首页> 中国专利> 用于检测心肌酶系列的磁微粒的微流控化学发光检测系统

用于检测心肌酶系列的磁微粒的微流控化学发光检测系统

摘要

本发明公开了一种用于检测心肌酶系列的磁微粒的微流控化学发光检测系统,包括底盘和上层芯片;所述上层芯片包括位于上层芯片中心的加样区和三个与所述加样区连通的微流控反应检测通道:心肌肌钙蛋白I微流控反应检测通道、肌红蛋白微流控反应检测通道和肌酸激酶同工酶微流控反应检测通道。应用时,所述底盘设置于上层芯片的下方,所述底盘对应各微流控反应检测通道的磁微粒包被区的位置设有磁铁,所述磁铁为永磁铁或电磁铁。

著录项

  • 公开/公告号CN107643284A

    专利类型发明专利

  • 公开/公告日2018-01-30

    原文格式PDF

  • 申请/专利权人 北京华科泰生物技术有限公司;

    申请/专利号CN201710781051.6

  • 发明设计人 林斯;

    申请日2017-09-01

  • 分类号G01N21/76(20060101);G01N33/577(20060101);G01N33/573(20060101);G01N33/543(20060101);B01L3/00(20060101);

  • 代理机构11228 北京汇泽知识产权代理有限公司;

  • 代理人张秋越

  • 地址 100070 北京市丰台区科学城海鹰路8号2号楼501室(园区)

  • 入库时间 2023-06-19 04:28:55

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2019-03-05

    专利权人的姓名或者名称、地址的变更 IPC(主分类):G01N21/76 变更前: 变更后: 申请日:20170901

    专利权人的姓名或者名称、地址的变更

  • 2018-12-18

    授权

    授权

  • 2018-02-27

    实质审查的生效 IPC(主分类):G01N21/76 申请日:20170901

    实质审查的生效

  • 2018-01-30

    公开

    公开

说明书

技术领域

本发明属于医学检验领域,尤其涉及一种用于检测心肌酶系列的磁微粒的微流控化学发光检测系统。

背景技术

近年来,生物分析技术领域得到了快速的发展,出现了很多重要的研究方向。微流控芯片分析技术是其中最活跃的一支,在科研和应用领域都获得了广泛的重视。微流控芯片作为一种新型的分析检测平台,具有高通量、集成化、便携式、易操作、低成本等优点,已经在众多领域中得到了广泛的应用。

目前的化学发光检测适应的样品为血清,在检测的过程中需要对样本进行离心分离来获得血清,过程复杂繁琐并且耗时。缺乏充分洗脱、以消除非特异性吸附造成的干扰。

目前用于生化分析的磁微粒具有以下特点:1) 超强的顺磁性,就是指在磁场的存在下能迅速聚集,离开磁场能够均匀分散,不出现聚集显现现象;2) 合适的粒径且粒径分布范围窄,使微球有足够强的磁响应性,又不会因粒径太大而发生沉降;3) 具有丰富的表面活性基团,以便微球可以和生化物质偶联,并在外磁场的作用下实现与被待测样品的分离。

心肌酶系列的检测可用于明确不稳定性心绞痛、急性心肌梗死、非心肌缺血性胸痛等症状。心肌肌钙蛋白I(cTnI)、肌红蛋白(MYO)、肌酸激酶同工酶(CK-MB)同属于心肌酶检测系列,病人往往需要检测心肌酶中的一系列项目,在现有技术中,各厂家检测卡通常都是单项目独立包装,按照目前的方式,化验医师需要逐项进行化验操作,工作量大,检测过程重复、繁琐,并且面对急性病发患者逐项检查无疑是延长治疗时间,也造成资源浪费。

发明内容

为了解决上述技术问题,本发明用于检测心肌酶系列的磁微粒的微流控化学发光检测系统,其包括底盘和上层芯片;

所述上层芯片包括位于上层芯片中心的加样区和三个与所述加样区连通的微流控反应检测通道:心肌肌钙蛋白I微流控反应检测通道、肌红蛋白微流控反应检测通道和肌酸激酶同工酶微流控反应检测通道;

各微流控反应检测通道均包括:

样本分离区,其与加样区连通;抗体包被区,其通过毛细管微通道与所述样本分离区连通;磁微粒包被区,其通过毛细管微通道与所述抗体包被区连通;废液收集区,其通过毛细管微通道与所述磁微粒包被区连通;

其中,所述心肌肌钙蛋白I微流控反应检测通道的抗体包被区包被有发光物质标记的心肌肌钙蛋白I的一株抗体和具有特异亲和性的一对物质中的一个标记的心肌肌钙蛋白I的另一株抗体;所述磁微粒包被区包被有所述具有特异亲和性的一对物质中的另一个标记的磁微粒;

所述肌红蛋白微流控反应检测通道的抗体包被区包被有发光物质标记的肌红蛋白的一株抗体和具有特异亲和性的一对物质中的一个标记的肌红蛋白的另一株抗体;所述磁微粒包被区包被有所述具有特异亲和性的一对物质中的另一个标记的磁微粒;

所述肌酸激酶同工酶微流控反应检测通道的抗体包被区包被有发光物质标记的肌酸激酶同工酶的一株抗体和具有特异亲和性的一对物质中的一个标记的肌酸激酶同工酶的另一株抗体;所述磁微粒包被区包被有所述具有特异亲和性的一对物质中的另一个标记的磁微粒;

应用时,所述底盘设置于上层芯片的下方,所述底盘对应各微流控反应检测通道的磁微粒包被区的位置设有磁铁,所述磁铁为永磁铁或电磁铁。

作为其中一具体实施方式,所述加样区通过加样通道与各微流控反应检测通道的样本分离区连通;所述加样通道为围绕加样区形成的环形通道,加样通道的一端与所述加样区连通,加样通道的侧壁连通各微流控反应检测通道的样本分离区。

作为其中一具体实施方式,所述发光物质为辣根过氧化物酶、碱性磷酸酶、葡萄糖氧化酶或吖啶酯;所述具有特异亲和性的一对物质为生物素和链霉亲和素,生物素和亲和素,或者为荧光素和抗荧光素。

优选地,磁微粒的平均粒径在0.5~2μm。

优选地,所述发光物质标记的心肌肌钙蛋白I的一株抗体和具有特异亲和性的一对物质中的一个标记的心肌肌钙蛋白I的另一株抗体的摩尔比为4~1:1;

所述发光物质标记的肌红蛋白的一株抗体和具有特异亲和性的一对物质中的一个标记的肌红蛋白的另一株抗体的摩尔比为4~1:1;

所述发光物质标记的肌酸激酶同工酶的一株抗体和具有特异亲和性的一对物质中的一个标记的肌酸激酶同工酶的另一株抗体的摩尔比为4~1:1。

优选地,各微流控反应检测通道中:抗体包被区与样本分离区之间的毛细管微通道的入口直径小于出口直径;磁微粒包被区与抗体包被区之间的毛细管微通道的入口直径小于出口直径;废液收集区与磁微粒包被区之间的毛细管微通道的入口直径小于出口直径;抗体包被区与样本分离区之间的毛细管微通道的入口直径、磁微粒包被区与抗体包被区之间的毛细管微通道的入口直径和废液收集区与磁微粒包被区之间的毛细管微通道的入口直径依次缩小。

或者,抗体包被区与样本分离区之间的毛细管微通道的入口直径大于出口直径;磁微粒包被区与抗体包被区之间的毛细管微通道的入口直径大于出口直径;废液收集区与磁微粒包被区之间的毛细管微通道的入口直径大于出口直径;抗体包被区与样本分离区之间的毛细管微通道的出口直径、磁微粒包被区与抗体包被区之间的毛细管微通道的出口直径和废液收集区与磁微粒包被区之间的毛细管微通道的出口直径依次缩小。

优选地,所述上层芯片与所述底盘为形状相同的圆形,所述加样区位于上层芯片的圆心,所述微流控反应检测通道沿所述上层芯片的半径方向形成;底盘的中心设有通孔。

优选地,所述底盘上的磁铁为圆环形,对应位于磁微粒包被区的下方。

本发明还提供上述的用于检测心肌酶系列的磁微粒的微流控化学发光检测系统的制备方法,包括如下步骤:

1)在芯片基板上开设所述加样区和五个微流控反应检测通道;

2)将发光物质标记的心肌肌钙蛋白I的一株抗体和具有特异亲和性的一对物质中的一个标记的心肌肌钙蛋白I的另一株抗体的溶液覆于所述心肌肌钙蛋白I微流控反应检测通道的抗体包被区;将发光物质标记的肌红蛋白的一株抗体和具有特异亲和性的一对物质中的一个标记的肌红蛋白的另一株抗体的溶液覆于所述肌红蛋白微流控反应检测通道的抗体包被区;将发光物质标记的肌酸激酶同工酶的一株抗体和具有特异亲和性的一对物质中的一个标记的肌酸激酶同工酶的另一株抗体的溶液覆于所述肌酸激酶同工酶微流控反应检测通道的抗体包被区;干燥;

3)将表面标记有具有特异亲和性的一对物质中的另一个的磁微粒的溶液覆于磁微粒包被区,干燥;

4)底盘对应所述磁微粒包被区的位置设置磁铁。

本发明还提供上述的用于检测心肌酶系列的磁微粒的微流控化学发光检测系统的应用方法,包括如下步骤:

1)上层芯片固定在检测仪器的自转轴上部;当底盘上的磁铁为永磁铁时,将底盘套设在自转轴的下部远离上层芯片底面;当底盘上的磁铁为电磁铁时,底盘贴附在上层芯片底面,电磁铁对应位于上层芯片的磁微粒包被区下方,电磁铁不通电;从加样区加入全血样本,启动仪器,自转轴自转,在离心力的作用下,全血经设置在加样区的抗红细胞滤血膜过滤,进入各微流控反应检测通道的样本分离区;

2)待全血样本流动稳定后,通过增加自转轴自转转速以加大离心作用使样本分离区的血样样本冲破毛细管微通道的毛细管微阀作用而流向抗体包被区;在心肌肌钙蛋白I微流控反应检测通道中,血样样本中的心肌肌钙蛋白I与发光物质标记的心肌肌钙蛋白I的一株抗体和具有特异亲和性的一对物质中的一个标记的心肌肌钙蛋白I的另一株抗体结合形成免疫复合物;在肌红蛋白微流控反应检测通道中,血样样本中的肌红蛋白与发光物质标记的肌红蛋白的一株抗体和具有特异亲和性的一对物质中的一个标记的肌红蛋白的另一株抗体结合形成免疫复合物;在肌酸激酶同工酶微流控反应检测通道中,血样样本中的肌酸激酶同工酶与发光物质标记的甲状腺素的一株抗体和具有特异亲和性的一对物质中的一个标记的肌酸激酶同工酶的另一株抗体结合形成免疫复合物;

3)通过再次加大离心力使各微流控反应检测通道中的免疫复合物冲破毛细管微通道的毛细管微阀作用进入到磁微粒包被区,标记在磁微粒表面的具有特异亲和性的一对物质中的另一个与免疫复合物中的具有特异亲和性的一对物质中的一个快速发生反应形成结合磁微粒的免疫复合物,然后,将带永磁铁的底盘向上移动至贴合上层芯片的底面,永磁铁对应位于上层芯片的磁微粒包被区下方;或者对带电磁铁的底盘的电磁铁通电使其富有磁性;由于磁铁的磁吸力,结合磁微粒的免疫复合物在磁场的作用下富集到磁微粒包被区的底端,然后通过再次加大离心力使未参加反应的样本经毛细管微通道流向废液收集区;

4)从加样区加入清洗液洗涤结合磁微粒的免疫复合物,清洗液移动到磁微粒包被区时,将带永磁铁的底盘向下移动远离上层芯片,或者断开通电装置使电磁铁失去磁性,超声振荡,结合磁微粒的免疫复合物得到充分洗涤,然后将带永磁铁的底盘向上层芯片处运动,或者对带电磁铁的底盘的电磁铁通电使其富有磁性,将结合磁微粒的免疫复合物富集到磁微粒包被区的底端,通过加大离心力使清洗液流入废液收集区;

5)从加样区加入发光基底液,通过离心将发光基底液转移至磁微粒包被区,将带磁铁的底盘向下移动远离上层芯片,或者断开通电装置使电磁铁失去磁性,超声振荡后,仪器检测系统检测发光信号的强度,从而实现待测物的定量检测。

本发明能够达到如下效果:

1、本发明将微流控技术和磁微粒化学发光技术巧妙地结合,实现目标物质的快速、高度灵敏、准确定量检测。

2、采用磁微粒免疫富集分离反应,简化了分离过程,提高样品检测的灵敏度。磁微粒的分离效应,有效捕捉待测样本中低浓度待测样品,结合化学发光检测方式,使灵敏度大幅度提高。

3、本发明的用于检测心肌酶系列的磁微粒的微流控化学发光检测系统可同时进行多项检测,节约时间、提高效率。

4、本发明的用于检测心肌酶系列的磁微粒的微流控化学发光检测系统可以用于全血检测,克服了传统化学发光只能进行血清检测的,而不能进行全血检测的缺陷,简化操作过程。

5、在反应和洗涤的过程中采用超声振荡的方式,有效地提高了反应速度以及消除非特异性吸附造成的干扰。

附图说明

图1A为用于检测心肌酶系列的磁微粒的微流控化学发光检测系统的上层芯片结构示意图一。

图1B为用于检测心肌酶系列的磁微粒的微流控化学发光检测系统的上层芯片结构示意图二。

图2为用于检测心肌酶系列的磁微粒的微流控化学发光检测系统的底盘部分结构示意图。

图3为用于检测心肌酶系列的磁微粒的微流控化学发光检测系统的微流控反应检测通道截面结构示意图。

图4 是用于检测心肌酶系列的磁微粒的微流控化学发光检测系统的应用方法的步骤1的过程示意图。

图5是用于检测心肌酶系列的磁微粒的微流控化学发光检测系统的应用方法的步骤2的过程示意图。

图6是用于检测心肌酶系列的磁微粒的微流控化学发光检测系统的应用方法的步骤3的过程示意图。

图7是用于检测心肌酶系列的磁微粒的微流控化学发光检测系统的应用方法的步骤4过程示意图。

图8是用于检测心肌酶系列的磁微粒的微流控化学发光检测系统的应用方法的步骤5过程示意图。

具体实施方式

下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好的理解本发明并能予以实施,但所举实施例不作为对本发明的限定。

结合图1A~3所示,本发明提供的一种用于检测心肌酶系列的磁微粒的微流控化学发光检测系统,包括底盘2和上层芯片1;

上层芯片1包括位于上层芯片1中心的加样区10和3个与加样区连通的微流控反应检测通道11,在优选的实施方式中,加样区10的孔口上方可覆盖有抗红细胞滤血膜(图中未示出),抗红细胞滤血膜上可覆盖有血液盖(图中未示出)。该三个微流控反应检测通道分别为:心肌肌钙蛋白I(cTnI)微流控反应检测通道11a、肌红蛋白(MYO)微流控反应检测通道11b和肌酸激酶同工酶(CK-MB)微流控反应检测通道11c。

从结构上各微流控反应检测通道均包括:

样本分离区110,其与加样区10连通;抗体包被区111,其通过毛细管微通道114与样本分离区110连通;磁微粒包被区112,其通过毛细管微通道115与抗体包被区111连通;废液收集区113,其通过毛细管微通道116与磁微粒包被区112连通。

其中,抗体包被区111包被有发光物质标记的待测物的一株抗体和具有特异亲和性的一对物质中的一个标记的待测物的另一株抗体;磁微粒包被区112包被有具有特异亲和性的一对物质中的另一个标记的磁微粒;

其中,心肌肌钙蛋白I微流控反应检测通道11a的抗体包被区包被有发光物质标记的心肌肌钙蛋白I的一株抗体和具有特异亲和性的一对物质中的一个标记的心肌肌钙蛋白I的另一株抗体;磁微粒包被区包被有具有特异亲和性的一对物质中的另一个标记的磁微粒;

肌红蛋白微流控反应检测通道11b的抗体包被区包被有发光物质标记的肌红蛋白的一株抗体和具有特异亲和性的一对物质中的一个标记的肌红蛋白的另一株抗体;磁微粒包被区包被有具有特异亲和性的一对物质中的另一个标记的磁微粒;

肌酸激酶同工酶微流控反应检测通道11c的抗体包被区包被有发光物质标记的肌酸激酶同工酶的一株抗体和具有特异亲和性的一对物质中的一个标记的肌酸激酶同工酶的另一株抗体;磁微粒包被区包被有具有特异亲和性的一对物质中的另一个标记的磁微粒;

其中,磁微粒的平均粒径在0.5~2μm;

底盘2设置于上层芯片的下方,底盘(塑料盘)对应磁微粒包被区的位置设有磁铁20,磁铁20可为永磁铁或电磁铁。

在本发明的优选实施方式中,上层芯片1与底盘2为形状相同的圆形,加样区10位于上层芯片的圆心,各微流控反应检测通道11沿上层芯片1的半径方向形成;底盘2的中心设有通孔。

各微流控反应检测通道在离心中形成的毛细管微阀效应。结合图3所示,以一个微流控通道的结构为例具体说明如下,抗体包被区111与样本分离区110之间的毛细管微通道114的入口直径A1小于出口直径B1;磁微粒包被区112与抗体包被区111之间的毛细管微通道115的入口直径A2小于出口直径B2;废液收集区113与磁微粒包被区112之间的毛细管微通道116的入口直径A3小于出口直径B3;抗体包被区111与样本分离区110之间的毛细管微通道114的入口直径A1、磁微粒包被区112与抗体包被区111之间的毛细管微通道115的入口直径A2和废液收集区113与磁微粒包被区112之间的毛细管微通道116的入口直径A3依次缩小。

为了形成毛细管微阀效应,在本发明的另一具体实施方式中(图中未示出),抗体包被区111与样本分离区110之间的毛细管微通道114的入口直径A1大于出口直径B1;磁微粒包被区112与抗体包被区111之间的毛细管微通道115的入口直径A2大于出口直径B2;废液收集区113与磁微粒包被区112之间的毛细管微通道116的入口直径A3大于出口直径B3;抗体包被区111与样本分离区110之间的毛细管微通道114的出口直径B1、磁微粒包被区112与抗体包被区111之间的毛细管微通道115的出口直径B2和废液收集区113与磁微粒包被区112之间的毛细管微通道116的出口直径B3依次缩小。

结合图1B,在本发明的另一优选实施方式中,加样区10通过加样通道12与各微流控反应检测通道的样本分离区110连通;加样通道12为围绕加样区10形成的环形通道,加样通道12的一端与加样区10连通,加样通道的侧壁连通样本分离区。

底盘2上的永磁铁为圆环形,对应位于各微流控反应检测通道的磁微粒包被区112的下方。

在本发明的优选实施方式中,所述发光物质为辣根过氧化物酶、碱性磷酸酶、葡萄糖氧化酶或吖啶酯;具有特异亲和性的一对物质为生物素和链霉亲和素,生物素和亲和素,或者为荧光素和抗荧光素。

在本发明的优选实施方式中,发光物质标记的心肌肌钙蛋白I的一株抗体和具有特异亲和性的一对物质中的一个标记的心肌肌钙蛋白I的另一株抗体的摩尔比为4~1:1;

发光物质标记的肌红蛋白的一株抗体和具有特异亲和性的一对物质中的一个标记的肌红蛋白的另一株抗体的摩尔比为4~1:1;

发光物质标记的肌酸激酶同工酶的一株抗体和具有特异亲和性的一对物质中的一个标记的肌酸激酶同工酶的另一株抗体的摩尔比为4~1:1。

本发明的用于检测心肌酶系列的磁微粒的微流控化学发光检测系统的制备方法,包括如下步骤:

1)在芯片基板上开设加样区10和微流控反应检测通道11;

2)将发光物质标记的心肌肌钙蛋白I的一株抗体和具有特异亲和性的一对物质中的一个标记的心肌肌钙蛋白I的另一株抗体的溶液覆于所述心肌肌钙蛋白I微流控反应检测通道的抗体包被区;将发光物质标记的肌红蛋白的一株抗体和具有特异亲和性的一对物质中的一个标记的肌红蛋白的另一株抗体的溶液覆于所述肌红蛋白微流控反应检测通道的抗体包被区;将发光物质标记的肌酸激酶同工酶的一株抗体和具有特异亲和性的一对物质中的一个标记的肌酸激酶同工酶的另一株抗体的溶液覆于所述肌酸激酶同工酶微流控反应检测通道的抗体包被区;干燥;

3)将表面标记有具有特异亲和性的一对物质中的另一个的磁微粒的溶液覆于磁微粒包被区112,干燥;

4)底盘2对应磁微粒包被区112的位置设置磁铁20。

结合图4~8,本发明的用于检测心肌酶系列的磁微粒的微流控化学发光检测系统的应用方法,包括如下步骤:

1)结合图2所示检测仪器的自转轴3穿过底盘2中心的通孔21,底盘套设在自转轴3下方,上层芯片1固定在检测仪器的自转轴3上部;当底盘上的磁铁为永磁铁时,将底盘2套设在自转轴的下部远离上层芯片1底面;当底盘2上的磁铁为电磁铁时,底盘2贴附在上层芯片1底面,电磁铁对应位于上层芯片1的磁微粒包被区112下方,电磁铁不通电;结合图4所示,从加样区10加入全血样本,启动仪器,自转轴3自转,在离心力的作用下,全血经设置在加样区10的抗红细胞滤血膜过滤,进入样本分离区110;

2)结合图5所示,待样本流动稳定后,通过增加自转轴3自转转速以加大离心作用使样本分离区110的血样样本冲破毛细管微通道114的毛细管微阀作用而流向抗体包被区111。在心肌肌钙蛋白I微流控反应检测通道中,血样样本中的心肌肌钙蛋白I与发光物质标记的心肌肌钙蛋白I的一株抗体和具有特异亲和性的一对物质中的一个标记的心肌肌钙蛋白I的另一株抗体结合形成免疫复合物;在肌红蛋白微流控反应检测通道中,血样样本中的肌红蛋白与发光物质标记的肌红蛋白的一株抗体和具有特异亲和性的一对物质中的一个标记的肌红蛋白的另一株抗体结合形成免疫复合物;在肌酸激酶同工酶微流控反应检测通道中,血样样本中的肌酸激酶同工酶与发光物质标记的肌酸激酶同工酶的一株抗体和具有特异亲和性的一对物质中的一个标记的肌酸激酶同工酶的另一株抗体结合形成免疫复合物;

3)结合图6所示,通过再次加大离心力使各微流控检测通道的免疫复合物冲破毛细管微通道115的毛细管微阀作用进入到磁微粒包被区112,标记在磁微粒表面的具有特异亲和性的一对物质中的另一个与免疫复合物中的具有特异亲和性的一对物质中的一个快速发生反应形成结合磁微粒的免疫复合物,然后,将带永磁铁的底盘2向上移动至贴合上层芯片1的底面,永磁铁对应位于上层芯片1的磁微粒包被区112下方;或者对带电磁铁的底盘2的电磁铁通电使其富有磁性;由于磁铁的磁吸力,结合磁微粒的免疫复合物在磁场的作用下富集到磁微粒包被区的底端,然后通过再次加大离心力使未参加反应的样本经毛细管微通道116流向废液收集区113;

4)结合图7所示,从加样区10加入清洗液洗涤结合磁微粒的免疫复合物,清洗液移动到磁微粒包被区112时,将带永磁铁的底盘2向下移动远离上层芯片1,或者断开通电装置使电磁铁失去磁性,超声振荡,结合磁微粒的免疫复合物得到充分洗涤,将带永磁铁的底盘2向上层芯片1处运动,或者对带电磁铁的底盘2的电磁铁通电使其富有磁性,将结合磁微粒的免疫复合物富集到磁微粒包被区112的底端,通过加大离心力使清洗液流入废液收集区113;

5)结合图8所示,从加样区10加入发光基底液,通过离心将发光基底液转移至磁微粒包被区112,将带永磁铁的底盘2向下移动远离上层芯片1,或者断开通电装置使电磁铁失去磁性,超声振荡后,仪器检测系统检测发光信号的强度,从而实现待测物的定量检测。

本发明的用于检测心肌酶系列的磁微粒的微流控化学发光检测系统的检测过程需要的离心力来自于配套的检测仪器。自转轴不属于微流控化学发光检测系统的一部分,而是与微流控化学发光检测系统配套使用的仪器中的一部分,轴承与芯片托盘相连接固定;芯片可以夹在芯片托盘上;底盘不依附于自转轴,其通过通孔套设在自转轴上而自由上下移动。

磁场产生装置的磁场由磁铁提供,永磁铁可以通过移动与芯片的相对位置(电磁铁通过通电或断电),使磁微粒处于或脱离磁铁的磁场,来实现收集磁微粒技术效果。

一下提供一具体实施方式以对本发明进行说明:

步骤1 从加样口(此处有抗红细胞滤血膜)加入15~150μL全血样本,盖上血液盖,将微流控化学发光检测系统放入配套的仪器中,启动仪器,在离心力的作用下,全血经抗红细胞滤血膜过滤,随后通过加样通道依次填满三个样本分离区;

步骤2 待样本流动稳定后,通过加大离心作用使样本分离区的样本冲破毛细管微阀流向三个抗体包被区(cTnI、MYO、CK-MB),样本将烘干后形成的粉末状的碱性磷酸酶标记的抗体和生物素标记的另一株抗体进行复溶,cTnI微流控反应检测通道的抗体包被区中心肌肌钙蛋白I与碱性磷酸酶标记的抗心肌肌钙蛋白I抗体、生物素标记的另一株抗心肌肌钙蛋白I抗体形成免疫复合物,MYO微流控反应检测通道的抗体包被区中肌红蛋白与碱性磷酸酶标记的抗肌红蛋白抗体、生物素标记的另一株抗肌红蛋白抗体形成免疫复合物,CK-MB微流控反应检测通道的抗体包被区中肌酸激酶同工酶与碱性磷酸酶标记的抗肌酸激酶同工酶抗体、生物素标记的另一株抗肌酸激酶同工酶抗体形成免疫复合物;

步骤3 通过加大离心力使免疫复合物经过毛细管微阀进入到磁微粒包被区,复溶在该区域的链霉亲和素标记的磁微粒(平均粒径1 μm),链霉亲和素与免疫复合物中的生物素快速发生反应形成结合磁微粒的免疫复合物,1~5 min后,将带永磁铁的底盘向上层芯片处运动,结合磁微粒的免疫复合物在磁场的作用下富集到磁微粒包被区的底端,然后通过再次加大离心力使未参加反应的样本经毛细管微阀流向废液收集区;

步骤4 从加样口加入两次清洗液洗涤结合磁微粒的免疫复合物,清洗液移动到磁微粒包被区时,将带永磁铁的底盘向下移动远离上层芯片,超声振荡,结合磁微粒的免疫复合物得到充分洗涤,将带永磁铁的底盘向上层芯片处运动,将结合磁微粒的免疫复合物富集到磁微粒包被区的底端,通过加大离心力使清洗液流入废液收集区;

步骤5 从加样口加入碱性磷酸酶发光底物,通过离心将发光基底液转移至磁微粒包被区,将带永磁铁的底盘向下移动远离上层芯片,超声振荡后,仪器检测系统检测发光信号的强度,从而实现分析物的定量检测。

在全血样本中cTnI的结果如下表1所示,检测灵敏度范围为0~25 ng/mL,并且在此范围的检测CV值低于10%。

表1 cTnI

浓度(ng/mL)相对光单位(RLU)变异系数(CV)014912.6%0.1104431.2%0.5512200.8%1.51357312.3%66329631.7%2529105620.3%

在全血样本中MYO的结果如下表2所示,检测灵敏度范围为0~12 ng/mL,并且在此范围的检测CV值低于10%。

表2 MYO

浓度(ng/mL)相对光单位(RLU)变异系数(CV)020452.5%0.61018902.1%1.52456350.6%35194500.5%610778921.1%1221437810.2%

在全血样本中CK-MB的结果如下表3所示,检测灵敏度范围为0~500 ng/mL,并且在此范围的检测CV值低于10%。

表3 CK-MB

浓度(ng/mL)相对光单位(RLU)变异系数(CV)046101.3%10167980.9%25435620.8%50886931.7%1502457840.3%5008932140.5%

1.碱性磷酸酶标记的抗体

(1)碱性磷酸酶标记的一株抗心肌肌钙蛋白I抗体

将2.5mg的碱性磷酸酶(50IU/mg)加入到200μL 100mM的PBS缓冲溶液(pH=6.8)中,其中含有1.25%的戊二醛,搅拌混匀,4℃下活化24小时,透析至50mM(pH=7.2),18小时,换液3次;将1.8mg的一株鼠抗cTnI单克隆抗体溶于120μL 1M的碳酸盐溶液(pH=9)中;将活化的碱性磷酸酶加入到配置的鼠抗cTnI单克隆抗体的溶液中,混合均匀,4℃下反应24h,然后再加入20μL 100 mM的赖氨酸溶液,混合均匀,在20℃下反应4h;4℃下透析12h至50 mM PBS(pH=7.2),换液3次;离心去上层清液,用50mM TB7.4+0.6% BSA+0.05%NaN3稀释,在-20℃下保存。

(2)碱性磷酸酶标记的一株抗肌红蛋白抗体

将2.5mg的碱性磷酸酶(50IU/mg)加入到200μL 100mM的PBS缓冲溶液(pH=6.8)中,其中含有1.25%的戊二醛,搅拌混匀,4℃下活化24小时,透析至50mM(pH=7.2),18小时,换液3次;将1.8mg的一株鼠抗MYO单克隆抗体溶于120μL 1M的碳酸盐溶液(pH=9)中;将活化的碱性磷酸酶加入到配置的鼠抗MYO单克隆抗体的溶液中,混合均匀,4℃下反应24h,然后再加入20μL 100 mM的赖氨酸溶液,混合均匀,在20℃下反应4h;4℃下透析12h至50 mM PBS(pH=7.2),换液3次;离心去上层清液,用50mM TB7.4+0.6% BSA+0.05%NaN3稀释,在-20℃下保存。

(3)碱性磷酸酶标记的一株抗肌酸激酶同工酶抗体

将2.5mg的碱性磷酸酶(50IU/mg)加入到200μL 100mM的PBS缓冲溶液(pH=6.8)中,其中含有1.25%的戊二醛,搅拌混匀,4℃下活化24小时,透析至50mM(pH=7.2),18小时,换液3次;将1.8mg的一株鼠抗CK-MB单克隆抗体溶于120μL 1M的碳酸盐溶液(pH=9)中;将活化的碱性磷酸酶加入到配置的鼠抗CK-MB单克隆抗体的溶液中,混合均匀,4℃下反应24h,然后再加入20μL 100 mM的赖氨酸溶液,混合均匀,在20℃下反应4h;4℃下透析12h至50 mM PBS(pH=7.2),换液3次;离心去上层清液,用50mM TB7.4+0.6% BSA+0.05%NaN3稀释,在-20℃下保存。

2.生物素标记的抗体

(1)生物素标记的另一株抗心肌肌钙蛋白I抗体

先用碳酸钠缓冲液将另一株鼠抗cTnI单克隆抗体稀释成1mg/mL,并用碳酸钠缓冲液室温(25℃±5℃)避光搅拌4小时透析;随后用N,N-二甲基酰胺(DMF)将6-氨基己酸-N羟基琥珀酰亚胺-生物素(BCNHS)配置成1mg/mL;在1mL另一株鼠抗cTnI单克隆抗体溶液中加入上述DMF溶液125μL~66.7μL,玻璃瓶中混合,室温(25℃±5℃)避光搅拌2小时;加入1mol/L 氯化铵溶液9.6μL,室温(25℃±5℃)避光搅拌10分钟;然后混合溶液转入透析袋,用磷酸缓冲液4℃透析过夜;最后取出加等量甘油-20℃保存即可。

(2)生物素标记的另一株抗肌红蛋白抗体

先用碳酸钠缓冲液将另一株鼠抗MYO单克隆抗体稀释成1mg/mL,并用碳酸钠缓冲液室温(25℃±5℃)避光搅拌4小时透析;随后用N,N-二甲基酰胺(DMF)将6-氨基己酸-N羟基琥珀酰亚胺-生物素(BCNHS)配置成1mg/mL;在1mL另一株鼠抗MYO单克隆抗体溶液中加入上述DMF溶液125μL~66.7μL,玻璃瓶中混合,室温(25℃±5℃)避光搅拌2小时;加入1mol/L 氯化铵溶液9.6μL,室温(25℃±5℃)避光搅拌10分钟;然后混合溶液转入透析袋,用磷酸缓冲液4℃透析过夜;最后取出加等量甘油-20℃保存即可。

(3)生物素标记的另一株抗肌酸激酶同工酶抗体

先用碳酸钠缓冲液将另一株鼠抗CK-MB单克隆抗体稀释成1mg/mL,并用碳酸钠缓冲液室温(25℃±5℃)避光搅拌4小时透析;随后用N,N-二甲基酰胺(DMF)将6-氨基己酸-N羟基琥珀酰亚胺-生物素(BCNHS)配置成1mg/mL;在1mL另一株鼠抗CK-MB单克隆抗体溶液中加入上述DMF溶液125μL~66.7μL,玻璃瓶中混合,室温(25℃±5℃)避光搅拌2小时;加入1mol/L 氯化铵溶液9.6μL,室温(25℃±5℃)避光搅拌10分钟;然后混合溶液转入透析袋,用磷酸缓冲液4℃透析过夜;最后取出加等量甘油-20℃保存即可。

3.加样孔处抗红细胞滤血膜的处理

所选材料为玻璃纤维素膜或者聚酯纤维膜,浸泡于浓度为30 mg/L的鼠抗人红细胞单克隆抗体溶液,浸泡时长为1~6h;随后将其置于湿度<35%的环境中沥干水分,时长8~16小时;最后将抗红细胞滤血膜裁剪成相应规格,用仪器将其贴于加样孔处。

4.抗体包被区的处理

将碱性磷酸酶标记的抗体:生物素标记的另一株抗体=4~1:1(摩尔比)混匀按相应规格(生物素标记的抗体的量为5~50μg)于芯片中的抗体包被区,置于湿度<35%环境中干燥8~16小时。

5.磁微粒包被区的处理

磁微粒溶液的的配置:选用表面标记有链霉亲和素的具有超顺磁性的生物纳米磁珠,直径1μm,将其用磁微粒稀释液溶解成1~20mg/mL。

磁微粒包被区的干燥:取5~15μL配置好的微磁粒溶液置于芯片上的微磁粒包被区,置于湿度<35%环境中干燥8~16小时。

6.检测

取15-150μL全血滴于样本区,在毛细管或者离心力的作用下,样本流经芯片。5-20分钟后,在化学发光免疫分析仪下检测磁微粒包被区的发光强度,即可反算出样本中相应物质的浓度。

附:所需溶液配制

(1)鼠抗人红细胞单克隆抗体浸泡液

磷酸二氢钠 0.99g

磷酸氢二钠 5.16g

牛血清蛋白 1g

氯化钠 0.9g

鼠抗人红细胞单克隆抗体 34mg

叠氮钠 1g

纯化水定容至 1000mL。

(2)磁微粒稀释液

磷酸二氢钠0.99g

磷酸氢二钠5.16g

氯化钠0.9g

牛血清蛋白5g

十六烷基三甲基氯化铵0.224g

叠氮钠0.5g

Proclin3001mL

罗氏清洁抗体(HBR-3) 50mg

纯化水定容至1000mL

(3)清洗液

磷酸二氢钠0.99g

磷酸氢二钠5.16g

吐温-20 1ml

Proclin3001mL

以上所述实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号