首页> 中国专利> 一种滚动轴承外圈故障定位诊断方法

一种滚动轴承外圈故障定位诊断方法

摘要

本发明涉及一种滚动轴承外圈故障定位诊断方法。该方法首先建立滚动轴承系统非线性动力学模型,并由第二类拉格朗日方程推导出轴承系统的动力学微分方程组。基于系统动力学微分方程组,仿真出不同故障角位置时的轴承系统水平方向和垂直方向振动加速度信号。然后由仿真数据,采用最小二乘法拟合出外圈故障角位置与平垂同步均方根值的线性关系式。其次测取待诊断轴承系统的定位诊断基准数据,并计算定位诊断基准数据的平垂同步均方根值,从而确定待诊断轴承系统的外圈故障角位置θ与平垂同步均方根值的关系式。最终由外圈故障角位置定位法则确诊出被诊断外圈故障的角位置θ

著录项

  • 公开/公告号CN107741324A

    专利类型发明专利

  • 公开/公告日2018-02-27

    原文格式PDF

  • 申请/专利权人 北京工业大学;

    申请/专利号CN201710954465.4

  • 发明设计人 崔玲丽;黄金凤;张飞斌;

    申请日2017-10-13

  • 分类号

  • 代理机构北京思海天达知识产权代理有限公司;

  • 代理人沈波

  • 地址 100124 北京市朝阳区平乐园100号

  • 入库时间 2023-06-19 04:40:01

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2022-09-20

    未缴年费专利权终止 IPC(主分类):G01M13/045 专利号:ZL2017109544654 申请日:20171013 授权公告日:20190524

    专利权的终止

  • 2019-05-24

    授权

    授权

  • 2018-03-23

    实质审查的生效 IPC(主分类):G01M13/04 申请日:20171013

    实质审查的生效

  • 2018-02-27

    公开

    公开

说明书

技术领域

本发明属于滚动轴承故障诊断领域,具体涉及一种滚动轴承外圈故障定位诊断方法。

背景技术

滚动轴承是旋转机械等设备中使用最多的零部件之一,也是最容易损坏的零部件。当其产生故障时,将诱发整个设备产生故障,因此,滚动轴承故障诊断研究对于维护设备的正常运转非常关键。目前轴承故障诊断研究主要集中在轴承故障定量诊断、轴承故障模式识别等方面。对于轴承外圈故障的定位诊断研究几乎没有,然而不同角位置的故障可能对应着不同的产生原因,比如制造、装配以及工作状态等。另外,在其它因素相同的情况下,不同角位置的故障可能对应着不同的剩余寿命,比如缺陷角位置越靠近承载中心的轴承的剩余寿命往往会越短。再有,实现轴承外圈故障定位诊断将有助于拆机后更快速的排查出故障位置,同时有助于轴承的维护以及维修工作,提高工作效率。因此解决如何快速、准确地预测出轴承外圈故障角位置的问题对轴承故障诊断以及轴承剩余寿命估计具有重要的理论意义和工程应用价值。

VR是指平-垂同步均方根值,是由发明人为实现轴承外圈的定位诊断而提出的一种新指标,其详细的算法和应用技术将在本发明内容和实施例中具体说明。

发明内容

为了快速、准确地预测出滚动轴承外圈故障的角位置,本发明基于机理研究所挖掘出的VR指标提出了一种滚动轴承外圈故障定位诊断方法,同时为轴承故障技术开拓了新的发展方向。

为实现上述目的,本发明的技术方案如下:

一种滚动轴承外圈故障定位诊断方法,包括以下具体步骤:

步骤1建立滚动轴承系统非线性动力学模型及其微分方程组,

建立轴承系统全局绝对直角坐标系,以面向动力输入端为参照,将水平方向设定为x轴,且水平向右为正方向,将垂直方向设定为y轴,且垂直向下为正方向,轴承内圈表示为质点m1,轴承外圈表示为质点m2,轴承内圈的水平方向位移和垂直方向位移分别表示为x1和y1,轴承外圈的水平方向位移和垂直方向位移分别表示为x2和y2,轴承外圈由水平方向的弹簧阻尼器1和垂直方向的弹簧阻尼器2支撑,弹簧阻尼器1的刚度和阻尼系数分别表示为k1和c1,弹簧阻尼器2的刚度和阻尼系数分别表示为k2和c2,将外圈故障角位置表示为θ,基于上述所建模型,由第二类拉格朗日方程推导出轴承系统的动力学微分方程组;

步骤2建立平垂同步均方根值与外圈故障角位置之间的函数关系,设定外圈故障角位置的变化区间为[240°,300°],将该变化区间进行7等分,则得到7个由小到大的外圈故障角位置θ12…θj…θ7,j表示外圈故障角位置的编号,取值1~7之间的整数;由步骤1中推导的轴承系统动力学微分方程组求解每个故障角位置θj对应的水平方向仿真振动加速度信号ax,j和垂直方向仿真振动加速度信号ay,j,再计算每个故障角位置对应的平垂同步均方根值:

上式中,N为仿真数据点数,其中,以θj为自变量,VRj为因变量,由最小二乘法线性拟合出外圈故障角位置θ与VR值的关系式:

θ=270±k·(VR-VR4)(2)

步骤3测取待诊断轴承系统的定位诊断基准数据,

以面向动力输入端为参照,设定水平向右为0°,将振动加速度传感器1安装在待诊断轴承系统的轴承座的90°位置,将振动加速度传感器2安装在待诊断轴承系统的轴承座的180°位置,由振动加速度传感器1和振动加速度传感器2分别测取外圈故障角位置在270°的垂直方向振动加速度信号a′y和水平方向振动加速度信号a′x,再计算待诊断轴承系统的定位诊断基准VR值:

将VR'替换公式(2)中的VR4,得到待诊断轴承系统的外圈故障角位置θ与VR值的关系式:

θ=270±k·(VR-VR′)(4)

步骤3外圈故障角位置定位法则,

以面向动力输入端为参照,设定水平向右为0°,将振动加速度传感器1安装在待诊断轴承系统的轴承座的90°位置,将振动加速度传感器2安装在待诊断轴承系统的轴承座的180°位置,由振动加速度传感器1和振动加速度传感器2分别测取被诊断故障轴承的垂直方向振动加速度信号a″y和水平方向振动加速度信号a″x,并计算被诊断故障轴承的VR值:

分别绘制a″x和a″y的时域波形图,观察波形图中的故障冲击起始方向,当a″x波形图中的故障冲击起始方向为正且a″y波形图中的故障冲击起始方向为负时,则该外圈故障可判定为位于270°的左侧,即被诊断的故障角位置可确定为:

θd=270-k·(VR″-VR′)(6)

当a″x波形图中的故障冲击起始方向为负且a″y波形图中的故障冲击起始方向为负时,则该外圈故障可判定为位于270°的右侧,即被诊断的故障角位置可确定为:

θd=270+k·(VR″-VR′)(7)

本发明的有益效果是:提出了一种滚动轴承外圈故障定位诊断方法,在建立待诊断轴承系统的外圈故障角位置θ与VR值的函数关系式之后,由外圈故障角位置定位法则就能确诊出被诊断外圈故障的角位置,有重要的实际应用价值。

下面具体结合附图与实例对本发明作进一步的说明。

附图说明

图1本发明的工作流程图

图2滚动轴承系统非线性动力学模型示意图

图3外圈故障角位置θ与平垂同步均方根值的变化关系图

图4为待诊断故障轴承系统的水平方向和垂直方向振动加速度信号

具体实施方式

下面具体结合附图与实施例对本发明的诊断方法进行详细说明,但是本发明的保护范围不局限于所述实施例。

如图1所示,是本发明的一种滚动轴承外圈故障定位诊断方法的工作流程图。具体实施过程如下:

步骤1建立滚动轴承系统非线性动力学模型和其微分方程组,

建立轴承系统全局绝对直角坐标系,以面向动力输入端为参照,将水平方向设定为x轴,且水平向右为正方向,将垂直方向设定为y轴,且垂直向下为正方向,轴承内圈表示为质点m1,轴承外圈表示为质点m2,轴承内圈的水平方向位移和垂直方向位移分别表示为x1和y1,轴承外圈的水平方向位移和垂直方向位移分别表示为x2和y2,轴承外圈由水平方向的弹簧阻尼器1和垂直方向的弹簧阻尼器2支撑,弹簧阻尼器1的刚度和阻尼系数分别表示为k1和c1,弹簧阻尼器2的刚度和阻尼系数分别表示为k2和c2,将外圈故障角位置表示为θ,完成后的轴承系统非线性动力学模型如图2所示;基于上述所建模型,由第二类拉格朗日方程推导出轴承系统的动力学微分方程组;

步骤2建立平垂同步均方根值与外圈故障角位置之间的函数关系,本发明采用NSK6308轴承作为具体实施例,轴承滚珠数量Nb=8,滚珠半径rb=7.54mm,外滚道半径Ro=40.04mm,选取的故障角跨度为Δφf=1°,故障深度h=0.04mm,采样频率为Fs=65536Hz,设定外圈故障角位置的变化区间为[240°,300°],将该变化区间进行7等分,则得到7个由小到大的外圈故障角位置θ12…θj…θ7,j表示外圈故障角位置的编号,取值1~7之间的整数,由步骤1中推导的轴承系统动力学微分方程组求解每个故障角位置θj对应的水平方向仿真振动加速度信号ax,j和垂直方向仿真振动加速度信号ay,j,再计算每个故障角位置对应的平垂同步均方根值:

根据公式(1)和已知参数,可计算出每个故障角位置θj对应的VR值分别为VR1=0.5649,VR2=0.3384,VR3=0.1648,VR4=0.01165,VR5=0.1638,VR6=0.3615,VR7=0.5943。以θj为自变量,VRj为因变量,由最小二乘法线性拟合出外圈故障角位置θ与VR值的关系式:

由公式2确定的本实施例中外圈故障角位置θ与VR值的变化曲线如图3所示。

步骤3测取待诊断轴承系统的定位诊断基准数据,

以面向动力输入端为参照,设定水平向右为0°,将振动加速度传感器1安装在待诊断轴承系统的轴承座的90°位置,将振动加速度传感器2安装在待诊断轴承系统的轴承座的180°位置,由振动加速度传感器1和振动加速度传感器2分别测取外圈故障角位置在270°的垂直方向振动加速度信号a′y和水平方向振动加速度信号a′x,再计算待诊断轴承系统的定位诊断基准VR值:

将VR'=0.497替换公式(2)中的VR4,得到待诊断轴承系统的外圈故障角位置θ与VR值的关系式为:

θ=270±50·(VR-0.497)(4)

步骤3外圈故障角位置定位法则,

以面向动力输入端为参照,设定水平向右为0°,将振动加速度传感器1安装在待诊断轴承系统的轴承座的90°位置,将振动加速度传感器2安装在待诊断轴承系统的轴承座的180°位置,由振动加速度传感器1和振动加速度传感器2分别测取被诊断故障轴承的垂直方向振动加速度信号a″y和水平方向振动加速度信号a″x,并计算被诊断故障轴承的VR值:

分别绘制a″x和a″y的时域波形图,如图4所示,观察波形图中的故障冲击起始方向可知,a″x中的故障冲击起始方向为负且a″y中的故障冲击起始方向也为负,所以本实施例中的外圈故障可判定为位于270°的右侧,即被诊断的故障角位置可确诊为:

由此实施例可知,在轴承系统的物理和几何参数给定之后,由本发明方法提出的公式只需VR这一参量就可预测出对应的故障角位置。充分说明了本发明方法的重要意义和应用价值。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号