首页> 中国专利> 基于分数阶微分及暗原色先验的雾天图像增强方法

基于分数阶微分及暗原色先验的雾天图像增强方法

摘要

基于分数阶微分及暗原色先验的雾天图像增强方法,包括以下步骤:步骤1,输入雾天图像I,对I进行暗原色先验及Retinex算法处理,得到初步去雾图像J(x,y);步骤2,将J(x,y)分割为前景区域J1(x,y)和背景区域J2(x,y);步骤3,分别计算出J1(x,y)对应的最优分数阶微分阶数值v1和J2(x,y)对应的最优分数阶微分阶数值v2;步骤4,确定掩模系数和掩模大小,构造分数阶微分算子掩模w(s,t);步骤5,分别将步骤3得到的分数阶微分阶数值v1和分数阶微分阶数值v2带入w(s,t),得到w1(s,t)和w2(s,t),将w1(s,t)和J1(x,y)的像素点进行卷积运算,将w2(s,t)和J2(x,y)的像素点进行卷积运算;步骤6,输出I经图像增强后的图像。本发明解决了现有技术中存在的用分数阶微分阶数单一的分数阶微分算法对雾天图像进行增强,去雾效果不佳的问题。

著录项

  • 公开/公告号CN107358585A

    专利类型发明专利

  • 公开/公告日2017-11-17

    原文格式PDF

  • 申请/专利权人 西安理工大学;

    申请/专利号CN201710520898.9

  • 发明设计人 赵凤群;雷思佳;

    申请日2017-06-30

  • 分类号G06T5/00(20060101);G06T7/136(20170101);G06T7/194(20170101);

  • 代理机构61214 西安弘理专利事务所;

  • 代理人燕肇琪

  • 地址 710048 陕西省西安市金花南路5号

  • 入库时间 2023-06-19 03:47:06

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2020-08-18

    授权

    授权

  • 2017-12-12

    实质审查的生效 IPC(主分类):G06T5/00 申请日:20170630

    实质审查的生效

  • 2017-11-17

    公开

    公开

说明书

技术领域

本发明属于图像处理技术领域,涉及一种基于分数阶微分及暗原色先验的雾天图像增强方法。

背景技术

图像增强是重要的图像预处理技术之一,图像增强能够提高图像质量,改善图像的视觉效果,以便进行后续深层次处理,比如图像分割、边缘提取以及模式识别等均为图像增强手段。通常由于受太阳光照或光源的影响,成像设备获取的图像对比度低,清晰度不高,图像局部的细节纹理信息不明显,为各种图像的深层次处理带来困难。特别是在能见度较低的状况下,监控设备很难捕捉到高质量的图像,获取的图像很模糊,并且整体色彩偏暗,人们很难从该类图像中获取到关键的信息。因此,对恶劣天气条件下的获取到的图像进行增强显得尤其重要。

分数阶微分是整数阶微分的衍生,与整数阶微分相比,分数阶微分可以增强信号中的中高频信息,同时非线性地保留信号的低频信息,因此,应用分数阶微分进行图像增强会使图像边缘明显突出、纹理更加清晰,而平滑区域信息得以保留。目前分数阶微分图像增强主要是从Grümwald-Letnikov和Riemann-Liouville定义出发,构造分数阶微分算子模板与图像进行作用完成图像增强。一些学者根据G-L和R-L定义提出了六种分数阶微分的差分近似,分别建立了基于分数阶微分的图像增强算子,且均取得了不错的图像增强效果(PuY,Wang W,Zhou J,et al.Fractional differential approach to detecting texturalfeatures of digital image and its fractional differential filterimplementation[J].2008,51(9):1319-1339.),但是由于图像局部特性的不同,以及图像内部结构存在多样性,对图像用单一的分数阶微分阶数进行同等强度的增强通常达不到满意的处理效果。大量的实验表明,仅使用分数阶微分的图像增强对纹理图像作用较明显,而对于雾天图像,由于它没有考虑到不同区域的景深特征,大多数情况下无法得到较好的去雾效果。Land基于人脑视觉成像的特征,提出了Retinex理论,Jobon等人为了弥补单尺度Retinex(SSR)算法的不足,提出带色彩的多尺度Retinex增强算法(MSRCR),虽然在突出细节的同时得到较好的颜色保真度,且在色彩恢复能力上改善了单尺度Retinex算法的不足,但是在颜色变化较大区域的边缘部分,多尺度的滤波可能会导致严重的光晕现象。因此对于颜色和场景复杂的雾天图像,仅仅用Retinex的方法很难达到满意的图像增强效果;基于暗原色先验及Retinex的图像增强是一种基于大气散射物理模型的方法(Morel J M,PetroA B,Sbert C.A PDE Formalization of Retinex Theory.[J].IEEE Transactions onImage Processing A Publication of the IEEE Signal Processing Society,2010,19(11):2825-2837),这类方法能够利用先验知识,具有内在的优越性,但图像处理过程中容易失去较多细节信息。此外,学者们还提出自适应分数阶微分的复合双边滤波算法进行图像增强(胡伏原,姒绍辉,张艳宁,等.自适应分数阶微分的复合双边滤波算法[J].中国图象图形学报,2013,18(10):1237-1246.),达到了一定的去雾效果,但是图像对比度增加不是很明显。

发明内容

本发明的目的是提供一种基于分数阶微分及暗原色先验的雾天图像增强方法,解决了现有技术中存在的用分数阶微分阶数单一的分数阶微分算法对雾天图像进行增强,去雾效果不佳的问题。

本发明所采用的技术方案是,基于分数阶微分及暗原色先验的雾天图像增强方法,包括以下步骤:

步骤1,输入雾天图像I,对I进行暗原色先验及Retinex算法处理,得到初步去雾图像J(x,y);

步骤2,选取最佳分割阈值,将初步去雾图像J(x,y)分割为前景区域J1(x,y)和背景区域J2(x,y);

步骤3,分别计算出前景区域J1(x,y)对应的最优分数阶微分阶数值v1和背景区域J2(x,y)对应的最优分数阶微分阶数值v2

步骤4,确定掩模系数和掩模大小,构造分数阶微分算子掩模w(s,t);

步骤5,分别将步骤3得到的分数阶微分阶数值v1和分数阶微分阶数值v2带入w(s,t),得到掩模w1(s,t)和掩模w2(s,t),将掩模w1(s,t)和前景区域J1(x,y)的像素点进行卷积运算,将掩模w2(s,t)和背景区域J2(x,y)的像素点进行卷积运算;

步骤6,输出I经图像增强后的图像。

步骤1的具体步骤为:

步骤1.1,输入雾天图像I,将I从RGB颜色空间转换到YCbcr颜色空间,并提取I的亮度分量图像Y(x,y),(x,y)表示图像中像素点的位置;

步骤1.2,采用单尺度Retinex算法,计算反射图像R(x,y):

L(x,y)=F(x,y)*Y(x,y)(1)

其中,F(x,y)为高斯滤波器,δ代表高斯核,“*”表示卷积运算符,L(x,y)代表入射图像;

r(x,y)=log Y(x,y)-log L(x,y)(2)

将r(x,y)从对数域转换到实数域,得到反射图像R(x,y);

步骤1.3,计算I的场景透射率的近似值

将I的场景透射率近似定义为将t(x,y)从实数域转化到对数域,得到I的场景透射率的近似值

步骤1.4,计算I在c通道的大气光近似值Ac

其中,r,g,b为图像的三个颜色通道,c为I中r,g,b的某一个颜色通道,Ω(x)表示以(x,y)为中心的局部区域,Ic(x,y)表示I中r,g,b的某一个颜色通道图像;

步骤1.5,分别计算r,g,b三个颜色通道初步去雾后的图像Jc(x,y):

步骤1.6,将r,g,b三个颜色通道的Jc(x,y)组合为RGB空间上的初步去雾图像J(x,y)。

步骤2的具体步骤为:

步骤2.1,设定分割阈值为t,用t将初步去雾图像J(x,y)的像素点分成两个区域:区域A和区域B,区域A由灰度值在[0,t]之间的像素点组成,区域B由灰度值在[t+1,255]之间的像素点组成;

步骤2.2,分别计算区域A的平均灰度uA和区域B的平均灰度uB

其中,i为灰度值,i=0,1,2,...,255,pi为灰度值为i的像素点出现的概率,pi=ni/N,ni为灰度值为i的像素点的数量,N为J(x,y)中所有像素点的数量;w0为灰度值在[0,t]之间的像素点在J(x,y)中占的比例,w1为灰度值在[t+1,255]之间的像素点在J(x,y)中占的比例,

步骤2.3,计算区域A和区域B的方差:σ2=w0(uA-uT)2+w1(uB-uT)2,其中uT表示J(x,y)的总平均灰度,

步骤2.4,将σ2最大时对应的t值作为最佳分割阈值,用最佳分割阈值将J(x,y)分割为前景区域J1(x,y)和背景区域J2(x,y)。

步骤3的具体步骤为:

步骤3.1,建立函数

其中,为Ji(x,y)经过v阶分数阶微分增强后的区域;中灰度值达到255的像素点的集合,为集合中元素的个数;Fi(ui)为分段函数,Fi(ui)定义如下:

其中,ui中像素点的平均灰度;

步骤3.2,求解分别得到前景区域J1(x,y)对应的最优分数阶微分阶数值v1和背景区域J2(x,y)对应的最优分数阶微分阶数值v2

步骤4具体为:

设函数f(x)在区间[0,T]上连续,[0,T]代表自变量x的取值范围,将区间[0,T]作M等份,节点为xm=T-mh,m=0,1,2,…,M,m为节点序号,步长为h,则已知f(x)具有二阶精度的Riesz分数阶导数近似计算公式为:

其中,k=0,±1,±2,…,±∞,为Riesz分数阶导数计算公式的系数,v为微分阶数,Γ为Gamma函数,O(h2)为二阶收敛阶,由式(9)得到:

其中,

对二维数字图像f(x,y),令h=1,取式(10)的前四项系数ω0123作为分数阶微分算子的初步掩模系数,记为:在x轴正负方向、y轴正负方向、左右对角线方向共8个方向构成具有各向同性的分数阶微分算子掩模;

引入强度因子g,g∈(0,1),设置掩模中心系数为令掩模非中心系数为bi=gai,i=1,2,3,b0、b1、b2、b3为掩模系数,确定分数阶微分算子掩模大小为7×7,分数阶微分算子掩模在x,y坐标轴上的半径大小a、b均为3,由掩模系数和掩模半径构造分数阶微分算子掩模w(s,t),(s,t)代表每个掩模系数的位置。

步骤5具体为:

将步骤3得到的分数阶微分阶数值v1带入w(s,t)的掩模系数中,得到掩模w1(s,t),将w1(s,t)和J1(x,y)中的像素点进行卷积运算,获得增强后的像素点区域将步骤3得到的分数阶微分阶数值v2带入w(s,t)的掩模系数中,得到掩模w2(s,t),将w2(s,t)和J2(x,y)中的像素点进行卷积运算,获得增强后的像素点区域

本发明的有益效果是,基于分数阶微分及暗原色先验的雾天图像增强方法,首先对雾天图像进行暗原色先验及Retinex算法处理,雾天图像清晰度不高,该处理一方面达到去雾的效果,一方面为之后计算更准确的图像分割阈值做了铺垫;再选择最佳阈值进行图像分割,用不同的分数阶阶数进行增强,避免了阶数选取的单一性,基于Riesz分数阶微分具有二阶精度的近似计算公式,在分数阶微分阶数的选择上,根据图像像素值的不同特征实现了阶数选择的自适应性,构造了一种新的高精度7×7分数阶微分算子掩模,相对于大小为3×3与5×5的分数阶微分算子掩模,大小为7×7的掩模具有更好的增强效果,本发明相对于已有的雾天图像增强算法而言,同时实现了雾天图像的去雾和增强,并且从而提高了雾天图像的增强效果。

附图说明

图1是本发明的流程图;

图2是7×7大小的分数阶微分算子掩模的示意图;

图3是原始的加油站雾天图像;

图4是图3的图像分割效果图;

图5是图3经暗原色先验及Retinex算法处理后的效果图;

图6是图3经自适应分数阶微分的复合双边滤波算法处理后的效果图;

图7是图3经Tiansi算子5×5大小的掩模处理后的效果图;

图8是图3经本发明的方法处理后的效果图;

图9是原始的公路雾天图像;

图10是图9的图像分割效果图;

图11是图9经暗原色先验及Retinex算法处理后的效果图;

图12是图9经自适应分数阶微分的复合双边滤波算法处理后的效果图;

图13是图9经Tiansi算子5×5大小的掩模处理后的效果图;

图14是图9经本发明的方法处理后的效果图;

图15是原始的城市雾天图像;

图16是图15的图像分割效果图;

图17是图15经暗原色先验及Retinex算法处理后的效果图;

图18是图15经自适应分数阶微分的复合双边滤波算法处理后的效果图;

图19是图15经Tiansi算子5×5大小的掩模处理后的效果图;

图20是图15经本发明的方法处理后的效果图。

具体实施方式

下面结合附图和具体实施方式对本发明进行详细说明。

如图1所示,基于分数阶微分及暗原色先验的雾天图像增强方法,包括以下步骤:

步骤1,输入雾天图像I,对I进行暗原色先验及Retinex算法处理,得到初步去雾图像J(x,y);

步骤1.1,输入雾天图像I,将I从RGB颜色空间转换到YCbcr颜色空间,Y代表YCbcr颜色空间的亮度分量,Cb代表YCbcr颜色空间的蓝色分量,Cr代表YCbcr颜色空间的红色分量,并提取I的亮度分量图像Y(x,y),(x,y)表示图像中像素点的位置;

步骤1.2,采用单尺度Retinex算法,计算反射图像R(x,y):

L(x,y)=F(x,y)*Y(x,y)(1)

其中,F(x,y)为高斯滤波器,δ代表高斯核,“*”表示卷积运算符,L(x,y)代表入射图像;

r(x,y)=log Y(x,y)-log L(x,y)(2)

将r(x,y)从对数域转换到实数域,得到反射图像R(x,y);

步骤1.3,计算I的场景透射率的近似值

将I的场景透射率近似定义为将t(x,y)从实数域转化到对数域,得到I的场景透射率的近似值

步骤1.4,计算I在c通道的大气光近似值Ac

其中,r,g,b为图像的三个颜色通道,c为I中r,g,b的某一个颜色通道,Ω(x)表示以(x,y)为中心的局部区域,Ic(x,y)表示I中r,g,b的某一个颜色通道图像;

步骤1.5,分别计算r,g,b三个颜色通道初步去雾后的图像Jc(x,y):

步骤1.6,将r,g,b三个颜色通道的Jc(x,y)组合为RGB空间上的初步去雾图像J(x,y)。

步骤2,选取最佳分割阈值,将初步去雾图像J(x,y)分割为前景区域J1(x,y)和背景区域J2(x,y);

步骤2.1,设定分割阈值为t,用t将初步去雾图像J(x,y)的像素点分成两个区域:区域A和区域B,区域A由灰度值在[0,t]之间的像素点组成,区域B由灰度值在[t+1,255]之间的像素点组成;

步骤2.2,分别计算区域A的平均灰度uA和区域B的平均灰度uB

其中,i为灰度值,i=0,1,2,...,255,pi为灰度值为i的像素点出现的概率,pi=ni/N,ni为灰度值为i的像素点的数量,N为J(x,y)中所有像素点的数量;w0为灰度值在[0,t]之间的像素点在J(x,y)中占的比例,w1为灰度值在[t+1,255]之间的像素点在J(x,y)中占的比例,

步骤2.3,计算区域A和区域B的方差:σ2=w0(uA-uT)2+w1(uB-uT)2,其中uT表示J(x,y)的总平均灰度,

步骤2.4,将σ2最大时对应的t值作为最佳分割阈值,用最佳分割阈值将J(x,y)分割为前景区域J1(x,y)和背景区域J2(x,y)。

步骤3,分别计算出前景区域J1(x,y)对应的最优分数阶微分阶数值v1和背景区域J2(x,y)对应的最优分数阶微分阶数值v2

步骤3.1,建立函数

其中,i=1时,Ji(x,y)为前景区域,i=2时,Ji(x,y)为背景区域;v为分数阶微分阶数,为Ji(x,y)经过v阶分数阶微分增强后的区域;中灰度值达到255的像素点的集合,为集合中元素的个数;Fi(ui)为分段函数,Fi(ui)定义如下:

其中,ui中像素点的平均灰度;

步骤3.2,求解分别得到前景区域J1(x,y)对应的最优分数阶微分阶数值v1和背景区域J2(x,y)对应的最优分数阶微分阶数值v2

步骤4,确定掩模系数和掩模大小,构造分数阶微分算子掩模w(s,t);

步骤4具体为:

设函数f(x)在区间[0,T]上连续,[0,T]代表自变量x的取值范围,将区间[0,T]作M等份,节点为xm=T-mh,m=0,1,2,…,M,m为节点序号,步长为h,则已知f(x)具有二阶精度的Riesz分数阶导数近似计算公式为:

其中,k=0,±1,±2,…,±∞,为Riesz分数阶导数计算公式的系数,v为微分阶数,Γ为Gamma函数,O(h2)为二阶收敛阶,由式(9)得到:

其中,

对二维数字图像f(x,y),令h=1,取式(10)的前四项系数ω0123作为分数阶微分算子的初步掩模系数,记为:在x轴正负方向、y轴正负方向、左右对角线方向共8个方向构成具有各向同性的分数阶微分算子掩模;

如图2所示,为了达到更好的纹理增强效果,考虑到每一个像素的作用,则模板中的每一个像素权值都不应该为0,引入强度因子g,g∈(0,1),调节了周围像素点对目标像素点的贡献力度,即增加中心像素点的作用,减少周围像素点的作用,这就意味着随着距离的增加,中心像素点与其他像素点之间的相关性降低了;设置掩模中心系数为令掩模非中心系数为bi=gai,i=1,2,3,b0、b1、b2、b3为掩模系数,确定分数阶微分算子掩模大小为7×7,分数阶微分算子掩模在x,y坐标轴上的半径大小a、b均为3,把半径相等的位置看做是同一层,由掩模系数和掩模半径构造分数阶微分算子掩模w(s,t),(s,t)代表每个掩模系数的位置。

步骤5,分别将步骤3得到的分数阶微分阶数值v1和分数阶微分阶数值v2带入w(s,t),得到掩模w1(s,t)和掩模w2(s,t),将掩模w1(s,t)和前景区域J1(x,y)的像素点进行卷积运算,将掩模w2(s,t)对背景区域J2(x,y)的像素点进行卷积运算;

步骤5具体为:

将步骤3得到的分数阶微分阶数值v1带入w(s,t)的掩模系数中,得到掩模w1(s,t),将w1(s,t)和J1(x,y)中的像素点进行卷积运算,获得增强后的像素点区域将步骤3得到的分数阶微分阶数值v2带入w(s,t)的掩模系数中,得到掩模w2(s,t),将w2(s,t)和J2(x,y)中的像素点进行卷积运算,获得增强后的像素点区域

步骤6,输出I经图像增强后的图像。

为了检验本发明的算法对雾天图像增强的有效性,我们分别选取Tiansi算子(记为方法A)、暗原色先验及Retinex算法(记为方法B)以及自适应分数阶微分的复合双边滤波算法(记为方法C)对三幅雾天降质交通图像(加油站雾天图像、公路雾天图像、城市雾天图像)进行图像增强以及效果对比,对加油站雾天图像用各算法的处理的过程及效果图如图3至图8所示,对公路雾天图像用各算法的处理的过程及效果图如图9至图14所示,对城市雾天图像用各算法的处理的过程及效果图如图15至图20所示;图3,图9,图15是三幅雾天交通图像,由于有雾的原因,路面的可视度较低,道路两旁的房屋建筑,树木和交通标志都模糊不清;图5,图11,图17是暗原色先验及Retinex算法处理图3的效果图,可以看出,处理之后的图像看起来有些模糊,失去了较多细节信息,整体色彩偏暗,增强效果不明显;图7,图13,图19是v=0.4时,用Tiansi算子增强过的图像,路面的清晰度有所增加,但是对于雾天图像来说,去雾效果并没有得到改善;图8,图14,图20是自适应分数阶微分的复合双边滤波算法在HSV空间上当δd=3,δr=0.4时的处理结果,可以看出,虽然图像中的整体亮度有所增加,但是图像对比度增加不是很明显;图8,图14,图20是采用本发明的方法进行图像增强的结果,不仅整体亮度增强,而且边缘和纹理细节都有明显地增强。因此可以得出,采用本发明的方法进行去雾的效果明显优于其他算法的效果。

为了客观评价本文算法的有效性,表1列出了实验中三幅图像采用不同的图像增强方法处理得到的图像的信息熵和平均梯度。

表1

由表1中的数据得知,对于加油站雾天图像、公路雾天图像、城市雾天图像,采用本发明的方法处理后的图像的信息熵和平均梯度不仅高于原始图像,且都高于其他算法处理后的图像,平均梯度即图像的清晰度,反映图像细节对比的表达能力。它的值越大,表明图像的纹理细节越清晰。信息熵是图像纹理丰富程度的度量,它的值越大,表明图像所含的信息内容越丰富。说明本发明的方法处理后的图像质量更高。

通过上述方式,本发明基于分数阶微分及暗原色先验的雾天图像增强方法,首先对雾天图像进行暗原色先验及Retinex算法处理,雾天图像清晰度不高,该处理一方面达到去雾的效果,一方面为之后计算更准确的图像分割阈值做了铺垫;再选择最佳阈值进行图像分割,用不同的分数阶阶数进行增强,避免了阶数选取的单一性,基于Riesz分数阶微分具有二阶精度的近似计算公式,在分数阶微分阶数的选择上,根据图像像素值的不同特征实现了阶数选择的自适应性,构造了一种新的高精度7×7分数阶微分算子掩模,相对于大小为3×3与5×5的分数阶微分算子掩模,大小为7×7的掩模具有更好的增强效果,本发明相对于已有的雾天图像增强算法而言,同时实现了雾天图像的去雾和增强,并且从而提高了雾天图像的增强效果。解决了现有技术中存在的用分数阶微分阶数单一的分数阶微分算法对雾天图像进行增强,去雾效果不佳的问题。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号