首页> 中国专利> 用于HVAC系统的可变风量建模

用于HVAC系统的可变风量建模

摘要

通过使用由空气处理单元的控制器或多个控制器提供的信息,远程服务器使用启发式模型来确定空气处理单元的设置。不同于只是使用每个空气处理单元的规则,基于模型的解决方案确定设置。该模型用于优化对空气分布的操作。在附加或替代实施例中,收集测量并使用测量来导出分析。测量可包括不另外用于空气处理单元的基于规则的控制的数据。分析用于预测需求,作为建模的输入,识别问题和/或识别机会。

著录项

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2019-10-01

    授权

    授权

  • 2017-11-03

    实质审查的生效 IPC(主分类):F24F11/00 申请日:20160224

    实质审查的生效

  • 2017-09-29

    公开

    公开

说明书

对其他申请的交叉引用

本申请要求提交日期为2015年2月24日的美国临时专利申请62/120,218的权益,其在法律允许的范围内通过引用并入本文。

技术领域

本实施例大体涉及工业过程加热、通风和空调(HVAC)系统。

背景技术

为了在HVAC系统中分配空气,包括空气处理单元的空气分配系统将空气在待通风的空间与设备之间移动。空气处理单元包括用于在区域、房间或占用空间本地的其他区域移动空气的风扇。

由一或多个控制器(诸如面板中的控制器)控制空气处理。使用一组规则,控制器使空气处理单元提供更多或更少的流动。例如,使用来自温度传感器的反馈来增加或减小风扇速度以将温度驱动到设定点的范围内。由于设计差、磨损或其他原因,空气处理单元可能无法最佳地操作或可能无法充分操作。基于规则的控制可能不会通过错误报告来识别不正确的操作。对于具有多个互连空气处理单元的更复杂的空气分配系统,基于规则的控制可能无法处理空气处理单元之间的干扰。

发明内容

通过使用由空气处理单元的控制器或多个控制器提供的信息,远程服务器使用启发式模型来确定空气处理单元的设置。不同于只是使用用于每个空气处理单元的规则,基于模型的解决方案确定设置。该模型用于优化空气分配的操作。在附加或替代实施例中,采集测量并使用测量来导出分析。测量可包括不另外用于空气处理单元的基于规则的控制的数据。分析被用于预测需求,作为建模的输入,用于识别问题和/或识别机会。

在第一方面,提供用于加热、通风和空调(HVAC)的控制系统。空气处理单元具有多个传感器,多个传感器来自空气处理单元的风扇的变速驱动器的温度、相对湿度、风扇速度、压力、输入功率和风扇流量组成的组。网络与空气处理单元的控制器连接。存储器被配置成存储来自空气处理单元的传感器的测量和空气处理单元的启发式模型。云服务器远离空气处理单元并与网络连接。云服务器被配置成接收测量,以识别用于空气处理单元使用测量解决启发式模型的操作参数,并输出操作参数。

在第二方面,提供了用于对加热、通风和空调(HVAC)进行建模的方法。服务器基于传感器的测量来优化HVAC系统中的空气处理的模型。服务器根据优化的模型确定HVAC系统中空气处理的设置,并将该设置传送到HVAC系统。

在第三方面,提供了用于在加热、通风和空调(HVAC)中进行分析的方法。测量HVAC系统中的空气处理单元的操作。测量包括风扇转速、压力、功率输入和流量。测量值从测量发送到处理器。处理器分析来自风扇速度、压力、功率输入或流量中的两个或更多的组合的空气处理单元的操作。基于分析的结果,在显示器上呈现空气处理单元的问题或机会。

在检查以下附图和详细描述后,本实施例的其他的系统、方法和/或特征对于本领域的技术人员而言将变得显而易见。所有这些附加的系统、方法、特征和优点都包含在本说明书内、本发明的范围内,并由所附权利要求保护。所公开的实施例的附加特征在下面的详细描述和附图中描述并且将显而易见。

附图说明

附图中的部件不一定按照比例绘制,反而示出了重点以便清晰说明本公开的原理。在附图中,相同的附图标记表示不同视图中的相应部件。

图1为HVAC中的空气处理控制系统的一个实施例的框图;

图2示出了具有空气处理单元的示例性控制系统;

图3示出了用于操作效率分析的信息的曲线图;

图4为示例流量多样性图;

图5为随时间变化的多样性的示例趋势;

图6示出了空气流的示例分布;

图7示出了根据一个示例的随最大流量百分比变化的多个方格的视图;

图8为随方格变化的最大流量百分比的示例视图;

图9为空气分配系统中的方格互连的一个示例的视图;

图10为重新定位致动器的次数随方格的变化的图表示例;

图11示出了随时间变化的对临界和最大流量区域和压力的确定;

图12示出了空气处理、设备和受控区域的性能分析集成;

图13为使用启发式模型进行HVAC控制的方法的一个实施例;以及

图14为用于HVAC分析的方法的一个实施例。

具体实施方式

下面描述可变风量控制,但可用于HVAC的其他处理。可变风量的基于模型的方法可为高性价比的实施方式。这可获得改善操作性能的高价值解决方案。

在一方面,提供统计处理、基于物理学的建模、典型的优化方法或学习算法用于在线优化。基于远程服务器在云中的优化来控制HVAC。HVAC系统的控制器或多个控制器通过网络,诸如内联网或因特网连接到远程服务器。服务器提供用于控制HVAC系统的云服务。在HVAC系统操作时,从传感器和/或控制器向服务器提供各种测量。这些测量指示HVAC系统的特性。服务器可应用分析来观察操作点(例如,实际工作点和设定点),以通过建模建立HVAC系统的行为。确定HVAC系统的最佳设定点、操作或其他控制,并从服务器提供给HVAC系统。可以根据当前行为对未来行为进行预测,并用于计划维护,即刻建立控制以改变预期性能或避免不期望的情况,或否则用于重置HVAC系统的操作。

将操作的分析用作用于建模的反馈。另选地或除此之外,分析用于指示趋势、效率、问题或机会。给定各种测量,可分析空气处理的操作以识别设计变化、更优化的占用分配、诊断信息、维护信息或可用于监测空气分配的其他信息。

图1示出了用于HVAC的控制系统的一个实施例。系统使用具有启发式建模的远程或云服务器,来确定HVAC系统中空气处理的设置。启发式建模使用基于物理学的模型或机器学习模型,考虑到当前和/或当前和过去的空气处理的操作来提供设置。另选地或除此之外,控制系统执行可用于空气分配中的维护、预测操作、诊断、或其他指示问题或机会的分析。

控制系统实现图13和14中的一种或两种方法。可实现其他方法。

控制系统包括空气处理单元12、网络22、云服务器24和计算机30。可提供另外的、不同的或更少的部件。例如,提供了任何数量,例如数十或数百个的空气处理单元。作为另一示例,计算机30被实现为空气处理单元12的控制器14的一部分,而不是作为独立装置来实施,或者未提供。在另一示例中,具有相应空气处理单元12的不同HVAC空气处理系统通过网络22与云服务器24连接。

图2示出了图1的控制系统的一个实施例,其中,启发式模型为基于物理学的模型,其旨在将建筑物10中的楼层或区域中的能源消耗减到最小。采集以前操作的数据以表示过去的行为。在所示的示例中,控制器14从传感器接收数据、计算来自其他信息的数据、和/或使用用于控制或操作空气处理单元12的数据。T表示温度,RH表示相对湿度,V表示体积流量,P表示输入功率,Q表示热量,m表示质量流量。oa下标表示外部空气,ra下标表示回送空气,chws下标表示冷却水供应,hwr下标表示冷却水返回,sa下标表示供气,以及fan下标表示风扇18。

在图2的示例中,控制器14向服务器24提供建筑物10的空气处理单元12的各种操作数据。通过HVAC系统的基于物理学的建模来测量和应用温度、体积、返回处理、质量流量、风扇压力或其他信息的度量和/或负荷。控制器14或服务器24可采集或使用附加的、不同的或更少的值。

服务器24计算或提供由根据太阳热量、内部热量、天气和任何其他热源计算出的热量。计算空气处理单元12的体积或区域的热量。可使用不同于热量的对空气处理单元12操作的指示。基于物理模型,使用热量和过去的设置或测量将模型与特定的空气处理单元适配。解决方案可包括成本函数,诸如通过模型参数变化的微积分来将能源减到最小(例如,在将能源消耗减到最小时搜索产生计算的热量的输入参数的组合)。可使用其他成本。基于求解最小能源的模型,确定供应空气温度Tsa、冷却水供应温度Tchws、冷却水回流温度Thwr、冷却水质量流量mchws和回流水质量流量mhWs的设定点,并提供给控制器14以供进一步使用。

返回图1,空气处理单元12为任何现在已知或后来开发的、用于住宅、工业或办公室使用的空气处理单元。空气处理单元12包括回风输入端、新风输入端、空气混合部、过滤器、冷却盘管、加热盘管、阻尼器或致动器、衰减器、排出口和一或多个风扇18。可提供另外的、不同的或更少的部件。例如,空气处理单元12为具有阻尼器和没有过滤器、混合部、衰减器、加热盘管和/或冷却盘管的风扇18的方格。加热盘管和冷却盘管通过管道连接,以用于冷却和加热的水的供应和回流。可提供没有水的加热和/或冷却。

用于空气分配的风扇18为用于迫使空气进入区域的任何风扇。风扇18包括叶片和马达。可使用任何叶片。可使用任何电机。在一个实施例中,电机为可变驱动器,诸如变频驱动器(VFD)。响应于控制信号,诸如响应于频率、占空比、幅度或其他信号特性,电机控制风扇18的速度。风扇18的速度变化会引起更大或更小的气流。另选地或除此之外,致动器控制用于增加和/或减小气流的阻尼器。风扇18造成的气流变化可用于更紧密地调节空气分配中风扇下游的温度。

空气处理单元12包括一或多个控制器14。控制器14为现场面板、处理器、计算机、专用集成电路、现场可编程门阵列、模拟电路、数字电路或其他控制器。示出了单个控制器12,但是可布置不同的控制器。例如,为不同的部件提供不同的控制器(例如,用于风扇18的控制器不同于用于阻尼器、加热盘管或冷却盘管的控制器)。分布式控制器可进行用于交互控制的通信,可由主控制器控制,和/或可独立于其他控制来操作。

存储器16为随机存取存储器(RAM)、只读存储器(ROM)、可移动介质、闪存、固态或其他存储器。存储器16存储由控制器14控制的设定点、传感器值、控制信息和/或指令。例如,存储器16为用于存储指令的非暂态计算机可读存储介质。当物理控制器14执行指令时,执行本文讨论的控制。

在另一示例中,存储器16存储从传感器20获取的数据、设定点或空气处理单元12的其他操作度量。所存储的数据用于控制空气处理单元12的操作,诸如用于与温度设定点进行比较的温度测量和用于将调节空气提供给占有空间的风扇速度设置。所存储的数据也可包括没有用于空气处理单元12的基于规则的控制中的信息,诸如压力和/或输入功率的测量。

传感器20用于测量温度、相对湿度、风扇速度、压力、输入功率和风扇流量。可使用附加的、不同的或更少类型的传感器20。可使用固态或其他传感器。例如,输入功率传感器为用于变速驱动器风扇18和/或整个空气处理单元12的功率计。可模拟一或多种类型的传感器。例如,风扇速度使用用于控制风扇18而不是测量速度的控制值(例如,频率)。考虑到速度设定使用了预期速度。作为另一示例,基于风扇速度来估算风扇流量。可根据风扇速度和根据建模的或预先测量的来自阻尼器的阻抗和下游阻抗源来建模压力。

提供一或多个每种类型的传感器。可提供温度传感器用于回风、新风、室外、出口空气、风扇处、和/或其他位置。类似地,提供相对湿度传感器用于回风和新风。在其他实施例中,使用了远离空气处理单元12的传感器,诸如通过网络22获得来自气象站或源的室外温度和相对湿度。在传感器20未用于基于规则的控制的情况下,可改装或添加传感器20。

根据传感器20或者其他来源,控制器14采集或收集来自或用于空气处理单元12和/或空气分配系统的数据。在服务器24没有建模的情况下,所收集的数据也用于操作空气处理单元12和/或可被采集用于其他用途,而不是用于空气处理单元12的基于规则的操作中。在一个示例中,给定空气处理单元12的测量数据为风扇每分钟转数(rpm)和来自风扇的变速驱动器的风扇流量、风扇总压力、功率输入(以千瓦为单位)。可使用其他度量。

网络22与服务器24、计算机30和空气处理单元12的控制器14连接。网络22为用于TCP/IP或其他通信的局域网、广域网、企业网、蜂窝网、内联网、因特网、无线、有线或其他网络。网络22可用于与HVAC无关的各种目的,或者可为专用于HVAC的网络。尽管示出了一个网络22,但是可使用多个网络的组合。网络22提供空气处理单元12、服务器24和/或计算机30之间的通信。

服务器24为用于处理和用于与空气处理单元12通信的处理器、计算机、卡或其他服务器。服务器24远离空气处理单元12,诸如在不同的建筑物、城市、县、州或国家中。另选地,服务器24为同一建筑物中的工作站,诸如用于整个HVAC系统的整体管理的工作站。服务器24不在与空气处理单元12相同的房间或区域中。在其他实施例中,使用作为控制器的工作站,而不是服务器24。

服务器24的存储器26为与控制器的存储器16相同或不同类型的存储器。在一个实施例中,存储器26为数据库存储器、或为服务器24的一部分的或可由服务器访问的其他存储器。

存储器26被配置成存储来自传感器20的测量和/或空气处理单元12的其他数据(例如,设定点和设计规格)。数据通过网络22被提供给存储器26。另选地,没有在单独的或服务器侧存储器26中存储数据的情况下,服务器24访问存储器16。在HVAC系统处或在服务器24处的存储器26、20存储用来由云服务器24进行分析的测量。

可存储来自多个装置的数据。为了建模,基于HVAC系统链接数据。来自HVAC系统的物理链接或相关部件的数据用链路作标记。另选地,数据由来源作标记,以及存储器26包括示意图或其他链接结构以用于关联来自相关部件的数据。链接数据中可使用任何关系,诸如装置之间的物理关系。例如,用于相同空气处理单元的传感器20、致动器、控制器14、和/或房间、区域或其他建筑空间被链接起来。作为另一示例,可变风量方格(例如,AHU)与建筑物区域链接。在另一示例中,将控制回路或其他控制结构中使用的装置一起链接起来。

存储器26也存储一或多个启发式模型28。启发式模型28表示空气处理单元的类型,但是基于从空气处理单元12接收的数据来适配于特定的空气处理单元12。适配考虑磨损和撕裂、装置在公差范围内的操作、安装效果、或尽管为同一类型但是对于给定的空气处理单元12为唯一的其他的考虑。求解启发式模型28以将操作的表示与实际操作适配。启发式模型28可用于确定用于操作的最佳或期望的设置,而不是采用基于规则的(例如,经典控制)方法来控制HVAC系统。启发式模型28用于确定设定点,然后控制器14在基于规则的控制中使用这些设定点。

适配依赖于基于规则的控制中使用的数据,包括具有或没有未被用作基于规则的控制的一部分的数据(例如,其他测量、设计规格和/或其他信息)的测量。例如,在没有来自模型的输入的任何反馈回路中,压力没有被控制器14用来控制空气处理单元。测量或计算压力并压力用于适配模型。

在这种在线优化方法中,服务器24执行启发式操作以确定用于基于规则的控制的值。在其他实施例中,本地控制器14或HVAC系统的控制器执行启发式操作。

一个示例启发式模型28为基于物理学的模型。使用物理学来表示部件之间的相互关系。使用一组方程式、矩阵、相关变量的查找表、或其组合来建模空气处理单元12或其他空气分配的操作或行为。进入和排出的空气被表示为具有体积或质量流量、温度、压力、和/或其他特性。这些变量用于将产生输出空气的输入空气的内部操作相关联。由于内部操作依赖于特定于空气处理单元12的装置(例如,风扇18),所以可基于来自控制器14的操作的测量来调整建模以考虑特定装置。例如,在模型中包括了风扇的效率。针对那个特定的风扇18,基于对于给定的空气处理单元12所测量的输入空气来确定产生输出空气的效率。针对任何阻尼器对风扇18的影响建模以用于求解风扇18的特性,因此阻尼器特性为与空气处理单元12适配的另一变量或多个变量。

在一个实施例中,基于物理学的模型为需求流模型(demand flow model)。例如,空气处理单元12如美国公布的专利申请号2011/0301766中所述建模,以用于控制冷却水系统或热水分配系统中的冷却水。使用需求流考虑来建模各种部件的相互关系以用于控制空气处理单元12。需求流减少或消除低德尔塔温度(T)并提高效率。需求流利用可变流来解决低德尔塔T(Low Delta T)并大大提高效率。在德尔塔T处于或接近部件的设计德尔塔T的情况下,在需求流下的可变流量保持该部件的德尔塔T。因此,需求流大大提高了操作效率,从而节约了能源成本。由需求流提供的效率提高也可减少污染。此外,与传统的可变或其他泵送技术不同,需求流也可通过在其指定的进入和离开温度或该温度附近操作这些部件或者设计德尔塔T来增加部件的预期寿命。

无论是冷却或加热需求或通过以同步方式操作部件的负荷,需求流提供了更高的效率。在一个或多个实施例中,这通过控制泵和/或风扇来在特定部件或点处保持德尔塔T来实现。一般来说,需求流在各个组件上操作,以在特定部件或点上保持德尔塔T。各个泵或电机(和流速)的控制以此方式产生同步化的操作。此同步化的操作平衡流速,这显着降低或消除了低德尔塔T现象和相关的低效率。

这种相同的需求流模型可被用作基于物理学的模型。可使用其他基于物理学的模型。

为了将通用的基于物理学的模型与特定的空气处理单元适配,将对于控制的行为和/或设置的确定视为优化问题。通过使用邻域搜索、局部最小化、其他过程、或其组合,优化了操作。使用了测量。可使用其他数据,诸如设计规格和分析。输入测量或数据用作解决方案中的边界条件。通过改变空气处理单元12的部件的一个或多个变量,改变模型以提供所测得的输出。确定了在空气处理单元中建模的特性的组合,该空气处理单元根据随时间变化的输入提供了输出。

一旦适配,基于物理学的模型可用于确定用于控制空气处理单元的最佳设置。使用了方差微积分。改变输入以使用适配模型找出输出的差异。使用适配模型,来确定产生最佳满足标准或多个标准输出的输入的组合,诸如将能源消耗减到最小。

在替代实施例中,启发式模型28为机器学习分类器。通过使用来自相同空气处理单元和/或大量相同类型的空气处理单元的数据,分类器可使用机器学习来训练,以输出给定输入特征的优化或期望的设置。对训练数据注释,以用于为各种示例提供基本真实或实际的输出。机器学习通过输入特征来学习以预测输出。可使用任何输入特征,诸如来自空气处理单元的测量。可额外地或替代地使用设计规格或其他数据。经过训练的分类器模拟空气处理单元12的行为。

考虑测量的和其他的输入,训练分类器以预测结果,诸如输出空气特性。分类器可预测给定范围的输入设定点的输出范围。通过迭代测试不同的设置,机器学习分类器可被用于找到具有期望结果的,例如最小能源的设置。

机器学习使用分类归并、概率分布、神经网络、支持向量机、或其他处理来学习预测给定输入特征的预期输出。可使用任何机器学习,诸如应用任何否决/保持标准和/或神经网络的遗传算法。在一个实施例中,使用与神经网络组合的遗传算法来实现机器学习。可使用其他机器学习方法,例如概率增强树或贝叶斯网络。

在替代实施例中,从具有已知最佳设置的代表性HVAC系统收集训练数据。采集系统的使用不同设置的数据。机器学习被应用于训练分类器,以接收给定HVAC系统的输入测量并输出最佳设置。分类器基于机器学习分类器输出给定HVAC系统的优化控制设置。可使用其他机器学习方法。

在一个实施例中,机器学习分类器使用在线或持续进行的学习。分类器完全或至少部分地针对特定空气处理单元的操作进行训练。由于确定了HVAC系统的行为,所以利用在线或持续进行的机器学习来使用该行为。由于作为反馈机制而采集了操作的变化,从而执行特定于HVAC系统的进一步机器学习。由于根据不同的设置和结果来收集其他的数据,因此所获得的反馈被用于以持续的方式学习其他的概率和/或分布。机器学习继续学习给定HVAC系统的行为。学习的行为被用于确定可被优化的HVAC控制的设置。机器学习提供可用于控制HVAC系统操作的概率分布或其他统计。学习可实现的操作,以便最佳控制HVAC系统。

云服务器24被配置成接收用于、关于、或来自空气处理单元12的测量和/或其他数据。通过从存储器26或存储器16加载、通过从控制器14推送、或其他处理,响应于查询接收数据。

为了建模,云服务器24可被配置成从测量中导出一个或多个特性。可导出本文讨论的任何分析。例如,计算风扇的操作的多样性。其他特性可为基于风扇速度和压力测量的质量流量。模型本身可允许输入风扇速度和压力,而无需导出的质量流量,或者导出质量流量并将其用作模型中的输入特征。服务器24收集测量、计算导出的特性、和/或查找特征或规格。收集作为输入用于适配模型28的信息和/或作为输入来利用适配的模型28对给定的输入的输出进行建模的信息。

服务器24被配置成通过使用测量和其他数据求解启发式模型来识别空气处理单元12的操作参数。操作参数为控制器14可控制的设定点或其他设置。操作参数为空气处理单元12的变量,因此可使用该变量的值来改变或实现空气处理单元12的操作。

服务器24从存储器26加载模型28并求解给定的或特定的空气处理单元12。解决方案将启发式模型28与空气处理单元12适配。测量、导出的特性和/或其他的数据用于表示模型28的边界条件或输入。服务器24使用适配模型28来确定模型28中的变量的调整或值,以最佳地控制空气处理单元12。

对于机器学习分类器,获取输入特征。通过将输入特征应用于分类器,分类器求解特定的空气处理单元12。所得的输出代表给定输入特征的预期输出。通过迭代地调整诸如与风扇操作相关联的输入,输出概率分布或其他设置。可对分类器进行训练以输出待使用的最佳设置(例如,用于减少能源消耗),或者给定输入差异的、输出的概率分布可用于不计成本来选择设置。

对于基于物理学的模型,服务器24通过迭代优化来求解。对模型应用优化,诸如邻域搜索和/或局部最小化。在迭代方法中,能源消耗可使用模型的优化减到最小。另选地,可使用方差微积分作为使用适配模型28将能源消耗减到最小的其中一部分。确定并应用所得的控制值。基于应用,提供其他的度量以使用基于物理学的模型来进一步优化。

服务器24被配置成输出操作参数或操作参数。将待由控制器14使用的诸如设定点的控制参数输出到控制器14。在网络22上提供这些参数。

在一个示例中,空气处理单元12消耗能源。从与空气处理单元12相关联的HVAC系统采集各种操作度量。可从测量导出其他信息。由服务器24使用特定于给定HVAC系统的这种采集信息,以提供待在HVAC系统的操作中使用的一组控制参数。该基于云的服务器24使用启发式方法而不是基于规则的严格优化来确定空气处理单元12的控制参数。应用机器学习和/或迭代适配过程来确定空气处理单元12的控制参数的值。可在分析中使用负荷、温度、成本、质量流量、和/或其他信息。提供给控制器14的设定点可为诸如阻尼器位置或风扇速度的任意设定点。通过使用HVAC系统的模型,确定给定成本函数的最佳风扇操作。

除了使用启发式模型进行优化控制之外或作为替代方案,服务器24或计算机30对空气处理单元12的操作进行分析。针对作为单独部件的空气处理单元12或在整个HVAC系统内(例如,楼层中或整个建筑物中的数十个空气处理单元)进行分析。提供了用于监测持续进行的操作、预测维护或进一步的问题、识别设计缺陷、确定与设计或规格的差异、或识别机会(例如,通过重新分配区域的更高效操作)的数据分析。

计算机30为工作站、个人计算机、平板电脑、智能电话、或其他处理装置。计算机30接收来自空气处理单元12和/或云服务器24的输出。例如,计算机30为管理或监测包括空气处理单元12的HVAC系统的操作的HVAC工作站。作为另一示例,计算机30为个人计算机或服务器。

计算机30包括用于显示分析信息(诸如图表、值或推荐补救方式)的显示器32。显示器30可附加地或另选地显示测量、数据、设置、或模型信息。

图3至图11表示示例分析。来自或关于空气处理单元12的数据用于分析空气处理单元12的操作。可提供其他示例。通过处理用于控制的数据和/或获取但不用于控制的数据,识别HVAC系统和/或空气处理单元12的问题或机会。

图3示出了随风扇流量变化的总风扇压力的示例。示出了表示在不同风扇转速(每分钟转数(rpm))下随流量变化的压力的三条曲线。存在两个不同风扇流量(cfm)产生相同的风扇总压力的波动区域。波动区域会造成其中基于规则的系统结果以不期望的方式操作的操作混淆。两条实线示出具有最大效率的操作范围。虚线表示给定风扇18的典型操作范围。一些操作超出了最有效率的操作范围。线36表示需求流系统的曲线。需求流的曲线基于建模为风扇18提供了理想的操作。图3的示例用于给定的风扇18。其他风扇18可具有不同的效率范围、波动区域、或其他操作。

为了进行分析,可确定风扇18的性能。例如,确定风扇18的需求流的曲线36。效率可被计算为风扇所输送的功率与输入到风扇的功率的比率。如果风扇18效率降低,则可安排风扇18维护。可执行前向检测和诊断以改善效率。

如果风扇18以最大负荷量操作足够的时间或次数,则可安排用更大的风扇18更换风扇18。可预测风扇的负荷量。可跟踪风扇18随时间变化的操作,以诸如通过回归分析来识别使用的负荷量或使用的量的趋势。如果预期风扇18在给定时间内达到负荷量,则可在该给定时间之前安排维护或更换。

可确定能源消耗,以便可测量和验证节约。可通过将流量和压力的乘积除以效率来计算能源。

分析依赖于风扇流量、风扇总压力、功率输入(例如,来自变速驱动器以KW单位的功率输入)和风扇转速。可使用附加的、不同的或更少的测量和相应的传感器。

图4和图5示出了由计算机30或服务器24确定的分析的另一示例。分析是多样性的,其可指示风扇负荷量与区域或占用空间不匹配。多样性为操作差异的度量。图4示出了节能、或随平均风扇流量多样性变化的最大潜在节约的百分比。为了风扇流量的多样性,测量或获取风扇18的风扇流量设定点和最大设计流量。可使用附加的、不同的或更少的操作参数。

在图4的示例中,风扇流量存在多样性,但是可确定其他6操作参数(例如,速度、容量、效率、或其他)的多样性。该示例为给定风扇18的多样性,但是可在其他实施例中使用任何时间段内的区域的多样性。具有低多样性的区域或风扇18可指示风扇18或多个风扇过大。为了节约成本,可使用更小的风扇18,或者可重新分配区域以更有效地分配风扇功率。另一示例,低多样性的区域可指示最适合安置新员工或搬迁员工的占有面积。将另一员工安置在高风扇多样性的区域或面积中会更有可能驱动风扇18以在负荷量下操作。

在图5的示例中,确定作为设计最大风扇流量的百分比的、区域多样性随时间的趋势或变化。可控制风扇的操作(例如,单个对两个)以实现最佳的或学习的多样性。可针对空间使用率分析区域多样性趋势和使用区域多样性趋势来进行规划。例如,多样性的增加表明需要更大的风扇。又如,多样性的减少表明双风扇空气处理单元的一个风扇可被断电或不使用。

图6示出了另一分析示例。云服务器24或计算机30基于室外条件与空气处理单元12的操作之间的关系,确定空气处理单元12对室外条件的敏感性。例如,测量了风扇流量设定点、风扇最大设计流量、室外温度、室外湿球(outdoor wet ball)/相对湿度、和/或其他数据。可测量附加的、不同的或更少的数据类型。

风扇流量或其他操作参数与室外温度或其他室外数据相关联。该分析显示了室外温度与风扇流量的关系或风扇流量多大程度上受室外温度影响。分析使用了所测得数据的相关性、概率分布或其他分析来执行负荷分析(例如,通风对室外驱动负荷)和/或基于占用率来减少通风。因此,可识别特别受室外条件影响的区域或风扇18并可确定解决方法。例如,固定窗用玻璃、添加或使用遮光器、或添加隔热。通过隔离易受影响的风扇18,可定位解决方法(例如,通过风扇或区域),从而降低成本。通过时间分析相关性可表明适当的解决方法,诸如在显示阳光的早晨期间,作为驱动负荷的高相关性。可基于分析决定占用情况。可通过改变占用率来减少负荷或风扇流量,从而避免易受室外条件影响的区域的高负荷。

图6示出了随与温度相关的概率分布变化的负荷或风扇流量(cfm)。概率分布为随时间变化的温度的概率分布。例如,5%的时间,温度在90-95华氏度范围内。图6将风扇流量与温度分布相关联。图6示出了有90%的几率(垂直线之间的范围),小时平均流量将会在20200和22000cfm之间。可使用的一些示例统计包括每个风扇的温度和平均气流速率的最小值(例如18,100cfm)、最大值(例如22,700cfm)、平均值(例如,21,000cfm)和标准偏差(例如,570cfm)。

图7-10示出了包括动态流量或动态压力性能的示例分析。图7示出了对于给定时间,随最大流量百分比变化的方格数量(即,风扇18或空气处理单元)(y轴)的示图。图8显示了最大流量百分比随方格的变化。在给定时间内示出图7和8。可确定随时间的变化。图9示出了空气分配方格的物理关系。在该示例中,提供了55个方格。每个点为给定方格与空气分配节点或区域之间的连接。例如,方格34被连接到节点或方格1、9和33,诸如从那些节点接收空气。一个方格的流量或压力至少部分基于相关或所连接的方格中的流量或压力。给定的方格可能需要特定的压力,所以连接在上游的方格提供该压力。图10示出了在给定时间段内致动器重新定位的次数随方格数量的变化。

方格流量设定点可用于根据方格流量设定点来分析动态流量分布和/或每个方格的动态压力要求。可识别出临界和/或去劣区域。去劣区域可具有需要最大压力的方格。通过找出最大压力需求的原因并确定原因,可节省能源。临界区域可为具有更高压力需求的区域。通过找到临界区域,可确定解决方法并可节省能源。可识别出距离最大流量更近或最远的每方格或多个方格的差异,以用于改变空气分布,以避免方格的磨损和撕裂。

在一个实施例中,测量方格流量设定点和方格致动器的重新定位。基于致动器重新定位的数量、方格压力和方格流量确定去劣或临界区域。可使用组合这些变量的任意函数。可分析方格压力要求的、方格流量要求的和致动器重新定位的分布,以预测服务要求,以用于主动服务和预防性故障,以减少停机时间、以避免舒适度抱怨、和/或延长设备寿命(最大压力操作可能会缩短寿命)。

图11示出了对压力、临界区和最大流量区域随时间变化进行分析的另一示例。使用如图9所示的相同的方格的相互关系。对于每个采样时间(例如,每2-3小时),识别出具有临界压力的区域(例如,在上午8:00时的方格15),识别出具有最大流量的区域或多个区域(例如,在上午12:00的方格17、56和26),并且识别出临界区的压力(例如,在上午8:00时的1.50)。可识别出每个方格的、或任何临界或去劣方格的压力范围或其他信息。在结合区域操作中,云服务器24或计算机30根据诸如图9所表示的HVAC系统配置确定关系或结合的区域。确定动态压力、流量或其他要求随时间的变化。

压力、和/或临界区的动态压力和/或临界区的流量可用于预测最大流量区域。可使用回归分析来建立任何时间段内的趋势。可预测舒适度分析。较低的压力可表明舒适,而较高的压力可表明气流不符合占用者的需求。可提供设计缺陷的或其他故障的排除。可估算方格尺寸和最大流量值,以便识别出需要较大方格或风扇18的区域。可将每个方格的最大流量与HVAC系统的设计规格或与方格设计进行比较,以识别出在最大值附近操作的方格。

在动态流量和/或压力分析的另一示例中,确定了与温度、流量、或温度和流量结合的区域或方格。可对截取区域动态流量/压力和舒适度进行分析。找到结合区域的、与空气分配可变风量方格对应的空气分配节点。测量方格流量设定点、区域温度、温度设定值、实际流量和致动器重新定位的计数。分析压力和流量与温度的结合,诸如记录最大流量下的方格,并查找针对该区域所测量的温度,以确定方格是否充分地控制温度。可分析每个区域的能源平衡的应用(即,在性能趋势表现出平衡是否正确的情况下足以满足温度设定点的流量)和/或流量和舒适度。该分析提供了基于区域的动态第一原理正向检测的值(即,由于不满足温度设定点或表现出一些错误而导致的区域故障)和诊断、动态趋势的检测(例如上午对午后的趋势)和/或提供预测服务并提高舒适度和能源性能。

图12示出了在性能分析中供应和需求方信息的集成。一方面,将云服务器24执行的分析与能源分配的供应方(诸如冷却和加热设备15)相关联,以及另一方面与需求方(诸如建筑物10的区域或空间侧)相关联。通过使用到和/或来自空气处理单元12、建筑物10的区域、和/或设备15中的任一者的通信,可扩展空气处理模型来包括分析,从而作为全局执行的中心。

在一个实施例中,室外传感器、由空气处理单元12提供空气的建筑物的一部分的区域传感器或空间传感器、空气处理单元的传感器、和/或设备传感器提供在建模和/或分析中使用的信息。例如,针对室外和区域信息,测量被吸入空气处理单元中或由空气处理单元提供的室外空气的温度、相对湿度和体积。针对该设备,测量用于供应和返回的冷却水和热水温度以及用于供应和返回的质量流量。针对空气处理单元12,测量风扇功率、所供应空气的温度以及所供应空气的相对湿度。可提供附加的、不同的或更少的测量和相应的传感器。

扩展模型以包括不同的信息来源。可添加设备的和/或区域的物理量。变量的值可列入作为机器学习和使用机器学习模型的后续应用中所使用的特征。然后将启发式模型用于分析和/或控制。所提供的信息可用于任何分析,诸如本文所讨论的分析或其他分析。通过将空气处理单元12外部的附加变量的值集成,可提供用于对维护、设计、规划和/或操作进行辅助的其他分析。

在一个实施例中,由云服务器24所提供的分析包括区域和/或空间性能变量的分析,以触发对设备性能变量的调查,反之亦然。在另一实施例中,云服务器24的分析分析了区域和/或空间性能变量,以触发空气处理性能变量的调查,反之亦然。调查可为通过模型(诸如启发式模型)的分析或其他的分析。相关系统或变量的分析可能会导致不同的操作(诸如基于模型的、自动的变化),可能会导致输出设计者或其他人所使用的信息(例如维护计划)、和/或可能会产生对合理改进的警告或指示。

图13示出了用于HVAC建模的方法的一个实施例。该方法由图1的系统、图2的系统、控制器14、服务器24、计算机30、或其他装置来实施。例如,服务器执行所有的动作。执行依赖于与空气处理单元12和/或控制器14的通信。

该方法按所示次序或其他次序执行。例如,动作58在动作56之前执行。可提供额外的、不同的或更少的动作。例如,不执行动作58。

在动作52中,服务器24基于来自传感器20的测量来优化HVAC系统中的空气处理的模型28。传感器20和其他数据源提供由服务器24使用的信息。服务器24将启发式模型28与数据适配,诸如适配基于物理学的模型。使用邻域搜索、局部最小化、或其他迭代方法来将模型与数据适配和/或来根据适配模型确定最佳输出。另选地,服务器24用机器学习分类器对空气处理建模。给定输入的集合,将数据输入到分类器以提供学习的结果。机器学习分类器基于测量和其他输入数据进行分类。

在动作54中,服务器24确定HVAC系统中的空中处理的设置。模型28经过优化以与空气处理的操作适配。该模型28用于确定空气处理的一个或多个操作参数的设置,诸如确定风扇速度的设定点。可确定有可能会提供期望的舒适度并将成本减到最小的风扇速度。例如,使用该模型确定随输入或多个输入的差异变化的输出结果的差异。通过应用成本函数,诸如最小能源输入提供期望的舒适度,来确定一个或多个受控设置的设置。在一个实施例中,使用模型28一起确定所有设置以最小化成本函数。

在动作56中,将设置发送到HVAC系统,诸如通过网络22将设置发送到控制器14。可使用任意传输格式。该传输提供了控制器14用于操作HVAC系统的设置。

在动作58中,服务器24计算显示HVAC系统的空气处理的问题或机会的分析。可计算本文所讨论的任何分析或其他分析。分析提供了表明问题或机会的信息。例如,分析显示出可能导致空气处理故障或未充分操作的趋势。又如,分析可显示出供占有者使用的区域或多个区域,而无需重新配置HVAC系统。

在显示器32上输出分析。用户可使用分析来做出决策,诸如维护计划、成本节约验证、占用安排、替换、重新分配、重新配置、或其他补救。

图14示出了用于分析HVAC的方法的一个实施例。该方法由图1的系统、图2的系统、控制器14、服务器24、计算机30、或其他装置来实施。例如,控制器14使用传感器20执行动作60,然后执行动作62。服务器执行动作64、66和68。执行依赖于与空气处理单元12和/或控制器14的通信。

该方法按所示次序或其他次序执行。例如,动作68在动作64和/或66之前执行。可提供额外的、不同的或更少的动作。例如,不执行动作68。

在动作60中,传感器20测量HVAC系统中的空气处理的操作。例如,测量风扇速度、压力、功率输入和/或流量。可测量其他操作参数。控制器14可收集或存储诸如设定点或设计规格(例如,最大质量流量)的附加信息。

在动作62中,测量和/或其他数据被发送到处理器,诸如服务器24或计算机30的处理器。传输为一次或一段时间内的任意数据的传输。以后的传输可仅发送已经改变的数据。传输为有线的或无线的。传输为直接传输或通过网络传输。在一个实施例中,由服务器24访问或查找存储器中的数据来进行传输。

在动作64中,处理器(例如,服务器24或计算机30)分析空气处理的操作。分析测量和/或其他数据,诸如风扇速度、压力、功率输入、和/或流量。分析提供了用于补救的建议、图表、曲线图、数据、或操作员可用于各种目的的其他信息。该信息可表现出问题或机会。利用该信息突出显示了问题或机会、或可提供信息并且用户依赖于从信息中识别问题或机会。

为了进行分析,计算了一个或多个统计。另选地或除此之外,使用公式或多个公式来计算分析信息。可使用回归或其他分析以识别趋势。

在动作66中,在显示器32上呈现包括任何问题和/或机会的信息。向用户呈现分析的结果。识别出具体的问题或机会,诸如指示待更换的方格、增加占用的区域、成本节约的确认、与室外条件的相关性、指示需要维护或调整的趋势、或其他信息。另选地或除此之外,显示图表、曲线图或数据以用于向用户解释。

在动作68中,利用启发式模型28对空气处理单元12的操作建模。服务器24使用模型28和测量以及其他数据对操作建模。模型28用于确定用于控制空气处理单元12的设置。这些设置被传送到空气处理单元12或控制器14以用于实施。

尽管已经描述了本发明的各种实施例,但是对于本领域的普通技术人员来说显而易见的是更多实施例和实施方式也是合理的,且这些实施例和实施方式都在本发明的范围内。此外,本文所述的各种特征、元件和实施例可以以任何组合或布置来要求保护或者进行组合。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号