首页> 中国专利> 一种改性Y分子筛的制备方法和应用及单段加氢裂化催化剂

一种改性Y分子筛的制备方法和应用及单段加氢裂化催化剂

摘要

本发明公开了一种改性Y分子筛的制备方法和应用及单段加氢裂化催化剂。该方法包括如下内容:(1)以NaY沸石为原粉进行铵盐离子交换;(2)步骤(1)的Y分子筛进行脱铝补硅处理;(3)对步骤(2)处理后的Y分子筛进行水热处理;(4)对步骤(3)处理后的Y分子筛进行酸脱铝处理;(5)对步骤(4)所得的Y分子筛快速干燥处理;(6)步骤(5)得到的Y分子筛进行积炭反应;(7)将步骤(6)得到的分子筛进行脱硅处理;(8)步骤(5)经脱硅处理后的Y分子筛经过滤、干燥后,进行烧炭处理,得到改性Y分子筛。本发明方法制备的改性Y分子筛制备的单段加氢裂化催化剂,应用于单段加氢裂化工艺中,该具有良好的反应活性及抗氮能力。

著录项

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2019-09-10

    授权

    授权

  • 2017-11-28

    实质审查的生效 IPC(主分类):B01J29/16 申请日:20160422

    实质审查的生效

  • 2017-10-31

    公开

    公开

说明书

技术领域

本发明属于加氢裂化领域,具体地涉及一种改性Y分子筛的制备方法和应用及单段加氢裂化催化剂。

背景技术

加氢裂化技术具有原料适应性强、产品方案灵活、目的产品选择性高、产品质量好且附加值高、可直接生产多种优质石油产品和化工原料等特点。因此,该技术已成为合理利用有限的原油资源、最大限度生产清洁石油产品和优质化工原料最适宜的炼油技术。加氢裂化技术按加工流程主要可以分为三种:一段串联加氢裂化工艺流程、单段加氢裂化工艺流程和两段加氢裂化工艺流程。其中一段串联工艺流程设置精制和裂化两个反应器,精制反应器中使用加氢精制催化剂将原料中氮化物脱除至10~20ppm以下以满足裂化反应器加氢裂化催化剂的要求后,精制反应器流出物直接进入裂化反应器。两段工艺流程同样采用两个反应器,第一个反应器中使用加氢催化剂,第二个反应器使用加氢裂化催化剂,但在第一个反应器的流出物进行气液分离等操作,液相进入第二个两个反应器。相比于一段串联和两段加氢裂化技术,单段加氢裂化技术不设置精制反应器,采用耐原料杂质(硫、氮等)能力较强的加氢裂化催化剂,原料不经过加氢精制,直接进行加氢裂化过程,具有流程简单、操作容易、投资少等特点,适合于最大量生产中间馏分油。

在单段加氢裂化催化剂方面,国外比较有代表性的技术提供者主要有Chevron公司和UOP公司。Chevron公司的单段高中油加氢裂化催化剂主要有ICR-106、ICR-120、ICR-126、ICR-142、ICR-150、ICR-155、ICR-162等。通过进行加氢组分和载体组分之间匹配的优化,以及对分子筛的进一步改性处理,Chevron公司开发的ICR-142催化剂的活性明显高于ICR-106无定形催化剂,而且中间馏分油选择性与其相当。UOP公司开发的单段高中油加氢裂化催化剂主要有HC-102、HC-22、DHC-8、DHC-32、DHC-100、HC-110、HC-115、HC-215等。

单段加氢裂化技术由于其自身工艺特点要求加氢裂化催化剂具有较强的耐氮能力,因此,工业应用过程使用的加氢裂化催化剂通常采用无定形硅铝或是含少量高硅铝比改性Y或β分子筛作为其酸性组分。这样催化剂虽然具有较强的耐氮能力,但是催化剂活性较差,反应温度通常超过400℃。由于反应温度过高,受芳烃加氢饱和热力学平衡限制,过高的反应温度对芳烃加氢饱和反应不利,产品性质较差。而较高的反应温度也加快催化剂积碳、失活,影响了加氢裂化装置的运行周期。

CN200710158784.0公开了一种含Y分子筛的加氢裂化催化剂及其制备方法,该发明中Y型分子筛是用铝盐和酸的混合水溶液处理水热处理后而得,制得的催化剂活性较高,但耐氮能力较差。

CN98114489.6公开了一种耐氮型多产中油的加氢裂化催化剂,用于重质馏分油一段串联加氢裂化生产大量中间馏分油,裂化段进料氮含量可达 100μg/g,但该催化剂活性较差。

发明内容

针对现有技术的不足,本发明提供一种改性Y分子筛的制备方法,本发明方法制备的改性Y分子筛制备的单段加氢裂化催化剂,应用于单段加氢裂化工艺中,该具有良好的反应活性及抗氮能力。

本发明的改性Y分子筛的制备方法,包括如下内容:

(1)以NaY沸石为原粉在铵盐水溶液中进行铵盐离子交换;

(2)步骤(1)中得到的铵交换后的Y分子筛进行脱铝补硅处理;

(3)对步骤(2)处理后的Y分子筛进行水热处理;

(4)对步骤(3)处理后的Y分子筛进行酸脱铝处理;

(5)对步骤(4)所得的Y分子筛快速干燥处理;

(6)步骤(5)得到的Y分子筛与液态或气态的不饱和烯烃充分接触,然后在含氧气氛中进行积炭反应;

(7)将步骤(6)得到的分子筛进行脱硅处理;

(8)步骤(5)经脱硅处理后的Y分子筛经过滤、干燥后,进行烧炭处理,得到改性Y分子筛。

步骤(1)中所述铵盐离子交换过程如下:以NaY沸石为原料在铵盐水溶液中,60~120℃下,优选60~90℃下,交换1~3小时,交换次数为1~4次,得到交换后的NaY沸石,Na2O含量小于3.0%;其中NaY沸石原料的SiO2/Al2O3摩尔比为3~6,氧化钠质量百分含量6%~7%;铵盐是氯化铵、硝酸铵、硫酸铵、醋酸铵或草酸铵中的一种或几种,铵盐水溶液浓度0.3~6.0mol/L,优选1.0~3.0>

步骤(2)中所述的脱铝补硅处理为本领域技术人员熟知的方法,可以采用常规氟硅酸铵脱铝补硅方法,将步骤(1)得到的Y分子筛加水配成液固质量比3:1~6:1的水混样,然后,加入浓度为0.5~2.0mol/L氟硅酸铵水溶液,于 60~90℃处理0.5~3小时;其中氟硅酸铵溶液加入量按照每100g分子筛需要纯氟硅酸铵10~20g计

步骤(3)所述水热处理过程是在自身水蒸气或通入水蒸气的条件下,水热处理条件为:温度为500~700℃,压力为0.01~0.5MPa,处理时间为1.0~6.0小时。

步骤(4)中所述的酸脱铝处理过程为常规方法,即用无机酸和/或有机酸的混合溶液处理步骤(3)得到的Y分子筛。步骤(3)酸处理过程使用的无机酸或有机酸是硫酸、盐酸、硝酸、柠檬酸、草酸或醋酸中的一种或多种,无机酸和/或有机酸的浓度以H+计为0.7~3mol/L,优选1.0~2.0mol/L;酸脱铝处理过程的液/固质量比为3:1~30:1;处理温度60~120℃;处理时间为0.5~3小时。

步骤(5)所述的快速干燥处理条件为:干燥温度为100~200℃,优选120~160℃,干燥时间为1~60分钟,优选3~30分钟。一般的处理过程为:将步骤(4)所得的Y分子筛直接加入预先升温至干燥温度的马弗炉或其他加热设备中进行焙烧。通过快速干燥处理,去除分子筛表层水分。

步骤(6)所述的不饱和烯烃是炭原子数为2~10的正构或异构烯烃、二烯烃;其中所述的烯烃与分子筛充分接触是指不饱和烯烃扩散进入分子筛内部;当使用气态不饱和烯烃时,气态不饱和烯烃与分子筛接触条件为:压力0.1~1.0MPa,接触时间0.1~2小时;当使用液态不饱和烃时,液态不饱和烯烃与分子筛接触条件为:压力0.1~1.0MPa,接触时间0.5~4小时,分子筛应完全浸渍于液态烯烃中。所述的烯烃与分子筛充分接触一般在常温下进行,所述的不饱和烃状态相态均为常温下相态。

步骤(6)所述的含氧气氛为空气、氧气与氮气的混合物或氧气与惰性气体的混合物中的一种,氧气在气相中的体积分数为10%~100%,优选为空气;积炭反应条件为:反应温度50~500℃,优选100~400℃,反应时间为1~50小时,优选2~40小时。

步骤(7)中所述的脱硅处理为本领域技术人员熟知的方法,可以采用常规碱脱硅方法,碱脱硅处理过程使用的碱液为氢氧化钠或氢氧化钾的水溶液,其中碱液的浓度为0.1~2%。碱液处理温度50~100℃,处理时间为0.5~4小时,碱液/分子筛液固质量比为5:1~10:1。

步骤(8)所述干燥条件为温度90℃~120℃,干燥时间为2~4小时;烧炭处理条件为400~600℃下焙烧2~4小时,脱除分子筛上残留的积炭。

本发明方法制备的改性Y分子筛,具有如下性质:改性Y分子筛晶胞常数为2.425~2.440;体相硅铝比为20~50,其中表层硅铝比50~120,优选60~100,表层硅铝比高于体相硅铝比10~80,优选15~50。其中所述的表层指分子筛外表面至内部10~200nm,优选50~190nm;氧化钠质量百分含量小于1.0%,优选小于0.5%;改性Y分子筛比表面积600~800m2/g;孔容0.30~0.50ml/g;红外酸含量0.1~0.8mmol/g,优选0.2~0.6mmol/g;相对结晶度80%~100%。

本发明方法制备的改性Y分子筛在单段加氢裂化工艺过程中的应用。

本发明同时提供一种加氢裂化催化剂,,以催化剂总重量计,包括如下组分:含改性Y分子筛的硅铝载体30%~80%,活性金属20%~70%,其中活性金属以金属氧化物计;其中所述的改性Y分子筛在硅铝载体中的质量百分比为1%~13%,优选2%~10%,余量为无定形硅铝和/或氧化铝。

所述的活性金属选自元素周期表中的第VIII族和/或第VIB族金属元素,第VIII族活性金属可以是Ni和/或Co,第VIB族活性金属可以是W和/或Mo,第VIII族活性金属含量为3%~15%,第VIB族活性金属含量为10%~40%,以金属氧化物计。

所述催化剂的比表面积为100~300m2/g,孔容为0.2~0.5ml/g。

本发明的加氢裂化催化剂的制备方法,包括如下内容:

一、将上述的改性Y分子筛、无定型硅铝和/或氧化铝按照一定配比混合均匀,加入稀硝酸成浆后挤条成型,干燥、焙烧得到含改性Y分子筛的硅铝载体;其中稀硝酸的浓度为3wt%~30wt%;所述的干燥条件为:在80~120℃下干燥1~5小时;焙烧条件为:在400~700℃下焙烧1~5小时;

二、采用含活性金属的浸渍液对步骤一的载体进行浸渍,浸渍后的载体经干燥、焙烧,得到加氢裂化催化剂;其中浸渍的液固比为1.5:1~3:1,采用本领域熟知的饱和浸渍的方式进行,浸渍液中VIB族金属化合物的含量按相应氧化物计为20~60g/100ml,第VIII族金属化合物的含量按相应氧化物计为3~20g/100ml,浸渍液中金属化合物的浓度可以根据产品需要进行相应调整;其中所述的干燥条件为:在90~150℃下干燥2~8小时;焙烧条件为:在400~700℃下焙烧1~5小时。

本发明加氢裂化催化剂可应用于单段加氢裂化工艺反应过程,一般操作条件为:反应压力6.0~20.0MPa,反应温度350~420℃,进料体积空速0.3~3.0h-1,氢油体积比为500:1~2000:1。

本发明中,硅铝摩尔比为氧化硅和氧化铝的摩尔比。

本发明中,体相硅铝摩尔比是指该改性分子筛整体的硅铝摩尔比。

本发明中,体相硅铝摩尔比采用化学分析法测得。表层硅铝摩尔比采用透射电镜X射线电子能谱法测得。

本发明方法中,对加氢裂化催化剂使用的Y分子筛进行特殊处理,即首先在空气气氛中,加热条件下使吸附于Y分子筛表层的烯烃、二烯烃等不饱和烃在分子筛表层积炭,因此,后续碱脱硅处理过程主要在分子筛内部上进行,脱硅处理过后,再高温焙烧除掉分子筛表层的积炭。本发明方法通过选择性的对Y分子筛内表面进行脱硅,降低了内部的硅铝比,即降低了体相分子筛的硅铝比,使Y分子筛表层的硅铝比高于体相硅铝比。本发明加氢裂化催化剂用于单段加氢裂化工艺过程中表现出更高的抗氮能力,具有更好的活性、稳定性。

具体实施方式

下面通过实施例对本发明进一步说明,但不因此限制本发明。实施例中所涉及的百分比均为质量百分比(除相对结晶度),所述的液固比均为液固质量比。

实施例1

分子筛改性处理过程:

(1)取试验室制备的NaY分子筛原粉200g,用浓度为0.5mol/L的硝酸铵按照液固比3:1混合,70℃交换3小时,重复此过程3次,交换后的Y分子筛中Na含量以Na2O计为2.5%;

(2)步骤(1)所得的分子筛按照液固比5:1与蒸馏水混合,然后,加入浓度为1.3mol/L的氟硅酸铵溶液150ml,90℃处理2小时;

(3)对步骤(2)得到的Y分子筛640℃,0.3MPa下水热处理2小时。

(4)步骤(3)所得的分子筛按照液固比10:1与浓度1.8mol/L的盐酸溶液(浓度以H+计)混合,85℃下恒温处理2小时;

(5)步骤(4)所得分子筛150℃干燥15min;

(6)取步骤(5)所得的分子筛放置于充满丁二烯气氛的密闭容器内,控制压力0.3MPa接触20分钟,然后,在空气气氛在200℃加热15小时;

(7)步骤(6)所得的Y分子筛按照液固比5:1与1.0%的氢氧化钠溶液混合,85℃处理2小时;

(8)经步骤(7)碱处理后的Y分子筛,120℃干燥2小时,550℃焙烧2小时后,得到改性Y分子筛,编号为Y-1。

Y-1分子筛透射电镜能谱分析结果测定其外表面至110nm厚度,表层硅铝比为85,分子筛体相硅铝比为48。XRD分析结果表明其晶胞常数为2.428,相对结晶度90%。孔容0.34ml/g,比表面积750m2/g,红外分析结果测定Y-3红外酸量为0.31mmol/g。

加氢裂化催化剂制备过程:

(1)配置W-Ni浸渍溶液:取偏钨酸铵430g和硝酸镍440g加水溶解后配置1000ml浸渍溶液,所得浸渍溶液中活性金属以WO3和NiO含量计算分别为36g/100ml和11g/100ml,溶液编号RY-1;

(2)取Y-1 4g与50g无定型硅铝和46g大孔氧化铝混合,加入4g/100ml稀硝酸在混合器中混合碾压至可挤出状,在挤条机上挤条成型获得载体T-1;

(3)取T-1 60g加入120ml RY-1浸渍液浸渍2小时,然后120℃干燥4小时,500℃焙烧3小时,得到加氢裂化催化剂,编号为Cat-1。

实施例2

分子筛改性处理过程:

(1)取试验室制备的200gNaY分子筛原粉,用浓度为0.8mol/L的硝酸铵按照液固比3:1混合,70℃交换3小时,重复此过程3次,交换后的Y分子筛中Na含量以Na2O计为2.0%。

(2)步骤(1)所得的分子筛按照液固比5:1与蒸馏水混合,然后,加入浓度为1mol/L的氟硅酸铵溶液200ml,80℃处理2小时;

(3)对步骤(2)得到的Y分子筛600℃,0.15MPa下水热处理2小时;

(4)步骤(3)所得的分子筛按照液固比7:1与H+浓度为1.3mol/L的盐酸混合溶液混合,95℃处理2小时;

(5)步骤(4)所得分子筛130℃干燥20min;

(6)取庚烯浸泡步骤(5)所得的分子筛30min,然后,在空气气氛下250℃加热20小时;

(7)步骤(6)所得的分子筛按照液固比6:1与1.3%的氢氧化钠溶液混合, 80℃处理3小时;

(8)经步骤(7)碱处理后的Y分子筛,120℃干燥2小时,550℃焙烧2小时后,得到改性Y分子筛,编号为Y-2。

加氢裂化催化剂制备过程:

(1)配置W-Ni浸渍溶液:取偏钨酸铵480g和硝酸镍480g加水溶解后配置1000ml浸渍溶液,所得浸渍溶液中活性金属以WO3和NiO含量计算分别为40g/100ml和12g/100ml,溶液编号RY-2;

(2)取Y-2 4g与50g无定型硅铝和46g大孔氧化铝混合,加入4g/100ml稀硝酸在混合器中混合碾压至可挤出状,在挤条机上挤条成型获得载体T-2;

(3)取T-2 60g加入120ml RY-2浸渍液浸渍2小时,然后120℃干燥4小时,500℃焙烧3小时,得到加氢裂化催化剂,编号为Cat-2。

Y-2分子筛透射电镜能谱分析结果测定其外表面至150nm厚度,表层硅铝比为72,分子筛体相硅铝比为37。XRD分析结果表明其晶胞常数为2.431,相对结晶度87%,孔容0.35ml/g,比表面积730m2/g,红外分析结果测定Y-2红外酸量为0.33mmol/g。

实施例3

分子筛改性处理过程:

(1)取试验室制备的200gNaY分子筛原粉,用浓度为0.8mol/L的硝酸铵按照液固比3:1混合,70℃交换3小时,重复此过程3次,交换后的Y分子筛中Na含量以Na2O计为2.0%。

(2)步骤(1)所得的分子筛按照液固比5:1与蒸馏水混合,然后,加入浓度为0.8mol/L的氟硅酸铵溶液220ml,90℃处理1.5小时;

(3)对步骤(2)得到的Y分子筛580℃,0.15MPa下水热处理1.5小时,重复此过程2次;

(4)步骤(3)所得的分子筛按照液固比7:1与H+浓度为1.2mol/L的盐酸混合溶液混合,80℃处理2.5小时;

(5)步骤(4)所得分子筛150℃干燥10min;

(6)取庚烯浸泡步骤(5)所得的分子筛50min,然后,在空气气氛下300℃加热12小时;

(7)步骤(6)所得的分子筛按照液固比6:1与1.2%的氢氧化钠溶液混合, 75℃处理2小时;

(8)经步骤(7)碱处理后的Y分子筛,120℃干燥2小时,550℃焙烧2小时后,得到改性Y分子筛,编号为Y-3。

加氢裂化催化剂制备过程:

(1)配置W-Ni浸渍溶液:取偏钨酸铵480g和硝酸镍480g加水溶解后配置1000ml浸渍溶液,所得浸渍溶液中活性金属以WO3和NiO含量计算分别为40g/100ml和12g/100ml,溶液编号RY-3;

(2)取Y-3 8g与40g无定型硅铝和52g大孔氧化铝混合,加入4g/100ml稀硝酸在混合器中混合碾压至可挤出状,在挤条机上挤条成型获得载体T-3;

(3)取T-3 60g加入120ml RY-3浸渍液浸渍2小时,然后120℃干燥4小时,500℃焙烧3小时,得到加氢裂化催化剂,编号为Cat-3。

Y-3分子筛透射电镜能谱分析结果测定其外表面至80nm厚度,表层硅铝比为62,分子筛体相硅铝比为28。XRD分析结果表明其晶胞常数为2.433,相对结晶度85%,孔容0.36ml/g,比表面积708m2/g,红外分析结果测定Y-3红外酸量为0.49mmol/g。

实施例4

分子筛改性处理过程:

(1)取试验室制备的NaY分子筛原粉200g,用浓度为0.6mol/L的硝酸铵按照液固比3:1混合,80℃交换3小时,重复此过程3次,交换后的Y分子筛中Na含量以Na2O计为2.0%;

(2)步骤(1)所得的分子筛按照液固比5:1与蒸馏水混合,然后,加入浓度为1.2mol/L的氟硅酸铵溶液170ml,90℃处理2小时;

(3)对步骤(2)得到的Y分子筛620℃,0.2MPa下水热处理1小时;

(4)步骤(3)所得的分子筛按照液固比15:1与浓度2.0mol/L的盐酸溶液(浓度以H+计)混合,90℃下恒温处理2小时;

(5)步骤(4)所得分子筛160℃干燥18min;

(6)取己二烯浸泡步骤(5)所得的分子筛40min,然后,在空气气氛下150℃加热25小时;

(7)步骤(6)所得的分子筛按照液固比5:1与0.8%的氢氧化钠溶液混合, 90℃处理1.5小时;

(8)经步骤(7)碱处理后的Y分子筛,120℃干燥2小时,550℃焙烧2小时后,得到改性Y分子筛,编号为Y-4。

Y-4分子筛透射电镜能谱分析结果测定其外表面至180nm厚度,表层硅铝比为90,分子筛体相硅铝比为55。XRD分析结果表明其晶胞常数为2.427,相对结晶度95%。孔容0.32ml/g,比表面积760m2/g,红外分析结果测定Y-4红外酸量为0.26mmol/g。

加氢裂化催化剂制备过程:

(1)配置W-Ni浸渍溶液:取偏钨酸铵430g和硝酸镍440g加水溶解后配置1000ml浸渍溶液,所得浸渍溶液中活性金属以WO3和NiO含量计算分别为36g/100ml和11g/100ml,溶液编号RY-4;

(2)取Y-4 8g与40g无定型硅铝和52g大孔氧化铝混合, 加入4g/100ml稀硝酸在混合器中混合碾压至可挤出状,在挤条机上挤条成型获得载体T-4;

(3)取T-4 60g加入120ml RY-1浸渍液浸渍2小时,然后120℃干燥4小时,500℃焙烧3小时,得到加氢裂化催化剂,编号为Cat-4。

比较例1

使用工业广泛应用的一种加氢裂化催化剂,计作BCat-1,其催化剂配方中除改性Y分子筛外,其余组成及催化剂制备方法均与实施例1相同,催化剂BCat-1使用的Y分子筛性质如下:分子筛SiO2/Al2O3>摩尔比为50。XRD分析结果表明其晶胞常数为2.429,相对结晶度92%,孔容0.33ml/g,比表面积700m2/g,红外酸量为0.32>

比较例2

使用工业广泛应用的一种加氢裂化催化剂,计作BCat-2,其催化剂配方中除改性Y分子筛外,其余组成及催化剂制备方法均与实施例2相同,催化剂BCat-2使用的Y 分子筛性质如下:分子筛SiO2/Al2O3>摩尔比为30。XRD分析结果表明其晶胞常数为2.437,相对结晶度98%,孔容0.35ml/g, 比表面积690m2/g,红外酸量为0.50>

实施例5

为了考察实施例及比较例制备催化剂的反应性能,对催化剂在小型装置上进行了评价试验,评价装置采用单段加氢裂化工艺流程,反应器内分别装填按照实施例1~4和比较例1~2制备的加氢裂化催化剂,原料性质、评价条件及评价结果列于表1~表5。

表1 原料油性质。

表2评价条件。

表3评价结果。

表4实施例1与比较例2催化剂稳定性对比试验。

表5实施例4与比较例1催化剂稳定性对比试验。

实施例1、3与比较例1~2催化剂在评价装置上的对比试验表明,采用本发明方法制备的催化剂与比较例催化剂相比,运转过程反应活性及产品质量稳定。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号