首页> 中国专利> 酚醛树脂预浸料及其制造酚醛复合材料的方法

酚醛树脂预浸料及其制造酚醛复合材料的方法

摘要

本发明公开了一种酚醛树脂预浸料及其制造酚醛复合材料的方法,预浸料按重量份数包括以下组分:纤维织物50~65份、酚醛树脂20~48份、增稠剂1~5份。酚醛树脂预浸料制造酚醛复合材料的方法采用真空袋压固化工艺,在该工艺中使用微孔膜,该微孔膜的微孔孔径为0.1~10um,厚度为2~300um之间,孔隙率为50%~80%;由于微孔孔径是液体分子直径的上万倍,比水滴直径小几百倍,因此具有优异的透湿、透气和防液滴透过性,从而抽真空时挥发性气体被抽出,而液体树脂组分不会被抽出,避免树脂被抽出导致树脂分布不均匀的问题,减少材料浪费和废弃物。

著录项

  • 公开/公告号CN107446304A

    专利类型发明专利

  • 公开/公告日2017-12-08

    原文格式PDF

  • 申请/专利权人 陈精明;

    申请/专利号CN201610366860.6

  • 发明设计人 陈精明;

    申请日2016-05-30

  • 分类号

  • 代理机构常州市江海阳光知识产权代理有限公司;

  • 代理人孙培英

  • 地址 213000 江苏省常州市武进区湖塘镇中凉花园17幢甲单元502室

  • 入库时间 2023-06-19 03:55:36

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2019-11-01

    授权

    授权

  • 2018-01-05

    实质审查的生效 IPC(主分类):C08L61/06 申请日:20160530

    实质审查的生效

  • 2017-12-08

    公开

    公开

说明书

技术领域

本发明属于复合材料技术领域,具体涉及一种酚醛树脂预浸料、酚醛树脂预浸料的制备方法及预浸料制造酚醛复合材料的方法。

背景技术

酚醛树脂是人类历史上首个商业化应用的人造树脂,因为其具有很好的耐热性能、阻燃性能、耐腐蚀性能(氧化性酸和碱除外)、高温抗蠕变性,至今都得以广泛的应用,如用于制备多种耐热制品、防腐蚀材料、阻燃材料等。

酚醛树脂固化后,分子结构上芳环致密,遇到高热燃烧容易形成致密的炭层,减缓了热量对材料内部的侵入,也隔绝了氧气的进入;因此燃烧时放出的燃烧热量低、释放的烟雾极少,而且烟雾的毒性低,表现出了优良的阻燃性能(FST)。由于酚醛树脂本身的阻燃性能极佳,所以不需要像其它阻燃树脂那样添加各种阻燃剂,如卤素类、含氮类、含磷类;或树脂的分子结构中引入氮、磷等元素。从各国对材料的毒性要求,比如英国轨道交通标准BS6853附录D、波音标准BSS7239,都对CO、CO2、HF、HCl、HBr、HCN、NO2、SO2八种气体的释放浓度进行严格限制。酚醛树脂由于本身的阻燃特性,不需要外添加阻燃剂,所以综合表现出来的FST性能在所有的有机材料中是最佳的。

酚醛树脂以其优异的阻燃性能,常用于制备航空、轨道交通上的内饰材料。但酚醛材料有其弱点,即属于脆性材料,韧性差;另外,材料在固化成型过程中会释放水分子,这些水分通常很难全部排出,造成材料内部存在很多微孔,从而影响酚醛材料的力学强度。因此围绕酚醛材料增韧和提高强度,广大研究者对其进行了大量的研究,也取得了不少的成果。

近年来,酚醛树脂预浸料被广泛应用于飞机内饰材料的制备,酚醛树脂预浸料制造产品方便,制品强度、阻燃性能都比较理想。

预浸料的制备方法主要有两种即溶液浸渍法和热熔胶膜法。溶液浸渍法是将纤维或织物经过树脂溶液浸渍后,将树脂中的溶剂挥发掉,并使预浸料达到B阶段的工艺;该法生产设备投入少,缺点是预浸料树脂含量难以精确控制,大量溶剂挥发,形成环境污染。热熔胶膜法是首先将熔融的树脂制成均匀平整的胶膜,而后将胶膜与纤维或织物在一定温度和压力下进行复合浸渍,得到合格预浸料;此工艺优点是树脂含量控制精确、挥发份少,无环境污染;缺点是设备投入高。

对于溶液浸渍法,设备简单,投入少,生产工艺简单,只要能避免溶剂挥发,降低挥发份含量、控制好预浸料树脂含量,即能形成改良的溶液浸渍法。

中国专利文献CN 101735551 A(申请号200810180315.3)公开了一种具有高温力学性能的隔热复合材料及其制备方法,该材料实质上是一种酚醛预浸料,主要成分为钡酚醛树脂、乙醇和高强玻璃纤维布。制备时先对高强玻璃纤维布进行剪裁和热处理,将钡酚醛树脂和乙醇按照60:40混合成树脂胶液,浸胶后晾晒烘干,得到酚醛复合材料预浸料。

中国专利文献CN 102731960 B (申请号201210211451.0)公开了一种高韧性阻燃酚醛预浸料复合材料的制备方法,通过向酚醛树脂内引入热塑性聚合物和橡胶类增韧剂,大大提高了复合材料的韧性,同时引入了溴/锑系阻燃剂弥补了增韧剂造成的阻燃性能下降的问题;同时公开的预浸料制备方法中采用了乙醇作为稀释剂,使酚醛树脂、增韧剂、四溴双酚A、三氧化二锑混合后的粘度较低,适合对纤维材料的浸胶。

中国专利文献CN 104194256 A(申请号201410330863.6)中公开了一种增韧型环保酚醛树脂的玻璃纤维预浸布,包括以下成分:环保酚醛树脂、无碱玻纤布、偶联剂KH-560、内脱模剂、颜料、二氧化硅、工业酒精、石墨、硅石灰。

现有溶液浸渍法制备酚醛树脂预浸料的技术中以及上述三项申请中均使用乙醇作为溶剂。酚醛树脂固化属于缩聚反应,会产生小分子水,挥发不出去的部分就残留在材料中,形成微孔,从而对材料力学性能和阻燃性能产生不利影响,所以大多数酚醛预浸料都选用分子量尽可能高的酚醛树脂,以减少酚醛预浸料在固化时水分的产生量;但酚醛树脂的分子量越高,其粘度越大,越难以浸透玻纤布,所以上述专利文献中都使用了乙醇作为溶剂或者称作稀释剂,降低酚醛树脂的粘度使得浸胶顺利进行。完成浸胶后,使用的乙醇都要通过加热蒸发掉,这样做就产生了溶液浸渍法的“大量溶剂挥发、环境污染” 等问题;另一方面,预浸料中的乙醇并不能完全的排出预浸料之外,因此对酚醛复合材料的阻燃性会有较大的影响。

用预浸料制造复合材料时,最佳的方法是热压罐法,热压罐法(一般同时也结合真空袋法)得到的复合材料制品的孔隙率低于1%,制品强度性能最佳;但热压罐的成本非常高。近年来又开发出罐外固化方法,即OoA法,真空袋压法就是其中一种。真空袋压法可以省去高成本的热压罐的制造,使用普通的烘房即可。

现有真空袋压法工艺中由于铺层会带入一定量的气体,所以在预浸料的固化工艺中,通常在预浸料的表面铺设带孔的隔离膜,上面加吸胶毡和透气毡;这样便于在真空下,预浸料内部的气体可以顺利被抽出。但吸胶材料成本也较高,同时吸胶的过程需在特定的温度范围内,树脂流动性不能过大,否则树脂被抽出过多;树脂流动性也不能过小,否则气体不容易排出完全;这就要求预浸料的粘温性能极其稳定,所以吸胶过程的控制难度很高。更重要的是,由于酚醛预浸料在固化时会释放水,这些水分通过吸胶层,以水汽的方式被抽出时通常会带出一定量的树脂,导致树脂含量不均匀,也造成材料浪费和环境污染。

发明内容

本发明所要解决的技术问题是提供一种由低分子量、低粘度的酚醛树脂制成的酚醛树脂预浸料、酚醛树脂预浸料的制备方法及预浸料制造复合材料的方法。

实现本发明第一目的的技术方案是一种酚醛树脂预浸料,按重量份数包括以下组分:纤维织物50~65份、酚醛树脂20~48份、增稠剂1~5份。

所述酚醛树脂为甲阶酚醛树脂,粘度为300~1500mPa·s;所述增稠剂为氧化镁、氧化钙、硫酸钙、纳米级氢氧化铝、白炭黑、硼酸、硼酸锌中的一种或一种以上的组合物。

作为优选的,还包括固化促进剂1~10份,所述固化促进剂为咪唑烷、三嗪、噁唑烷、噁嗪、咪唑烷-噁唑烷杂化物、醚化的间苯二酚、强酸的酯化物中的一种或一种以上的组合物。其中合成酯的强酸为磷酸、多聚磷酸、亚磷酸、硫酸、苯磺酸、对甲苯磺酸、二甲苯磺酸、苯酚磺酸中的一种;合成酯的醇为乙醇、乙二醇、聚乙二醇、丙二醇、聚丙二醇、丙三醇、季戊四醇、苯甲醇、三羟甲基丙烷、苯酚中的一种。

可选择的,还包括增韧剂1~8份;所述增韧剂为聚氨酯预聚体、甲氧基硅氧烷、聚乙烯醇、端羟基聚丁二烯、端羧基聚丁二烯中的一种。

实现本发明第二目的的技术方案是一种如上所述的酚醛树脂预浸料的制备方法,包括以下步骤:

①将按照重量份数称取的酚醛树脂和增稠剂在分散搅拌机中混合均匀待用;酚醛树脂为甲阶酚醛树脂,粘度为300~1500mPa·s;增稠剂为氧化镁、氧化钙、硫酸钙、纳米级氢氧化铝、白炭黑、硼酸、硼酸锌中的一种或一种以上的组合物。

②将纤维织物在浸胶机组上穿引好;将步骤①混匀的物料倒入浸胶机组的树脂槽中,树脂槽温控制在25℃~80℃;

③开动浸胶机组,纤维织物在树脂槽中浸透树脂后,经压辊迁引出,随载膜进入增稠烘道;增稠烘道温度为40℃~95℃,浸胶后的织物通过增稠烘道的时间为0.5~5h,增稠完毕得到酚醛树脂预浸料。

作为可选的,步骤①还称取固化促进剂1~10份和/或增韧剂1~8份,将按照重量份数称取的酚醛树脂、增稠剂、增韧剂和/或固化促进剂在分散搅拌机中混合均匀待用。

所述固化促进剂为咪唑烷、三嗪、噁唑烷、噁嗪、咪唑烷-噁唑烷杂化物、醚化的间苯二酚、强酸的酯化物中的一种或一种以上的组合物;所述增韧剂为聚氨酯预聚体、甲氧基硅氧烷、聚乙烯醇、端羟基聚丁二烯、端羧基聚丁二烯中的一种。

实现本发明第三目的的技术方案是一种上所述的酚醛树脂预浸料制造酚醛复合材料的方法,采用真空袋压固化工艺,包括以下步骤:

①将预浸料按所需尺寸裁剪好,去掉离型膜,在模具上依次铺好积层,然后在预浸料表面依次铺设带孔隔离膜、微孔膜、透气材料;所述微孔膜的微孔孔径为0.1~10um,厚度为2~300um之间,孔隙率为50%~80%;所述积层是指将预浸料逐层铺好后得到的堆叠体,按照酚醛复合材料的设计厚度和预浸料单层厚度确定积层中预浸料的层数。

②在模具四周铺设密封胶带,真空管一头接触到透气材料上,另一头接外部真空管路,铺好真空袋膜并密封。

③将模具整体放入烘房,开启真空泵,保持压力在-0.085~-0.01MPa;开启加热,缓慢升至90℃~160℃,材料固化完成后缓慢冷却脱模,得到固化的复合材料。

可选的,步骤①铺设积层时,在积层中间的相邻两层预浸料之间铺设泡沫芯材或蜂窝芯材或轻木,两块预浸料与其中间的芯材形成三明治结构。

作为优选的,步骤①中铺设带有芯材的积层时还使用封边件,所述封边件为上下贯穿的一体框形预制件,该框形预制件的铅垂面厚度与芯材的厚度相同,边框的宽度为1至10cm,封边件为一体化预制成型的酚醛复合材料。封边件贴合设置在芯材的四周,封边件的四周外缘与复合材料构件四周边缘轮廓在同一立面;铺层时先完成芯材下方的预浸料积层铺设,放置封边件,用封边件将所铺预浸料的水平面及边缘立面压实,然后将芯材填放在框形封边件的框内,继续芯材及封边件上方的预浸料的铺设。

作为可选的,在模具上铺设预浸料积层之前,先依次铺设透气材料、微孔膜、带孔隔离膜。

本发明具有积极的效果:

(1)本发明的酚醛树脂预浸料使用的是低粘度(粘度为300~1500mPa·s)的酚醛树脂,由于酚醛树脂粘度低,制备预浸料时可以直接用于浸胶操作或在较低的加热温度下进行浸胶,浸胶时不需要使用乙醇或其他有机溶剂稀释酚醛树脂;纤维织物的浸胶完成后,在一定温度下进行增稠提高酚醛树脂的分子量。本发明的酚醛树脂预浸料在最终成型固化时产生的水分少,用预浸料制备的复合材料制品内微孔数量少、制品质量高。

(2)本发明使用低分子量的酚醛树脂制备预浸料操作简单,由于不需要使用乙醇或其他有机溶剂,因此本发明预浸料的制备方法解决了现有溶液浸渍法存在的大量溶剂挥发、环境污染等问题。另外,由于预浸料中无乙醇或其他有机溶剂,避免了预浸料制备的复合材料制品中溶剂残留导致的制品阻燃性能下降的问题。

(3)本发明的酚醛树脂预浸料使用低分子量的酚醛树脂作为原料,由于预浸料中含有增稠剂,浸胶后进行增稠操作的同时可提高酚醛树脂的分子量;增稠操作易控制,控制增稠操作同时可以控制预浸料中酚醛树脂的分子量,从而得到不同自粘性大小的预浸料。

(4)本发明的预浸料中固化促进剂的使用使得预浸料可以在100℃~120℃的较低温度下固化成型,所述较低温度是相对现有技术中酚醛树脂的130℃~160℃的较高固化温度而言;较低的固化温度大大降低了能源消耗,并降低了模具的成本。

(5)本发明的预浸料储存期长,在25℃下可以储存2个月。

(6)使用本发明的预浸料制造复合材料时采用真空袋压固化工艺,本发明在该工艺中使用微孔膜,该微孔膜的微孔孔径为0.1~10um,厚度为2~300um之间,孔隙率为50%~80%;由于微孔孔径是液体分子直径的上万倍,比水滴直径小几百倍,因此具有优异的透湿、透气和防液滴透过性,从而抽真空时挥发性气体被抽出,而液体树脂组分不会被抽出,避免树脂被抽出导致树脂分布不均匀的问题,减少材料浪费和废弃物。

(7)本发明的酚醛预浸料制造复合材料时由于微孔膜的使用,降低了对预浸料粘温特性和固化温度的严格要求。

(8)本发明使用预制好的封边件,可以增加复合材料制件边缘的强度;同时,还可以解决预浸料铺设时,在模具边缘水平面与立面相交的R角处的不服帖性,使制得的复合材料构件拥有完好的边缘质量。

具体实施方式

(实施例1)

本实施例的酚醛树脂预浸料按重量份数包括以下组分:纤维织物58份、酚醛树脂39份、增稠剂2份、固化促进剂1份。

本实施例中的纤维织物为800g/m2双轴向织物。

酚醛树脂为甲阶酚醛树脂,其合成反应的催化剂为氢氧化钠,粘度为300~1500mPa·s(本实施例中为900 mPa·s)。

所述增稠剂为氧化镁、氧化钙、硫酸钙、纳米级氢氧化铝、白炭黑、硼酸、硼酸锌中的一种或一种以上的组合物,本实施例的增稠剂为硫酸钙。

所述固化促进剂为咪唑烷、三嗪、噁唑烷、噁嗪、咪唑烷-噁唑烷杂化物、醚化的间苯二酚、强酸的酯化物中的一种或一种以上的组合物。

固化促进剂中强酸的酯化物由乙二醇稀释后使用;合成酯的强酸为磷酸、多聚磷酸、亚磷酸、硫酸、苯磺酸、对甲苯磺酸、二甲苯磺酸、苯酚磺酸中的一种;合成酯的醇为乙醇、乙二醇、聚乙二醇、丙二醇、聚丙二醇、丙三醇、季戊四醇、苯甲醇、三羟甲基丙烷、苯酚中的一种。本实施例的固化促进剂为质量比为1∶1的亚磷酸三苯酯和咪唑烷。

本实施例的酚醛树脂预浸料的制备方法包括以下步骤:

①将按照上述重量份数称取的将酚醛树脂、增稠剂和固化促进剂在分散搅拌机中混合均匀待用。

②将双轴向织物在浸胶机组上穿引好;将步骤①混匀的物料倒入浸胶机组的树脂槽中,树脂槽温控制在35℃~80℃(本实施例中为60℃)。

③开动浸胶机组,双轴向织物在树脂槽中浸透树脂后,经压辊迁引出,随载膜进入增稠烘道。增稠烘道温度为40℃~95℃(本实施例中为85℃),浸胶后的织物通过增稠烘道的时间为2h,增稠完毕得到本实施例的酚醛树脂预浸料。

(实施例2)

本实施例的酚醛树脂预浸料其余与实施例1相同,不同之处在于还包括2份的增韧剂,增韧剂为聚氨酯预聚体。

除了前述提到的聚氨酯预聚体,增韧剂还可以是甲氧基硅氧烷、聚乙烯醇、端羟基聚丁二烯、端羧基聚丁二烯中的一种。

(实施例3)

本实施例的酚醛树脂预浸料按重量份数由以下组分组成:纤维织物55份、酚醛树脂42份、增稠剂3份、固化促进剂2份。

其中纤维织物为200g/m2玻纤缎纹织物。

酚醛树脂为用氢氧化钡催化合成的甲阶酚醛树脂,粘度为1200mPa·s。

增稠剂为硼酸。

固化促进剂为多聚磷酸与三羟甲基丙烷的酯化物和噁唑烷。

本实施例的酚醛树脂预浸料的制备方法其余与实施例1相同,不同之处在于:

步骤②树脂槽温控制在65℃。

步骤③增稠烘道温度为90℃,浸胶后的织物通过增稠烘道的时间为1h。

(实施例4)

本实施例的酚醛树脂预浸料按重量份数由以下组分组成:纤维织物50份、酚醛树脂45份、增稠剂2份、固化促进剂3份。

其中纤维织物为400g/m2碳纤维平纹布。

酚醛树脂为用氧化镁催化合成的甲阶酚醛树脂,粘度为1000mPa·s。

增稠剂为硼酸锌。

固化促进剂为磷酸二苯酯和三嗪。

本实施例的酚醛树脂预浸料的制备方法其余与实施例1相同,不同之处在于:

步骤②树脂槽温控制在63℃。

步骤③增稠烘道温度为90℃,浸胶后的织物通过增稠烘道的时间为1h。

(实施例5)

本实施例的酚醛树脂预浸料按重量份数由以下组分组成:纤维织物2份、酚醛树脂44份、增稠剂3份。

其中纤维织物为400g/m2斜纹布。

酚醛树脂为用氨水催化合成的甲阶酚醛树脂,粘度为1400mPa·s。

增稠剂为氧化镁。

固化促进剂为多聚磷酸与三羟甲基丙烷的酯化物和咪唑烷-噁唑烷杂化物。

本实施例的酚醛树脂预浸料的制备方法其余与实施例1相同,不同之处在于:

步骤②树脂槽温控制在60℃。

步骤③增稠烘道温度为95℃,浸胶后的织物通过增稠烘道的时间为1h。

(实施例6)

本实施例的酚醛树脂预浸料按重量份数由以下组分组成:纤维织物51份、酚醛树脂41份、增稠剂2份、固化促进剂3份、增韧剂3份。

其中纤维织物为500g/m2双轴向织物。

酚醛树脂为中国专利文献CN 104356325A(申请号201410593338.2)公开的纳米层状硅酸盐粘土改性的酚醛树脂,粘度为600mPa·s。

增稠剂为质量比为1:1的白炭黑和纳米级氢氧化铝。

固化促进剂为多聚磷酸与三羟甲基丙烷的酯化物和间苯二酚二缩水甘油醚。

增韧剂为甲氧基硅氧烷。

本实施例的酚醛树脂预浸料的制备方法其余与实施例1相同,不同之处在于:

步骤②树脂槽温控制在60℃。

步骤③增稠烘道温度为93℃,浸胶后的织物通过增稠烘道的时间为0.5h。

(实施例7)

本实施例的酚醛树脂预浸料按重量份数由以下组分组成:纤维织物50份、酚醛树脂45份、增稠剂1份、固化促进剂2份,增韧剂2份。

其中纤维织物为250g/m2斜纹布。

酚醛树脂为用氢氧化钠催化合成的甲阶酚醛树脂,粘度为1000mPa·s。

增稠剂为质量比为1:1的硫酸钙和硼酸锌。

固化促进剂为强酸的酯化物,合成酯的酸为磷酸,合成酯的醇为聚丙二醇;使用时该酯化物用乙二醇稀释后使用,酯化物与乙二醇的质量比为5:1。

增韧剂为端羧基聚丁二烯。

本实施例的酚醛树脂预浸料的制备方法其余与实施例1相同,不同之处在于:

步骤②树脂槽温控制在60℃。

步骤③增稠烘道温度为9℃,浸胶后的织物通过增稠烘道的时间为1h。

实施例1至7增稠完毕得到的材料可做成拥有不同粘性的软固体卷材,说明增稠效果理想,达到预浸料的常规物理性能。

实施例1至实施例7的酚醛树脂预浸料的性能如下表1:

表1

(实施例8、由酚醛树脂预浸料制造酚醛复合材料的方法)

本实施例制造酚醛复合材料采用真空袋压固化工艺,使用实施例1的酚醛树脂预浸料,包括以下步骤:

①在模具上依次铺好透气材料、微孔膜、带孔隔离膜。

所述透气材料为有机纤维织物、无机纤维织物中的一种;所述微孔膜材质为热塑性聚氨酯、聚四氟乙烯、硅橡胶中的一种,微孔膜的微孔孔径为0.1~10um,厚度为2~100um之间,孔隙率为50%~80%;带孔隔离膜为聚乙烯膜,孔径为0.1~0.3mm,打孔间距为3~10mm。

②将实施例1的预浸料按所需尺寸裁剪好,去掉离型膜,在步骤①的带孔隔离膜上铺好积层(本实施例中铺设3层实施例1的预浸料)。所述积层是指按照酚醛复合材料的设计厚度和预浸料单层厚度确定积层中预浸料的层数,将预浸料逐层铺好后得到的堆叠体。

进一步的,上述铺设积层过程中,积层中间的相邻两层预浸料之间还可以加铺泡沫芯材或蜂窝芯材或轻木,做出三明治结构。

更进一步的,铺设带有芯材的积层时还使用封边件,所述封边件为上下贯通的一体框形预制件,该框形预制件的铅垂面的厚度与芯材的厚度相同,边框的宽度为1至10cm,封边件为一体化预制的酚醛复合材料。封边件贴合在芯材的四周边缘,封边件的四周边缘轮廓与复合材料构件四周边缘轮廓在同一立面。铺层时在完成芯材下方的底层预浸料积层铺设后,通常会需要在这些底层预浸料的边缘沿着模具边缘的立面向上铺设,模具水平面与边缘立面相交的R角处的预浸料容易翘起,放置封边件,用封边件将所铺底层预浸料的水平面及立面压实在模具的水平面及立面上,然后将芯材填放在框形封边件的框内,继续芯材及封边件上方的预浸料的铺设。

由于封边件的设置,在后期的抽真空过程中,芯材四周不容易产生移位而发生缝隙,从而避免最终复合材料构件在四周立面产生空穴缺陷。

③在步骤②的酚醛树脂预浸料积层的外表面上依次铺设带孔隔离膜、微孔膜、透气材料,其中微孔膜需要将预浸料积层表面完全包覆。

④在模具四周铺设密封胶带,真空管一头接触到透气材料上,另一头接外部真空管路,铺好真空膜并密封。

⑤将模具整体放入烘房,开启真空泵,保持压力在-0.085~-0.01MPa;开启加热,缓慢升至90℃~160℃(本实施例中为100~120℃),材料固化完成后缓慢冷却脱模,得到固化的酚醛复合材料。

本实施例所用的预浸料中由于含有固化促进剂,预浸料可以在100℃~120℃的较低温度下固化成型,所述较低温度是相对现有技术中酚醛树脂的130℃~160℃的较高固化温度而言;对于预浸料中不含固化促进剂的情况,制备复合材料时在130℃~160℃的较高温度下固化成型。

同样的,按照上述方法,将实施例2至实施例7的预浸料制造成酚醛复合材料平板;对按照实施例8的方法由实施例1至实施例7的预浸料制造的复合材料平板阻燃性能和机械性能进行检测:

(1)根据GB1447-2005、GB1451-2005标准检测酚醛树脂复合材料平板的拉伸和冲击性能。

(2)60秒垂直燃烧。

采用VC-2型垂直燃烧分析仪,按BSS7230进行测试。

(3)烟密度。

采用SD-1型烟密度箱,按BSS7238进行测试。

上述3项的检测结果见下表2:

表2

注:表2中第一行的实施例1是指按照实施例8的方法由实施例1的预浸料制成的复合材料平板,实施例2至7同理。

(实施例9、由酚醛树脂预浸料制造酚醛复合材料的方法)

本实施例制造酚醛复合材料采用真空袋压固化工艺,使用实施例1的酚醛树脂预浸料,包括以下步骤:

①将预浸料按所需尺寸裁剪好,去掉离型膜,在模具上依次铺好由6层预浸料组成的积层,然后在预浸料表面依次铺设带孔隔离膜、微孔膜、透气材料;其中微孔膜需要将预浸料积层表面完全包覆。所述微孔膜的微孔孔径为0.1~10um,厚度为2~300um之间,孔隙率为50%~80%;所述积层是指将预浸料逐层铺好后得到的堆叠体。

进一步的,上述铺设积层过程中,积层中间的相邻两层预浸料之间还可以加铺泡沫芯材或蜂窝芯材或轻木,做出三明治结构。

更进一步的,铺设带有芯材的积层时还使用实施例8中所述的封边件。

②在模具四周铺设密封胶带,真空管一头接触到透气材料上,另一头接外部真空管路,铺好真空膜并密封。

③将模具整体放入烘房,开启真空泵,保持压力在-0.085~-0.01MPa;开启加热,缓慢升至90℃~160℃(本实施例中为120℃),材料固化完成后缓慢冷却脱模,得到固化的酚醛复合材料。

与实施例8的制备方法相比,本实施例只在积层的一侧铺设带孔隔离膜、微孔膜和透气材料,积层的另一侧表面直接与模具表面接触,由于模具表面是光滑的,本实施例可以得到一侧光滑面的复合材料。

对于实施例8的制备方法,由于积层的两侧都设置了辅材即带孔隔离膜、微孔膜和透气材料,故得到的复合材料两侧表面都有辅材的纹理,但两侧都铺设辅材的方式制备时排气或排汽效果更好。

对于积层中有芯材的情况,铺层时使用封边件,一方面这是由于芯材的四周边缘相对预浸料脆弱,用封边件增加强度;另一方面封边件的使用使得在后期的抽真空过程中,芯材四周不容易产生移位而发生缝隙,从而避免最终复合材料构件在四周立面产生空穴缺陷。

(对比例1)

本对比例制造酚醛复合材料采用传统真空袋压固化工艺,以实施例1的酚醛树脂预浸料为例,制备过程包括以下步骤:

①将预浸料按所需尺寸裁剪好,去掉离型膜,在模具上依次铺好积层(本对比例中为3层),然后在预浸料积层表面依次带孔隔离膜、吸胶毡若干层、透气材料。

②在模具四周铺设密封胶带,真空管一头接触到透气材料上,另一头接外部真空管路,铺好真空袋膜并密封。

③将模具整体放入烘房,开启真空泵,保持压力在-0.085~-0.01MPa;开启加热,缓慢升至120℃,材料固化完成后缓慢冷却脱模,得到固化的酚醛复合材料。

本对比例中未采用微孔膜,使用吸胶毡进行固化过程的排气,铺层时夹带的空气、固化放出的水汽通过带孔隔离膜的孔被抽出。

观察吸胶毡,吸胶毡的部分位置观察到固化成红棕色的树脂,说明在空气、水汽的排气过程中夹带了小部分酚醛树脂,这些酚醛树脂积累在吸胶毡层,吸收了酚醛树脂的吸胶毡不能再循环使用。传统的真空袋压固化工艺既造成了预浸料树脂的浪费,还增加了成本和废弃物数量。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号