架的流出端随着对应于丝型件的峰和谷波动,并且流出端还包括邻近小叶在丝型件的外部附着至其的丝型件连合并从其径向向外定位的三个连合柱。三个连合柱直接固定到限定标称直径的撑杆的上部圆周行,其使瓣膜构件在植入时能够起到生理功能。撑杆的上部圆周行径向可压缩到较小的收缩直径以在递送心脏瓣膜期间使能够压缩流出端,并且撑杆的上部圆周行在从支架框架内施加显著大于与正常生理使用相关的力的向外扩张力时也从标称直径径向可膨胀到较大的膨胀直径。

在第三假体心脏瓣膜中,支架框架有利地配置成在施加向外扩张力时在每个连合柱下方膨胀。支架框架可以具有一系列压缩部段,所述压缩部段包括使能够有限压缩圆周结构的空间。优选地,撑杆的上部圆周行围绕具有对应于丝型件的峰和谷的支架框架的周边连续地延伸,并且撑杆的上部圆周行具有允许有限的膨胀和收缩的一系列间隔的V形槽口。而且,撑杆的上部圆周行优选地具有在标称直径的约7-20%之间的有限径向可压缩性以在递送心脏瓣膜期间减小流出端的尺寸。

适于植入后膨胀并且具有流入端和流出端的第四混合假体心脏瓣膜包括瓣膜构件,所述瓣膜构件包括配置成确保通过其中的单向血液流动的多个挠性小叶以及限定小叶的周缘附着至其的交替的尖瓣和连合的小叶支撑结构。固定到小叶支撑结构的流入端并从其突出的塑性可膨胀的流入支架框架具有需要预定的膨胀力以转换成膨胀状态的强度。支架框架包括多个可膨胀撑杆以及随着峰和谷波动以至少部分地符合波状小叶支撑结构的支架框架的流出端处的上边缘。上边缘限定具有标称直径的植入物圆周,其使瓣膜构件在植入时能够起到生理功能,其中上边缘配置成在从流出端内施加显著大于与正常生理使用相关的力的向外扩张力时从标称直径膨胀有限量达到大于标称直径的扩大直径。

假体心脏瓣膜还可以包括与支撑支架同心布置并紧密接触的生物可降解带,生物可降解带配置成在植入之后提供对支撑支架的膨胀的抵抗,当带在身体中降解时所述抵抗随着时间减小。因此,生物可降解带配置成当预定膨胀力施加到径向可膨胀流入支架时提供对支撑支架的膨胀的抵抗。

在各种假体心脏瓣膜中,植入之后从身体外部可见的唯一标识可以设在支撑支架或支架框架上,其将支撑支架或支架框架流出端标识为可膨胀。

附图说明

从结合附图进行的以下详细描述,本发明的其它特征和优点将变得显而易见,附图通过示例说明本发明的原理。

图1A和1B分别描绘了本申请的用于混合假体心脏瓣膜的支撑框架组件的俯视图和侧视图;

图1C是图1A和1B的混合假体心脏瓣膜的侧视图,其中球囊导管膨胀可膨胀裙边但不膨胀主支撑结构部分,并且图1D示出了裙边膨胀之后的假体心脏瓣膜;

图1E和1F分别描绘了在球囊导管已将主支撑结构部分径向膨胀成膨胀配置之后的图1A和1B的假体心脏瓣膜支撑结构的俯视图和侧视图;

图2是具有允许植入后膨胀的内结构带组合并且也包括植入后生物降解的加强带的示例性假体心脏瓣膜的分解透视图;

图3A是在球囊膨胀锚固裙边的步骤期间图2的已组装假体心脏瓣膜的正视图,并且图3B是膨胀第一瓣膜、同时在其内植入次级心脏瓣膜的植入后程序期间通过假体心脏瓣膜的截面图;

图4A-4D是具有内结构带的现有技术的示例性假体心脏瓣膜的透视图和分解图;

图5A和图5B是可以用于各种假体心脏瓣膜中以使能够进行其植入后膨胀的结构带的示例性组合的第一带的透视图和正视图;

图6A-6C是可以与图5A和图5B的第一带联接以形成可以用于各种假体心脏瓣膜中以使能够进行其植入后膨胀的结构带的组合的第二带的透视图和放大图;

图7是使假体心脏瓣膜的植入后膨胀能够进行的图5和6中的结构带的组合的透视图;

图8A是本申请的混合假体心脏瓣膜的侧视图,而图8B以虚像示出了具有瓣膜构件的锚固裙边,并且图8C是假体心脏瓣膜的透视图,其中部分被切除以显露内部结构小叶支撑件;

图9A-9C是用于在图8A-8C的混合假体心脏瓣膜中使用的示例性锚固裙边的透视图;

图10A是替代的混合假体心脏瓣膜的部件的分解透视图,而图10B示出了用于混合假体心脏瓣膜的示例性小叶和丝型件子组件以及锚固裙边和连合柱子组件;

图10C和10D示出了独立的连合柱的细节;

图11是替代的混合假体心脏瓣膜的子组件的另一分解透视图;

图12示出了用于替代的混合假体心脏瓣膜的锚固裙边和连合柱子组件以及丝型件的相对位置;

图13是完成的混合假体心脏瓣膜的透视图;

图14A-14D是用于在本文中公开的混合假体心脏瓣膜中使用的示例性一体式框架构件的透视图、正视图和平面图;

图15A-15D是非常类似于图14A-14D中所示的替代的一体式框架构件的若干视图,但是具有与下部可膨胀框架分离的连合柱;

图16是具有连接到形成连合柱的聚合物带的可膨胀框架的替代的一体式框架构件的透视图;

图17A和17B是用于在图16的框架构件中使用的示例性可膨胀框架的正视图和透视图;以及

图18是类似于图16中所示的一体式框架构件的正视图,其具有与可膨胀框架的上边缘重叠的聚合物带。

具体实施方式

本文中公开的假体心脏瓣膜是“混合的”,原因是它们包括类似于常规外科瓣膜构造的假体瓣膜构件,其具有在植入后的使用期间不旨在被压缩或膨胀的相对稳定的直径,以及帮助将瓣膜锚固在适当位置的下部可膨胀的框架结构。大多数现有的瓣膜具有完全不可压缩的/不可膨胀的瓣膜构件或在其中包含瓣膜的完全可膨胀的框架结构。以混合方式构造的一种特定的商业假体心脏瓣膜是来自加利福尼亚州Irvine的EdwardsLifesciences的Edwards瓣膜系统。该混合Edwards瓣膜系统包括具有生物假体(例如牛心包)小叶的外科不可压缩/不可膨胀瓣膜构件(例如,类似于Carpentier-Edwards Magna瓣膜),其联接到在其流入端上的不锈钢可膨胀框架结构。

本文中所述的假体心脏瓣膜均包括内部(表示包含到瓣膜构件本身中而不是作为补充元件)结构支架或框架,其在形状上大体为管状并且限定血液从流入端流动到流出端所通过的流动孔口区域。替代地,内部支架的形状可以是卵形、椭圆形、不规则形状或任何其它期望的形状。瓣膜包括挠性小叶,其选择性地打开和关闭以允许通过其中的单向流体流动。

本文中公开的各种内部支架具有使支架能够膨胀的“可膨胀段”。这可能由于可膨胀段破裂、塑性拉伸或弹性伸长而发生。因此,“可膨胀段”表示例如当球囊在支架内膨胀时使其能够扩大直径的支架上的位置。示例包括可能破裂的薄弱点,破裂或拉伸的薄化区域,弹性或塑性伸长的手风琴状结构,用诸如缝线或点焊等可破坏构件保持在一起的支架中的断裂,以及各种其它手段。术语“可膨胀段”因此涵盖这些替代方案的每一个。

图1A和1B示出了“混合”假体心脏瓣膜20的示例性实施例,其中瓣膜构件25的上部支撑支架24联结到下部可膨胀框架结构26。下部框架结构26比上部支撑结构24径向更弱,并且配置成当受到例如诸如图1C中所示的导管球囊28提供的径向扩张压力时张开,如图1B中所示。在所描绘的实施例中(并且在图1C-1D中最清楚地看到),下部框架结构26由材料30的裙边覆盖。假体心脏瓣膜20包括瓣膜小叶(为了清楚起见未示出)以控制血液流动。假体心脏瓣膜也具有密封或缝合环32以帮助将假体心脏瓣膜20安置在期望的位置(例如,患者体内的天然瓣环)。在以下专利中阐述了关于假体心脏瓣膜20(其中上部支撑结构24处于未膨胀配置)在患者体内的初始部署的细节:2009年12月10日提交的美国专利第8,308,798号;2010年6月23日提交的美国专利第8,348,998号;以及2011年6月23日提交的美国专利第8,641,757号;其内容通过引用明确并入本文。

图1A-1F的“混合”瓣膜实施例的关键特征在于,在假体心脏瓣膜20初始部署在患者体内期间当受到不足以导致上部支撑结构24的径向膨胀的扩张压力时,下部框架结构26将张开。例如,导管球囊28可以用于实现下部框架结构26的所需张开,同时仍保持上部支撑结构24的非膨胀性质以便保持瓣膜小叶的开放,如图1A-1B中所示。如果假体心脏瓣膜20将在未来失效或另外需要置换,则可以将球囊导管引入患者体内,并且足以使上部支撑结构24径向膨胀的压力(例如3个大气压或更大)(例如通过在设计的弱化区域36处导致失效)可以施加到假体心脏瓣膜20,所述压力也高于使下部框架结构26张开所需的压力。在由此产生的膨胀的情况下,如图1E和1F中所示,包括上部支撑结构24和下部框架结构26的至少流入端的整个假体心脏瓣膜20被径向地膨胀,以便扩大瓣膜孔口34以在其中容纳新的导管递送的假体心脏瓣膜。应当注意,在扩张之后,下部框架结构26可能几乎没有张开,而是具有沿其长度的大致恒定的直径,如图1F中所示。

也应当注意,在另一实施例中,球囊28可以是特定形状的(例如在相关的美国专利第8,641,757号的图38-40中示出),因此其可以以使得将径向膨胀压力施加到下部框架结构26这样的方式定位,同时将几乎没有的径向膨胀压力施加到上部支撑结构24。在这样的实施例中,仅用于径向膨胀下部框架结构(例如,在假体心脏瓣膜20的初始植入期间)的特定形状的球囊可以定位成仅将压力施加到下部支撑部分。特定形状的球囊然后可以膨胀到期望的压力,例如4-5个大气压,该压力被施加以膨胀下部支撑部分但不施加到上部支撑部分。在期望径向膨胀上部支撑结构时(例如,当期望在现有的瓣膜内部署新的瓣膜时)的稍后时间,可以使用远远更长的圆柱形球囊来膨胀上部和下部结构两者。例如,圆柱形球囊可以定位在上部和下部结构两者内,并且膨胀到4至5个大气压之间,因此径向膨胀上部和下部结构两者。

如图1A-1F中的20所示的“混合”型假体心脏瓣膜通过将其推进到瓣环处的位置而被植入,并且然后使球囊28或其它机械膨胀器膨胀以导致下部框架结构26的向外张开。尽管上部支撑支架24旨在保持恒定的直径,并且仅当将第二瓣膜直接植入其中时在需要时稍后膨胀,但是传统的圆柱形球囊的使用可能无意中膨胀或扭曲上部支架并可能导致瓣膜的故障。所以,本申请设想了一种临时加强带以防止从初始球囊膨胀引起的对上部支架的任何不利影响,如将要解释的。

图2是具有允许植入后膨胀的内部结构带组合42并且也包括在植入之后生物降解的加强带44的示例性“混合”假体心脏瓣膜40的分解透视图。心脏瓣膜40的主要结构部件包括连接到连续的波动丝框52并由连续的波动丝框52支撑的多个挠性小叶50,包括内带54和外带56的结构带组合42,加强带44,以及适于在植入后膨胀的下部框架结构58或锚固裙边。为了清楚起见,各种布覆盖物和接口未被示出,但是通常与缝线一起使用以将部件保持在一起。再次,挠性小叶50可以是独立小叶(如牛心包小叶)的组合,或单个生物假体结构,如猪的瓣膜。下部框架结构58优选是塑性可膨胀的,例如由合适的塑性可膨胀材料制成,例如不锈钢或钴-铬合金(例如,合金),但是也可以在某些配置中可自膨胀,例如由镍钛合金制成。

结构带组合42理想地适于使能够植入后膨胀,与2013年12月20日提交的美国专利申请公报第2014/0188221号中描述的实施例非常相似,其公开内容通过引用明确地并入本文。实际上,内带54和外带56示出为与'221公报的图6A-6B中所示的那些相同,但是可以使用任何可膨胀带组合。

当部件组装到瓣膜40中时,其将类似于图1A-1F中所示的瓣膜20,并且也如图3A中所示,其示出了在球囊膨胀锚固裙边或下部框架结构58的步骤期间的瓣膜。再次,这与Edwards瓣膜系统中的心脏瓣膜基本相同。除了允许植入后膨胀的改进之外,新的瓣膜40具有生物可降解的加强带44。带44可以制造得足够薄并且形状与外带56相同,以便在成品中几乎不明显。此外,已知常规地包括在外科植入物中的各种生物可降解材料,并且因此不引入任何有问题的材料。例如,可接受使用的生物可降解聚合物包括聚乙交酯(PGA),PGA/聚交酯(PLA),聚二噁烷酮(PDS),聚己内酯(PCL),聚(二噁烷酮),以及PGA/三亚甲基碳酸酯(TMC)。因此,改进的瓣膜40包括相对于Edwards瓣膜系统中的瓣膜的较小的形状因子变化。

如所提到的,图3A示出了与解剖结构隔离但是在植入瓣环(例如主动脉瓣环)中的时刻示出的混合瓣膜40。瓣膜40在诸如套管或导管的管状轴60的远端上被递送。尽管未示出,但是瓣膜保持器可以用于将瓣膜40联接到轴60。诸如球囊的膨胀构件62用于使锚固裙边或下部框架结构58膨胀以抵靠周围的解剖结构。例如,框架结构58可以膨胀成张开形状,如图所示,其大体上符合左心室中的瓣膜下形貌,正好在主动脉瓣环下方。再次,框架结构58理想地是塑性可膨胀的,例如由不锈钢或钴-铬合金制成,并且保持其张开形状。替代地,框架结构58可以是自膨胀的,例如由镍钛合金制成,其在释放时向外扩散,并且可以对周围组织施加向外偏压。而且,框架结构58可以提供将瓣膜保持在适当位置的唯一手段,或者它可以补充有均匀分布在瓣膜40的密封环63周围的少量缝线、夹子等。在任何情况下,当仅仅使用缝线时通过消除多达20个打结步骤从现有的外科植入物大大减少植入过程的时间。

瓣膜40的功能部分借助于结构带组合42限定了相对稳定的孔口直径d,并且该瓣膜旨在使用多年而没有问题。然而,如上所述,瓣膜40有时会产生诸如钙化的问题,这降低了其有效性。该过程可能需要几十年,但最终可能需要重新手术以固定瓣膜。改进的瓣膜40设计成能够使置换瓣膜在其孔口内直接膨胀,膨胀使瓣膜40变宽而不需要对其进行外植。

因此图3B示出了在其内植入次级心脏瓣膜64的植入后程序期间通过假体心脏瓣膜40的截面图。次级心脏瓣膜64典型地在具有球囊68的球囊导管66的远端上被递送,次级瓣膜的塑性可膨胀支架70围绕所述球囊68被卷曲。该类型的一种特定瓣膜是由EdwardsLifesciences出售的瓣膜。如果初级瓣膜40植入主动脉瓣环内,则所示的递送典型地使用经股进路程序逆行,但是也可以预料顺行经心尖程序,在该情况下递送导管66将示出为从相对端进入瓣膜40。这样的瓣膜也被称为“经导管”瓣膜,原因是它们典型地从导管的端部引入。

球囊68的膨胀力的强度足以不仅使次级瓣膜64向外膨胀到与初级瓣膜40的内部接触,而且使初级瓣膜向外膨胀。如参考图2所述,加强带44随着时间降解,可能在植入后6个月至1年之后。因此,内结构带组合42保持以保持瓣膜40的圆形形状。然而,由于结构带组合42的可膨胀特性,球囊68可以使其向外膨胀到更大的直径D,如图3B中所示。另外,如本文中别处所述,'221公报中公开的任何结构带配置可以被使用或修改以用作特定结构带组合42。优选地,次级瓣膜64膨胀到具有与初级瓣膜40的原始孔口直径d匹配的孔口直径,这可以表示初级瓣膜的总体向外膨胀约2-4mm,相当于以2mm增量的一个或两个瓣膜尺寸。优选地,由次级瓣膜64限定的流动孔口至少等于初级瓣膜40的流动孔口,从而避免任何流动能力减小。尽管由瓣膜或周围瓣环产生的任何反冲力,塑性可膨胀支架70理想地足够鲁棒以使初级瓣膜40保持打开。

本申请公开了对现有的外科和混合瓣膜的特定改进,使制造商能够快速生产适应瓣中瓣(ViV)程序的瓣膜。具体地,本申请考虑对现有外科瓣膜内的部件进行改造或修改以使能够植入后膨胀。这不仅可以将任何经过验证的外科或混合瓣膜转换用于在ViV程序中使用,也可以减少设计和制造工作。因此有必要描述一种流行的外科瓣膜的部件以解释对其进行的某些改进。

图4A-4D是围绕流动轴线82定向的现有技术的示例性外科假体心脏瓣膜80的透视图和分解图。心脏瓣膜80包括多个(通常为三个)挠性小叶84,其部分地由波状丝型件86以及结构支架88支撑。丝型件86可以由合适的弹性金属形成,例如Co-Cr-Ni合金,如合金,而结构支架88可以是金属、塑料或两者的组合。如图4B中所示,相邻小叶84的外突舌90在所谓的瓣膜的连合处围绕结构支架88的一部分缠绕,所述连合沿着流动轴线82在流出方向上突出。软密封或缝合环92外接假体心脏瓣膜80的流入端,并且通常用于例如用缝线将瓣膜固定到天然瓣环。丝型件86和结构支架88在图中可见,但是通常覆盖有聚酯织物以便于组装并减少植入后的直接血液暴露。

应当理解的是,为许多假体心脏瓣膜提供了限定交替的尖瓣和连合的小叶支撑结构,并且这样的支撑结构可以包括或不包括丝型件。也就是说,一些瓣膜具有如86所示的小叶附着至其的覆盖布的丝型件以及结构支架88,而在其它瓣膜中,结构支架仅执行丝型件的功能。因而,术语“小叶支撑结构”涵盖这两种变化。

图4C和4D在组装图和分解图中示出了内结构支架88。尽管如图4A和4B中所示的假体心脏瓣膜80的一般特性可以用于多种不同的假体心脏瓣膜,但所示的结构支架88是用于特定心脏瓣膜的结构支架;即,由加利福尼亚州Irvine的Edwards Lifesciences制造的心包心脏瓣膜。例如,利用心包小叶84的心脏瓣膜的系列具有非常类似于图4C和4D中所示的内支架88。特别地,支架88包括两个同心带(围绕内带95的外带94)的组件或复合物。带94、95与轴向尺寸相比在径向尺寸上相对较薄,并且两者具有一致的围绕圆周轴向上下波动的下边缘。外带94在三个向下弯曲的谷之间呈现三个截头峰,而内带95具有大致相同的形状,但也在连合柱96处向上延伸。向下弯曲的谷典型地称为尖瓣98,如图4C中所示。

在示例性的瓣膜中,外带94是金属的并且由弯曲成大致圆形的长形金属条形成并且在100处焊接。相反,外带95由可以模制的生物相容性聚合物例如聚酯(PET)或聚缩醛(例如,聚缩醛)形成,并且也可形成为条带,弯曲成圆形并焊接(未示出)。外带和内带94、95两者都具有彼此配准的一系列通孔,使得组件可以缝合在一起,如图4C中示意性地所示。丝型件86和内带95的连合柱96为瓣膜的连合提供挠性,这有助于减小小叶84的生物假体材料上的应力。然而,由缝合环92围绕的瓣膜80的流入端或基部包括结构支架88的相对刚性的圆形部分。金属外带和塑料内带94、95的组合为瓣膜提供相对尺寸稳定的圆周基部,这对于常规外科使用是有益的。然而,结构支架88的相同特征为外科瓣膜提供了良好的稳定性以抵抗瓣膜的植入后膨胀。因此,本申请设想了对结构支架88的各种改进以便于其膨胀。

上面描述的示例性现有技术的外科瓣膜80因此可以被改进用于植入后膨胀。此外,在上述商业Edwards瓣膜系统中使用类似的外科瓣膜结构,并且可以对该系统的瓣膜部件进行相同的改进,使得其可以容易地在植入后膨胀。图5-7示出了一个这样的特定改进。

图5A和5B是第一带120的透视图和正视图,其用于在结构带的示例性组合中使用以代替现有的带并且使其能够在植入后膨胀。第一带120相对于其轴向高度再次具有相对较小的径向厚度,并且包括波状环形形状,具有在向上突出的连合柱124之间的向下弯曲的尖瓣122。在优选实施例中,第一带120包括模制为扁平条带的聚合物材料,其然后弯曲成圆形并且其两个自由端在126处焊接。

第一带120包括位于每个连合柱124下方的弱化区域,其使带能够破裂并且容易地与假体心脏瓣膜的其余部分一起膨胀。先前在美国专利申请公报第2014/0188221号中描述了这样的弱化区域,上述申请先前通过引用并入本文。第一带120在每个连合柱124处包括一系列竖直间隔的通孔130、132。特别地,第一对通孔130紧邻带的下边缘134定位。通过带120的厚度的竖直划线136从第一对通孔130竖直向上延伸到位于连合柱124中间的上通孔132。优选地,划线136与上通孔132连接。如图所示,通孔130、132可以为圆形,或者可以例如以泪珠形状稍微伸长,以便将由带120的膨胀生成的任何拉伸力集中到某一点,例如竖直向上。由于相对较弱的聚合物材料以及由通孔130、132和划线136提供的弱化区域,因此第一带120倾向于在连合柱124下方的三个位置处分开。如所解释的,挠性小叶通常固定到连合柱124的上端,其在上通孔132上方基本保持不变。尽管第一带120组装在其中的假体心脏瓣膜由次级瓣膜取代,但是保持瓣膜的总体完整性是期望的,以避免任何松散的部件。

图6A-6C是第二带140的透视图和放大图,所述第二带140可以与图5A和图5B的第一带120联接以形成用于在各种假体心脏瓣膜中使用以使其能够植入后膨胀的复合结构带。特别地,第二带140围绕第一带120与其紧密地同心定位,如图7中所示。第二带140也具有波状环形形状,其中下弓形尖瓣区域142与向上延伸的连合区域144交替。两个带主要区别在于第二带140的连合区域144被截断,使得它们仅延伸到第一带120的连合柱124的一部分。

第二带140理想地是金属的,例如Co-Cr-Ni合金,如合金,并且优选地初始形成为扁平带,其弯曲成环形形状并且具有彼此重叠和接合以便膨胀的两个自由端146a、146b。在图6B和6C中示出了这样的接合的一个优选实例。在美国专利申请公报第2014/0188221中示出并描述了允许植入后膨胀的重叠自由端的其它示例。

在所示的实施例中,两个自由端146a、146b均与一对肩部148处的带的其余部分区分,这减小了具有中心圆周槽152的中间部分150的轴向高度。每个自由端146a、146b终止于具有与带140的大部分大致相同的轴向高度的轴向扩大头部154(或相反方向的轴向凸起)。滑动插入件156或“间隔件”介于两个自由端146a、146b之间以减少其间的滑动摩擦。例如,插入件156由诸如聚酯的润滑材料形成。插入件156具有稍微反映两个自由端146a、146b的组合的形状;即,具有与中间部分150大致相同的轴向高度,中心圆周槽,以及具有与扩大头部154相同尺寸的轴向突起。在两个金属带端部146a、146b之间的聚酯插入件156也防止正常心脏循环期间的金属间微动,这可能导致轻微的相对运动。

两个自由端146a、146b和插入件156的组装在图6B中看到,并且由挠性套筒158保持在一起,所述挠性套筒158围绕自由端146a、146b并将它们径向保持在一起。套筒158理想地包括聚酯(例如PET)收缩包装管,或者可以是诸如硅橡胶的弹性体材料,并且被示出为透明的以示出配合的自由端146a、146b。两个自由端146a、146b可以滑动分开预定的距离,同时仍然重叠。挠性套筒158提供了相对于轴向扩大头部154的最小摩擦量,但是通常仅用于保持自由端146a、146b的对准。挠性套筒158名义上保持带的直径,使得其在制造期间是稳定的,但是一旦执行瓣中瓣程序,允许它容易地打开。

每个自由端146a、146b还包括圆周定向槽152,其未到终端154而停止并且提供用于流体流动的路径。优选地,槽152从套筒158向外延伸得更远,使得流体总是可以进入套筒内的空间。在储存期间,槽152允许流体在重叠的自由端146a、146b之间流动以允许消毒。而且,套筒158可以是生物可降解的,以在植入后保持两个自由端146a、146b的对准一段时间,并且然后降解以允许带140更加容易膨胀。

带140示出了使用外部成像可见并且表示其可膨胀的更进一步的识别特征。在所示实施例中,在每个连合区域144处设有三个孔160的图案。再次,这允许外科医生考虑置换手术以快速确认瓣中瓣程序是可能的。带140也可以包括使用外部成像可见的瓣膜尺寸指示器,如下面关于图8-9所示,并且如在2015年6月22日提交的共同未决的美国申请第14/745,287号中详细描述,上述申请在此明确地通过引用并入本文。

如图7中所示,与第二带140紧密接触的第一带120的组装为使用时的假体瓣膜小叶提供良好的稳定性,并且如果和当瓣中瓣程序是必要的,提供有利的可膨胀结构。优选地金属外带140仅在一个位置处膨胀,而优选地聚合物带120在全部三个连合处膨胀。外带140能够在周围的布覆盖物内相对于其它部件滑动,使得瓣膜围绕其周边大体均匀地膨胀。也就是说,小叶附着至其(例如在图2中的52处)的丝型件的连合区域和金属带140的连合区域初始对准或配准。当金属带140膨胀时,配准的连合区域变得不对准,原因是丝型件在所有三个连合处膨胀,并且金属带仅在一个尖瓣处膨胀。然而,瓣膜变得过时,已用经导管瓣膜置换,因此该不对准是不重要的。丝型件将膨胀瓣膜的直立连合柱保持在与它们起作用时大致相同的位置,位于周围冠状动脉口的中间,并且因此瓣膜膨胀最终将不会阻止流向冠状动脉的关键血流。

图8A-8C示出了本申请的混合假体心脏瓣膜170,其包括联接到覆盖布的锚固裙边174的上部瓣膜构件172。图8B以虚像示出了瓣膜构件172以示出锚固裙边174的可膨胀框架176的轮廓,并且图8C是整个心脏瓣膜170的透视图,其中在一个连合柱178处的部分被切除以显露内部结构小叶支撑件。

混合假体心脏瓣膜170的瓣膜构件172与图4A-4D中所示的现有技术的心脏瓣膜80共用一些结构方面。特别地,内部支撑框架限定三个直立的连合柱178,所述连合柱178与在流入方向上弯曲的三个弓形尖瓣180交替。三个挠性小叶182由连合柱178和尖瓣180支撑,并且延伸穿过限定在支撑框架内的大致圆柱形的流动孔口。典型波状金属丝型件184模仿支撑框架的上下形状,并且小叶182经由布覆盖物附接到丝型件。与早期的瓣膜构造一样,内部支架带186包括直立柱,所述直立柱邻近丝型件184的连合并仅在连合外侧升高,并且小叶182的外突舌188在丝型件下方延伸,环绕支架柱,并且用缝线固定至其。

在所示的实施例中,心脏瓣膜170也包括大致在瓣膜构件172和锚固件174之间的界面处从其向外延伸的高度柔顺的密封环190。密封环190以及可膨胀框架176覆盖有织物192,所述织物192一旦植入就帮助防止围绕瓣膜外部的泄漏。此外,密封环190也是缝线可渗透的并且可以用于将瓣膜固定在天然瓣环中的适当位置。

图9A-9C示出了用于在图8A-8C的混合假体心脏瓣膜170中使用的示例性可膨胀框架176的细节。

具体参考图16,下框架176在透视中被示出并且包括通过一系列间隔的轴向列撑杆连接的多个圆周行撑杆。具体地,上部或流出行撑杆200围绕框架176的周边连续地延伸,并且优选地遵循平缓波动的路径,从而匹配上部瓣膜构件172(图8B)的下侧的类似形状。如图9A中所示,沿着上部行撑杆200的三个峰204对应于瓣膜170的连合178的位置,其中支架带186的下边缘也向上升高。通常,下部框架176附接到上部瓣膜构件172的流入端,并且优选直接附接到或附接到覆盖内部支撑框架的织物。下部框架176初始大体上是管状的,并且膨胀成略微圆锥形,离上部瓣膜构件172最远的自由端向外膨胀,但是最接近的端部保持相同的直径。

上部行撑杆200包括均匀间隔开并位于其顶边缘正下方的多个孔眼202,其可用于将框架176固定到瓣膜构件172的下侧的织物。一系列轴向列撑杆206从上部行撑杆200并且具体地从每个孔眼202向下悬垂,并且将上部行撑杆连接到两个下部行撑杆208。下部行撑杆208以Z字形图案包围框架176,在每两个相邻的列撑杆206之间具有倒“V”形状。下部行撑杆208优选地围绕框架水平地穿过,并且列撑杆206的长度因此随着波状上部行撑杆200而变化。

如上所述,下部框架176(特别是其流入端)可以例如通过球囊膨胀而塑性地膨胀,并且例如可以由不锈钢形成。在常规的Edwards 瓣膜中,上部行撑杆200大体上为环形,没有压缩或膨胀的能力。在另一方面,在图示的框架176中,设有允许膨胀和收缩的一系列间隔的槽口210。也就是说,撑杆250的圆周段被V形槽口210中断,其允许有限量的膨胀,直径可能为约3mm,以容纳待插入并在其中膨胀的补充可膨胀瓣膜。更特别地,框架176的上部行撑杆200(流出端)限定图9A中所示的标称直径,其使瓣膜构件172能够起作用。上部行撑杆200从标称直径径向可压缩到较小的收缩直径以在递送心脏瓣膜期间使能够压缩框架176的流出端。例如在瓣中瓣程序中在从支架框架内施加向外扩张力时,上部行撑杆200也从标称直径径向可膨胀到较大的膨胀直径。

如图9B中所示,可以将改进的框架176塌缩到用于递送的预定最小直径,并且在瓣中瓣程序期间膨胀到预定的最大直径。更具体地,所示框架176的上部行撑杆200可以相对于标称直径塌缩约2mm以便通过压缩V形槽口210而容易地递送,如图所示。由于槽口210只能被压缩直到两个角部相遇,因此框架176只能被塌缩预定的量。示例性框架176特别设计成可塌缩以在植入瓣膜时易于通过小切口插入并且易于安置在瓣环中。对于具有约19-29mm之间的标称工作直径的心脏瓣膜,塌缩量可以大到直径的约40-50%,但是更优选为约2-3mm,或约7-20%之间。例如,直径2mm的压缩对应于约6.28mm的圆周变化。支架框架通过轴向列撑杆206围绕其圆周被分成18段。所以,通过在每个段中放置0.35mm(6.28mm/18)的初始间隙,框架可以在相邻段进行接触之前直径塌缩约2mm,并且因此防止进一步的压缩。

图9C公开了所示的框架176的上部行撑杆200随后可以在瓣中瓣程序期间相对于标称直径膨胀3mm。由于上部行撑杆的配置,框架的流出部分不能膨胀超过3mm。也就是说,V形槽口210最终变直,防止了进一步的膨胀。理想地,框架设计成直径膨胀约3mm超过其标称直径。在收缩或膨胀之前,当槽口210为V形时限定标称直径。与用于限制压缩的间隙类似,3mm的膨胀对应于9.42mm(3mm×π)的圆周变化。所以,18个段中的每一个必须限制膨胀到9.42mm/18=0.52mm。连接每个段的“V”形撑杆的长度因此为0.52mm+0.35mm(距压缩间隙)=0.87mm。在瓣中瓣膨胀期间,支架框架的膨胀将在它们跨越相邻框架段之间的间隙变直的点处由膨胀限制撑杆限制。

如果不期望框架可塌缩但仍期望膨胀,则间隙可以减小到约25μm,激光切割的实际限制。在25μm的18个间隙的情况下,压缩量仅为(18×25μm/π)=0.143mm(约0.006”)。

相比之下,早先的设计简单地去除限定框架的流出直径的上部行撑杆。在瓣中瓣程序期间,该框架配置无法限制瓣膜的最大膨胀。另外,为了更容易插入,具有可塌缩有限量(例如,约2-3mm)的混合瓣膜将是有利的。尽管没有上部行撑杆的框架可以塌缩,但是压缩量没有限制。为了一致性并且防止医生试图将瓣膜塌缩得比其可以安全地塌缩更多,可能期望具有如这里公开被限制的最大压缩量。

另外,多个瓣膜类型指示器212在围绕其周围的位置处整合到框架176中,例如三个瓣膜尺寸指示器。在所示的实施例中,瓣膜尺寸指示器212包括刻有数字瓣膜尺寸(以mm为单位)的小板状标签,例如在所示实施例中为21mm。预期使用表示瓣膜的尺寸或其它特征的任何字母数字字符或其它符号。不锈钢框架176可以由管状坯件激光切割而成,其中板状尺寸指示器212保持连接到一个或多个撑杆。如图所示,尺寸指示器212位于波状上部行撑杆200的峰204的正下方,连接在相应的孔眼252和下降列撑杆206之间。因此有围绕框架176间隔120°的三个尺寸指示器212。该位置在上部行撑杆200与相邻的下部行撑杆208之间提供了额外的空间。此外,框架176典型地具有比瓣膜构件172的带更多的空间,尺寸指示器212放置在其中。铭刻或切割的瓣膜尺寸数字足够大以便用X射线、经食道超声心动图(TEE)或其它成像模式可视化。在一个实施例中,瓣膜尺寸数字的高度从约1.5mm到约2mm,例如高度为约1.75mm。

图10A是替代的混合假体心脏瓣膜300的部件的分解透视图。替代的心脏瓣膜300取消了例如先前在图7中示出为复合带120、140的内部支架或支撑框架。复合带结构是它们用于其中的心脏瓣膜的圆周刚性的主源,并且因此膨胀结构对于实现瓣中瓣程序是必需的。替代的混合心脏瓣膜300包括下部可压缩/可膨胀框架302,如前所述,固定到框架的独立连合柱304,以及支撑挠性小叶308的波状丝型件306,也如前所述。

图10B示出了包括与三个小叶308并置的丝型件306的子组件310,以及可膨胀框架302与附接至其的连合柱304的“一体式”子组件312。每个挠性小叶308具有两个突舌309,并且示出了相邻小叶上的成对突舌,其通过丝型件306的倒V形连合(下面)突出。然后这些成对的突舌309围绕子组件312的一个直立连合柱304缠绕,其邻近丝型件连合并从其径向向外定位。最后用诸如聚酯的生物相容性织物覆盖子组件310、312,并用布覆盖物(参见图13)将成对的突舌309和连合柱304彼此固定。

由于将连合柱304附接到框架302,子组件312将框架和连合柱整合,而如下所述,“一体式”框架可以表示连合柱由与支架框架的其余部分相同的均质材料一体形成。在这个意义上一体式表示两个部件在与丝型件/小叶子组件310组装之前牢固地附接在一起,或者通过固定两个部件或者由相同材料同时形成它们。此外,具有“一体式”框架的混合心脏瓣膜表示框架既提供可膨胀的裙边框架,也提供小叶附着至其的连合柱,而没有任何额外的结构带,例如图1A中所示的金属带94。使用该配置,瓣膜中的部件数量减少,这减少了组装时间和费用。

图10C和图10D分别地从外部和内部角度示出了连合柱304。每个连合柱304的下端包括凹形壁架314,所述凹形壁架314匹配可膨胀框架的波状上部行撑杆318中的一个峰316的轮廓。如图10B中所示,连合柱304的每个凹形壁架314下方的外板320在可膨胀框架302的外侧向下延伸。缝线322经由缝合孔324将连合柱304固定到框架302,所述缝合孔324与在波状上部行撑杆318的峰316处的孔眼326对准。该形状匹配之后用织物覆盖提供了连合柱304在一体式框架子组件312中的相对稳定的布置。

图11是替代的混合假体心脏瓣膜300的子组件的另一分解透视图。在该视图中,丝型件和小叶的子组件310中的丝型件已用织物覆盖,并且具有向外突出的翼片330。织物翼片330用于将丝型件/小叶子组件310固定到可膨胀框架302和连合柱304的子组件312。此外,缝线可渗透密封环332可以例如通过在两个子组件310、312之间的并置处缝合被附接。

丝型件306和框架/连合柱子组件312的相对位置在图12中看到以及在图12A-12D中更详细地看到,其中连合柱304在丝型件306的连合的紧外侧。最后,图13是完全覆盖有织物的成品混合假体心脏瓣膜300的透视图。

上述支架带的去除和连合柱304的直接附接(整合)到框架302大大简化了构造,减少了劳动时间,将瓣膜的径向轮廓降低了约1.6mm,并且允许在瓣中瓣程序期间膨胀。优选的构造序列包括将密封环332与3个覆盖布的连合柱304一起附接到可膨胀框架302,然后在最终组装期间将该组件附接到丝型件/小叶子组件310。

所公开的连合柱304具有与框架304接口以在所有方向上给柱增加稳定性的特定特征。也就是说,与框架302上的相应峰316匹配的特定表面314、320以及允许柱用缝线322附接到框架的孔324在所有方向上提供出色的稳定性以便随后用织物覆盖。连合柱304可以由聚酯或某种其它生物相容性材料模制成这里所示的形状,或者甚至使用3D打印制造。

图14-18示出了替代的一体式锚固裙边和连合柱子组件。如上面关于图10-13所述,图10B中所示的子组件312消除了对环形结构带的需要,所述带提供稳定性和刚性,但是阻碍了瓣膜植入后膨胀的能力。图14-18中所示的每个替代子组件也消除了对结构带的需要,并且进一步整合锚固裙边和连合柱。

图14A示出了具有非常类似于上述那些但由单件形成的一体式框架构件402的混合假体心脏瓣膜的结构部件的组件400。示出了示意性丝型件404,其位于图14A中的框架构件402的顶部上,具有挠性小叶和未示出的布覆盖物,并且表示如图11中的310所示的丝型件/小叶子组件。示意性丝型件404示出为具有向外延伸的缝合凸缘406,其可以通过缠绕并覆盖丝型件的两个织物突舌的联结长度形成。当用布覆盖时,框架构件402用作丝型件、小叶和密封环的支撑部件。此外,当用布覆盖时,框架构件402提供抵抗瓣周泄漏(PVL)的有效密封和给瓣膜提供周向稳定性。

也在图14B-14D中示出的一体式框架构件402包括下部可膨胀裙边部分410、上部瓣环带412和小叶支撑柱414。裙边部分410包括多个人字形或V形撑杆,其可以容易地卷曲并且然后膨胀。瓣环带412为密封环(未示出)的附接提供了空间,并且优选地包括围绕其圆周的一系列孔,通过所述孔穿过连接密封环的缝线。一体式框架构件402包括多个切口,其使能够植入后膨胀,并且可以由合适的金属例如钴铬合金(例如,合金)激光切割并且被电抛光。

框架构件402理想地由合适材料的管状坯件形成,并且具有大致圆形的流入或下边缘以及波状流出或上边缘。更特别地,上边缘在三个直立连合柱418之间限定三个弓形尖瓣部分416。波状上边缘成形为紧密配合在丝型件406下方。在将框架构件402与心脏瓣膜部件的其余部分组装在一起之后,裙边部分410典型地以大致圆锥形方式卷曲,使得其下边缘具有比其上边缘更小的直径。

也增加了沿着瓣环带412的压缩/膨胀部段420以在递送期间使框架构件402能够有限地塌缩。压缩/膨胀部段420包括形成于框架构件402的上边缘中的狭缝,所述狭缝具有使能够有限压缩的空间,并且也允许膨胀。在优选实施例中,围绕瓣环带412间隔的实心段422通过薄倒U形桥424连接。

如图14D中所示,框架构件402还包括在连合418的区域中的多个狭缝,以便于框架构件的总体挠性的膨胀。长形中心狭缝426几乎在每个连合418的整个高度上延伸。可膨胀圆周撑杆428的区域定位在裙边部分410内,与压缩/膨胀部段420和中心狭缝426轴向对准。当向外径向力从具有框架构件402的心脏瓣膜内施加时,由于部段420和狭缝426,瓣环带412允许膨胀。另外,短弓形狭缝430形成于每个连合柱418的基部处,大体上在联结尖瓣部分416的截头波状线之后。这些狭缝430减小了柱418的径向刚度,使得由挠性小叶吸收的大部分生理负荷被转移到丝型件406而不是柱。

尽管图14A-14D的框架构件402中有弓形狭缝430,但是存在以下关注:这样的一体式框架设计将会硬化丝型件连合柱区域,因此改变经证明的商业瓣膜平台的负荷承载机构。为了减轻这样的关注,三个连合柱可以由三个独立件制成,优选使用聚合物材料,使得当用缝线与下面的金属框架连接时,将没有金属与金属的接触。

例如,图15A-15D示出了替代的框架构件440,其与框架构件402大致相同地配置,但是具有独立的连合柱442。框架构件440在图15A中示出为在丝型件组件441正下方。如图15C-15D中所示,瓣环带区域444和流入撑杆区域446与框架构件402的完全相同。唯一的区别是独立的连合柱442优选地由塑料材料制成,其将在用布覆盖之前使用缝线448与框架构件440缝合在一起。为了该目的,期望在每个连合柱442中形成一对附接孔450。如前所述,没有连合柱的可卷曲和可膨胀框架构件440被激光切割和电抛光。

图14A是完全一体式框架构件402,关注硬化的连合柱。图15A中所示的框架构件442用三个独立的连合柱442减轻了该关注,但是需要与可膨胀框架缝合在一起,这增加了组装瓣膜的时间和步骤。为了保留现有商业瓣膜平台的相同的负荷承载特性,同时仍然具有相对容易的瓣膜组装程序,也可以预料图16和18中所示的实施例。

图16示出了组件500,其包括非常类似于上面关于图9A描述的框架176的可膨胀框架502,并且在图17A和17B中单独看到。框架502经由缝线固定到具有直立连合506的支架带504以形成一体式框架构件。该支架带504基本上是来自图4D的内带95,具有围绕其圆周的缝合孔505以使能够牢固地附接到框架502的顶行撑杆。上部行撑杆508包括规则间隔的可压缩/可膨胀段510以使能够进行植入前压缩,以及在瓣中瓣程序期间的植入后膨胀。

组件500再次是可卷曲的和可膨胀的。支架带504由聚合物(例如聚酯)材料形成,其在瓣膜内施加膨胀力时可断裂。这使整个瓣膜在瓣中瓣应用中可膨胀。由于聚合物连合506,瓣膜负荷承载特性与现有的商业瓣膜平台完全相同,因此瓣膜的流体力学性能和耐久性应当也与现有的商业瓣膜相同。如图16中所示,聚酯带和可膨胀框架的相对位置可以被组装,其中支架带504定位在框架构件502正上方。相反,如图18中所示,膨胀带504可以以重叠的方式部分径向地定位在框架502内。这使支架带504中的一系列通孔505与设在框架502中的孔眼512对准,这极大地便于组装,因此减少了时间和费用。

尽管本公开引用了特定实施例,但是应当理解,在不脱离本发明的范围或发明构思的情况下,可以做出各种改变和附加的变化,并且可以用等同物替换其元件。另外,在不脱离本发明的实质范围的情况下,可以进行许多修改以使特定的情况或装置适应本文中的教导。所以,本公开不旨在限于本文中公开的特定实施例,而是包括落入附带权利要求的范围内的所有实施例。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号