首页> 中国专利> 一种N‑取代顺丁烯二酰亚胺类化合物及其制备与抗菌应用

一种N‑取代顺丁烯二酰亚胺类化合物及其制备与抗菌应用

摘要

本发明公开了一种如式(I)所示的N‑取代顺丁烯二酰亚胺类化合物及其制备方法和在抑制水稻纹枯病菌或菌核病菌中的应用。制备方法为以式(Ⅱ)所示的酸酐、有机胺为原料,于有机溶剂中,在催化剂和脱水剂的作用下,经酰胺化反应和脱水闭环反应,反应结束后,反应液分离纯化制得式(I)所示的N‑取代顺丁烯二酰亚胺类化合物;所述的有机胺为井冈霉胺、井冈霉烯胺、井冈霉醇胺或氨基葡萄糖盐酸盐;所述催化剂为甲醇钠;所述脱水剂为三乙胺。本发明备方法简单、操作方便;合成的产物对抑制水稻纹枯病与菌核病都有效果。

著录项

  • 公开/公告号CN107033060A

    专利类型发明专利

  • 公开/公告日2017-08-11

    原文格式PDF

  • 申请/专利权人 浙江工业大学;

    申请/专利号CN201710309129.4

  • 申请日2017-05-04

  • 分类号

  • 代理机构杭州天正专利事务所有限公司;

  • 代理人黄美娟

  • 地址 310014 浙江省杭州市下城区潮王路18号

  • 入库时间 2023-06-19 03:03:45

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2023-04-21

    专利权的转移 IPC(主分类):C07D 207/452 专利号:ZL2017103091294 登记生效日:20230411 变更事项:专利权人 变更前权利人:浙江工业大学 变更后权利人:杭州佳嘉乐生物技术有限公司 变更事项:地址 变更前权利人:310014 浙江省杭州市下城区潮王路18号 变更后权利人:311199 浙江省杭州市钱塘区下沙街道福城路501号银海科创中心23幢6层

    专利申请权、专利权的转移

  • 2020-01-14

    授权

    授权

  • 2017-09-05

    实质审查的生效 IPC(主分类):C07D207/452 申请日:20170504

    实质审查的生效

  • 2017-08-11

    公开

    公开

说明书

技术领域

本发明涉及N-取代顺丁烯二酰亚胺化合物的制备与应用,特别涉及含氨基环多醇的N-取代顺丁烯二酰亚胺类化合物的制备及在抗水稻纹枯病菌中的应用。

背景技术

水稻纹枯病又称云纹病,是由立枯丝核菌(Rhizoctonia solani Kühn)引起的重要水稻病害,苗期至穗期都可发病,造成水稻不能抽穗,抽穗的秕谷较多,千粒重下降,水稻纹枯病发生在全国各大稻区,尤其在长江流域及南方经常发生,发病后作物一般减产15%以上,重者无收,且会严重影响水稻品质,该病目前已列于稻瘟病之前,居水稻病害之首,成为水稻高产、稳产的严重障碍。国内防治水稻纹枯病主要使用井冈霉素,但长期单一使用同一种药剂容易产生抗药性,在一些地区井冈霉素早已产生抗性,而且近年来,随着人们对化学农药残留和食品安全问题的密切关注,发明安全高效的新型抗菌剂迫在眉睫。

含顺丁烯二酸酐或N-取代顺丁烯二酰亚胺结构的天然化合物均具有良好的生物活性,尤其是抗真菌活性。N-取代顺丁烯二酰亚胺类化合物是一种含氮的五元杂环类化合物,N-取代顺丁烯二酰亚胺类化合物的α、β不饱和二酰亚胺环状结构能够与巯基官能团结合,从而影响体内众多含巯基的酶,进而影响菌体的生长。经研究表明,该类化合物对许多细菌、酵母、真菌等微生物具有较好的抑制作用,能有效治疗马铃薯枝叶腐烂病、水稻胡麻斑病、菜豆茎腐病、菌核病及灰霉病,柑橘的疮痴病、番茄的晚疫病等农作物病害,而且具有高效、低毒、无公害等优点。Satoshi Horii报道了N取代的有效醇胺对葡萄糖酶的抑制活性。

因此本发明基于氨基环多醇的N-取代顺丁烯二酰亚胺类化合物的制备,有望能成为防治水稻纹枯病的一类高效、安全的抗菌剂。

发明内容

本发明目的是提供一种基于氨基环多醇的N-取代顺丁烯二酰亚胺类化合物及其制备与应用,该类化合物制备方法简单,是具有防治水稻纹枯病的一类高效、安全抗菌剂。

本发明采用以下技术方案:

一种如式(I)所示的N-取代顺丁烯二酰亚胺类化合物:

式(I)中,R1、R2各自独立为氢、氯、溴、甲基或苯基;R0

进一步,本发明所述的N-取代顺丁烯二酰亚胺类化合物,优选为下列之一:

进一步,本发明所述的N-取代顺丁烯二酰亚胺类化合物,更优选为下列之一:

本发明提供所述的N-取代顺丁烯二酰亚胺类化合物的制备方法,所述的方法为:

以式(Ⅱ)所示的酸酐、有机胺为原料,于有机溶剂中,在催化剂和脱水剂的作用下,经酰胺化反应和脱水闭环反应,反应结束后,反应液分离纯化制得式(I)所示的N-取代顺丁烯二酰亚胺类化合物;所述的有机胺为井冈霉胺、井冈霉烯胺、井冈霉醇胺或氨基葡萄糖盐酸盐;所述催化剂为甲醇钠;所述脱水剂为三乙胺;

式(I)中,R1、R2各自独立为氢、氯、溴、甲基或苯基;R0为与所述有机胺对应的中,所述R1与式(I)R1相同,所述R2与式(I)R2相同。

进一步,本发明所述酸酐优选为马来酸酐、2,3-二氯马来酸酐、苯基顺酐、2,3-二苯基马来酸酐、溴代马来酸酐、2,3-二甲基马来酸酐或柠康酐。

进一步,本发明所述酸酐与有机胺的物质的量之比为0.7~2.0:1;优选为1.0~1.5:1。

进一步,本发明所述有机溶剂为甲醇,所述有机溶剂的用量以酸酐的物质的量计为5~8mL/mmoL。

进一步,本发明所述脱水剂用量以酸酐物质的量计为130~170μL/mmol。

进一步,本发明所述催化剂与酸酐的物质的量之比为1.3~2.1:1。

进一步,所述的N-取代顺丁烯二酰亚胺类化合物的制备方法推荐按照以下步骤进行:每取有机胺1mmol,溶于6~8mL 0.26mol/L的甲醇钠的甲醇溶液,25~30℃磁力搅拌20-30min,加入1.2mmol的酸酐,25-35℃反应1~1.5h后加入150μL三乙胺,反应20~30min,接着升温至45~70℃,反应1~3h,反应液分离纯化制得式(I)所示的N-取代顺丁烯二酰亚胺类化合物。

本发明所述的分离纯化为:将反应液冷却至室温,减压蒸馏得浓缩液,将浓缩液进行硅胶柱层析或硅胶板分离,洗脱剂或展开剂为V正丙醇:V乙酸:V水=4~16:1:1的混合液;采用硅胶柱层析后收集目标液浓缩,减压蒸馏得目标产物;采用硅胶板分离后刮取目标条带,碾压至粉末状倒入硅胶柱中,加入洗脱液甲醇,收集目标液,旋蒸后得到目标产物。

进一步,本发明还提供所述式(I)所示的N-取代顺丁烯二酰亚胺类化合物在抑制水稻纹枯病菌或菌核病菌中的应用。

更进一步,本发明所述应用为:在琼脂培养基或PDA培养基中加入本发明所述的N-取代顺丁烯二酰亚胺类化合物,采用菌丝生长速率法测定N-取代顺丁烯二酰亚胺类化合物对水稻纹枯病菌或菌核病病菌菌丝生长的抑制率:在丕氏培养基培养的水稻纹枯病菌菌落边缘用直径为6mm的打孔器取菌碟,分别接种至含N-取代顺丁烯二酰亚胺类化合物的培养基平板正中央,以含助溶剂的平板为对照,于23℃的恒温培养箱中培养,待对照菌落生长至少50mm,但未长满全皿时,采用十字交叉法测量含药培养基培养的菌落生长直径;所述化合物以N-取代顺丁烯二酰亚胺类化合物与助溶剂和水的混合液的形式加入琼脂培养基,配制成N-取代顺丁烯二酰亚胺类化合物浓度为100ppm的含药培养基平板,所述助溶剂为吐温-80,所述助溶剂为质量浓度0.2%的吐温-80水溶液。

本发明采用十字交叉法测量菌落生长直径。菌丝生长抑制率计算公式(长度单位:mm)如下:

与现有技术相比,本发明的有优势主要体现在:(1)基于井冈霉素变构物的N-取代顺丁烯二酰亚胺类化合物制备方法简单、操作方便;(2)合成的此类N-取代顺丁烯二酰亚胺类化合物,,不但对水稻纹枯病与菌核病都有效果,而且为后续的研究打下了坚实的基础。

具体实施方式

下面结合具体实施例对本发明进行进一步描述,但本发明的保护范围并不仅限于此。

实施例1:N-井冈霉胺N-取代顺丁烯二酰亚胺(I-1)的制备

称取井冈霉胺0.176g(1mmol)加入到圆底烧瓶中,加入10ml 0.26mol/L甲醇钠的甲醇溶液,30℃搅拌20min,量取0.176g(1.8mmol)顺丁烯二酸酐加入到圆底烧瓶中,30℃搅拌反应1h,再加入235μL三乙胺,反应20min后体系加热至60℃继续反应2h,反应结束后冷却至室温,减压蒸馏,得到黄色油状浓缩液,将浓缩液用200目硅胶上柱分离,流动相为正V正丙醇:V乙酸:V=6:1:1,收集目标液浓缩,得到浅黄色油状产物。所得产物经1H>

1H>

实施例2:N-井冈霉烯胺N-取代顺丁烯二酰亚胺(I-2)的制备

称取井冈霉烯胺0.175g(1mmol)加入到圆底烧瓶中,加入10ml 0.26mol/L甲醇钠的甲醇溶液,30℃搅拌20min,量取0.175g(1.8mmol)顺丁烯二酸酐加入到圆底烧瓶中,30℃搅拌反应1h,再加入235μL三乙胺,反应20min后体系加热至60℃继续反应2h,反应结束后冷却至室温,减压蒸馏,得到黄色油状浓缩液,将浓缩液用200目硅胶上柱分离,流动相为正V正丙醇:V乙酸:V=6:1:1,收集目标液浓缩得到浅黄色油状产物。所得产物经1H>

Yield 35.3%1H>

实施例3:N-井冈霉醇胺N-取代顺丁烯二酰亚胺(I-3)的制备

称取井冈霉醇胺0.193g(1mmol)加入到圆底烧瓶中,加入6ml 0.26mol/L甲醇钠的甲醇溶液,30℃搅拌20min,量取0.1176g(1.2mmol)顺丁烯二酸酐加入到圆底烧瓶中,30℃搅拌反应1h,再加入150μL三乙胺,反应20min后体系加热至60℃继续反应2h,反应结束后冷却至室温,减压蒸馏,得到黄色油状浓缩液,将浓缩液用200目硅胶上柱分离,流动相为正V正丙醇:V乙酸:V=6:1:1,收集目标液浓缩,得到浅黄色油状产物。所得产物经1H>

Yield 70.5%1H>

实施例4:N-葡萄糖胺N-取代顺丁烯二酰亚胺(I-4)的制备

称取氨基葡萄糖0.179g(1mmol)加入到圆底烧瓶中,加入6ml 0.26mol/L甲醇钠的甲醇溶液,30℃搅拌反应20min,量取0.1176(1.2mmol)顺丁烯二酸酐加入到圆底烧瓶中,30℃搅拌1h,再加入150μL三乙胺,反应20min后体系加热至60℃继续反应2h,反应结束后冷却至室温,减压蒸馏,得到黄色油状浓缩液,将浓缩液用200目硅胶上柱分离,流动相为正V正丙醇:V乙酸:V=6:1:1,收集目标液浓缩,得到浅黄色油状产物。所得产物经1H>

Yield 43%1H>

实施例5:N-井冈霉胺-3-甲基N-取代顺丁烯二酰亚胺(I-5)的制备

称取井冈霉胺0.176(1mmol)加入到圆底烧瓶中,加入6ml 0.26mol/L甲醇钠的甲醇溶液,30℃搅拌反应20min,量取0.1344(1.2mmol)3-甲基顺丁烯二酸酐加入到圆底烧瓶中,30℃搅拌1h,再加入150μL三乙胺,反应20min后体系加热至60℃继续反应2h,反应结束后冷却至室温,减压蒸馏,得到黄色油状浓缩液,将浓缩液用200目硅胶上柱分离,流动相为正V正丙醇:V乙酸:V=6:1:1,收集目标液浓缩,得到浅黄色油状产物。所得产物经1H>

Yield 88.5%1H>

实施例6:N-井冈霉烯胺-3-甲基N-取代顺丁烯二酰亚胺(I-6)的制备

称取井冈霉烯胺0.175g(1mmol)加入到圆底烧瓶中,加入6ml 0.26mol/L甲醇钠的甲醇溶液,30℃搅拌反应20min,量取0.1344(1.2mmol)3-甲基顺丁烯二酸酐加入到圆底烧瓶中,30℃搅拌反应1h,再加入150μL三乙胺,反应20min后体系加热至60℃继续反应2h,反应结束后冷却至室温,减压蒸馏,得到黄色油状浓缩液,将浓缩液用200目硅胶上柱分离,流动相为正V正丙醇:V乙酸:V=6:1:1,收集目标液浓缩,得到浅黄色油状产物。所得产物经1HNMR、MS光谱分析,确证为N-井冈霉烯胺-3-甲基N-取代顺丁烯二酰亚胺(I-6),

Yield 35.3%1H>

实施例7:N-井冈霉醇胺-3-甲基N-取代顺丁烯二酰亚胺(I-7)的制备

称取井冈霉醇胺0.193g(1mmol)加入到圆底烧瓶中,加入16ml 0.26mol/L甲醇钠的甲醇溶液,30℃搅拌反应20min,量取0.2895(2.0mmol)3-甲基顺丁烯二酸酐加入到圆底烧瓶中,30℃搅拌1h,再加入340μL三乙胺,反应20min后体系加热至60℃继续反应2h,反应结束后冷却至室温,减压蒸馏,得到黄色油状浓缩液,将浓缩液用200目硅胶上柱分离,流动相为正V正丙醇:V乙酸:V=6:1:1,收集目标液浓缩,得到浅黄色油状产物。所得产物经1H>

Yield 76.2%1H>

实施例8:N-葡萄糖胺-3-甲基N-取代顺丁烯二酰亚胺(I-8)的制备

称取氨基葡萄糖0.179g(1mmol)加入到圆底烧瓶中,加入6ml 0.26mol/L甲醇钠的甲醇溶液,30℃搅拌20min,量取0.1344g(1.2mmol)3--甲基顺丁烯二酸酐加入到圆底烧瓶中,30℃搅拌反应1h,再加入150μL三乙胺,反应20min,后体系加热至60℃继续反应2h,反应结束后冷却至室温,减压蒸馏,得到黄色油状浓缩液,将浓缩液用200目硅胶上柱分离,流动相为V正丙醇:V乙酸:V=6:1:1,收集目标液浓缩,得到浅黄色油状产物。所得产物经1H>

Yield 30%1H>

实施例9:N-井冈霉胺-3,4-二甲基N-取代顺丁烯二酰亚胺(I-9)的制备

称取井冈霉胺0.176g(1mmol)加入到圆底烧瓶中,加入16ml 0.26mol/L甲醇钠的甲醇溶液,30℃搅拌20min,量取0.264g(2.0mmol)3,4-二甲基顺丁烯二酸酐加入到圆底烧瓶中,30℃搅拌反应1h,再加入340μL三乙胺,反应20min,后体系加热至60℃继续反应2h,反应结束后冷却至室温,减压蒸馏,得到黄色油状浓缩液,将浓缩液用200目硅胶上柱分离,流动相为V正丙醇:V乙酸:V=6:1:1,收集目标液浓缩,得到浅黄色油状产物。所得产物经1H>

Yield 87.6%1H>

实施例10:N-井冈霉烯胺-3,4-二甲基N-取代顺丁烯二酰亚胺(I-10)的制备

称取井冈霉烯胺0.175g(1mmol)加入到圆底烧瓶中,加入6ml 0.26mol/L甲醇钠的甲醇溶液,30℃搅拌反应20min,量取0.1512g(1.2mmol)3,4-二甲基顺丁烯二酸酐加入到圆底烧瓶中,30℃搅拌1h,再加入150μL三乙胺,反应20min后体系加热至60℃继续反应2h,反应结束后冷却至室温,减压蒸馏,得到黄色油状浓缩液,将浓缩液用200目硅胶上柱分离,流动相为正V正丙醇:V乙酸:V=6:1:1,收集目标液浓缩,得到浅黄色油状产物。所得产物经1HNMR、MS光谱分析,确证为N-井冈霉烯胺-3,4-二甲基N-取代顺丁烯二酰亚胺(I-10)

Yield 53.3%1H>

实施例11:N-井冈霉醇胺-3,4-二甲基N-取代顺丁烯二酰亚胺(I-11)的制备

称取井冈霉醇胺0.193g(1mmol)加入到圆底烧瓶中,加入6ml 0.26mol/L甲醇钠的甲醇溶液,30℃搅拌20min,量取0.1512g(1.2mmol)3,4-二甲基顺丁烯二酸酐加入到圆底烧瓶中,30℃搅拌反应1h,再加入150μL三乙胺,反应20min后体系加热至60℃继续反应2h,反应结束后冷却至室温,减压蒸馏,得到黄色油状浓缩液,将浓缩液用200目硅胶上柱分离,流动相为正V正丙醇:V乙酸:V=6:1:1,收集目标液浓缩,得到浅黄色油状产物。所得产物经1HNMR、MS光谱分析,确证为N-井冈霉醇胺-3,4-二甲基N-取代顺丁烯二酰亚胺(I-11)

Yield 53.3%1H>+302

实施例12:N-葡萄糖胺-3,4-二甲基N-取代顺丁烯二酰亚胺(I-12)的制备

称取氨基葡萄糖0.179g(1mmol)加入到圆底烧瓶中,加入6ml 0.26mol/L甲醇钠的甲醇溶液,30℃搅拌反应20min,量取0.179g(1.0mmol)3,4-二甲基顺丁烯二酸酐加入到圆底烧瓶中,30℃搅拌反应1h,再加入170μL三乙胺,反应20min,体系加热至60℃继续反应2h,反应结束后冷却至室温,减压蒸馏,得到黄色油状浓缩液,将浓缩液用200目硅胶上柱分离,流动相为正V正丙醇:V乙酸:V=6:1:1,收集目标液浓缩,得到浅黄色油状产物。所得产物经1HNMR、MS光谱分析,确证为N-葡萄糖胺-3,4-二甲基N-取代顺丁烯二酰亚胺(I-12),

Yield 95.3%1H>

实施例13:N-井冈霉胺-3-溴N-取代顺丁烯二酰亚胺(I-13)的制备

称取井冈霉胺0.176g(1mmol)加入到圆底烧瓶中,加入9ml 0.26mol/L甲醇钠的甲醇溶液,30℃搅拌反应20min,量取0.264g(1.5mmol)3-溴-顺丁烯二酸酐加入到圆底烧瓶中,30℃搅拌反应1h,再加入195μL三乙胺,反应20min,体系加热至60℃继续反应2h,反应结束后冷却至室温,减压蒸馏,得到黄色油状浓缩液,将浓缩液用200目硅胶上柱分离,流动相为正V正丙醇:V乙酸:V=6:1:1,收集目标液浓缩,得到浅黄色油状产物。所得产物经1H>

Yield 78.5%1H>

实施例14:N-井冈霉烯胺-3-溴N-取代顺丁烯二酰亚胺(I-14)的制备

称取井冈霉烯胺0.175g(1mmol)加入到圆底烧瓶中,加入6ml 0.26mol/L甲醇钠的甲醇溶液,30℃搅拌反应20min,量取0.2112g(1.2mmol)3-溴-顺丁烯二酸酐加入到圆底烧瓶中,30℃搅拌反应1h,再加入150μL三乙胺,反应20min后体系加热至60℃继续反应2h,反应结束后冷却至室温,减压蒸馏,得到黄色油状浓缩液,将浓缩液用200目硅胶上柱分离,流动相为正V正丙醇:V乙酸:V=6:1:1,收集目标液浓缩,得到浅黄色油状产物。所得产物经1HNMR、MS光谱分析,确证为N-井冈霉烯胺-3-溴N-取代顺丁烯二酰亚胺(I-14),

Yield 91.2%1H>

实施例15:N-井冈霉醇胺-3-溴N-取代顺丁烯二酰亚胺(I-15)的制备

称取井冈霉醇胺0.193g(1mmol)加入到圆底烧瓶中,加入6ml 0.26mol/L甲醇钠的甲醇溶液,30℃搅拌反应20min,量取0.193g(1.0mmol)3-溴-顺丁烯二酸酐加入到圆底烧瓶中,30℃搅拌反应1h,再加入170μL三乙胺,反应20min,体系加热至60℃反应2h,反应结束后冷却至室温,减压蒸馏,得到黄色油状浓缩液,将浓缩液用200目硅胶上柱分离,流动相为正V正丙醇:V乙酸:V=6:1:1,收集目标液浓缩,得到浅黄色油状产物。所得产物经1H>

Yield 25.6%1H>

实施例16:N-葡萄糖胺-3-溴N-取代顺丁烯二酰亚胺(I-16)的制备

称取氨基葡萄糖0.179g(1mmol)加入到圆底烧瓶中,加入6ml 0.26mol/L甲醇钠的甲醇溶液,30℃搅拌反应20min,量取0.3g(1.2mmol)3-溴-顺丁烯二酸酐加入到圆底烧瓶中,30℃搅拌反应1h,再加入150μL三乙胺,反应20min,体系加热至60℃反应2h,反应结束后冷却至室温,减压蒸馏,得到黄色油状浓缩液,将浓缩液用200目硅胶上柱分离,流动相为正V正丙醇:V乙酸:V=6:1:1,收集目标液浓缩,得到浅黄色油状产物。所得产物经1H>

Yield 35%1H>

实施例17:N-井冈霉胺-3,4-二苯基N-取代顺丁烯二酰亚胺(I-17)的制备

称取井冈霉胺0.176g(1mmol)加入到圆底烧瓶中,加入8ml 0.26mol/L甲醇钠的甲醇溶液,30℃搅拌反应20min,量取0.264g(1.0mmol)3,4-二苯基顺丁烯二酸酐加入到圆底烧瓶中,30℃搅拌反应1h,再加入130μL三乙胺,反应20min,体系加热至60℃反应2h,反应结束后冷却至室温,减压蒸馏,得到黄色油状浓缩液,将浓缩液用200目硅胶上柱分离,流动相为正V正丙醇:V乙酸:V=6:1:1,收集目标液浓缩,得到浅黄色油状产物。所得产物经1H>

Yield 26.9%1H>

实施例18:N-葡萄糖胺-3,4-二苯基N-取代顺丁烯二酰亚胺(I-18)的制备

称取氨基葡萄糖0.179g(1mmol)加入到圆底烧瓶中,加入5ml 0.26mol/L甲醇钠的甲醇溶液,30℃搅拌反应20min,量取0.179g(0.7mmol)3,4-二苯基顺丁烯二酸酐加入到圆底烧瓶中,30℃搅拌反应1h,再加入90μL三乙胺,反应20min,体系加热至60℃反应2h,反应结束后冷却至室温,减压蒸馏,得到黄色油状浓缩液,将浓缩液用200目硅胶上柱分离,流动相为正V正丙醇:V乙酸:V=6:1:1,收集目标液浓缩,得到浅黄色油状产物。所得产物经1H>

Yield 29.9%1H>

实施例19:N-井冈霉胺-3-苯基N-取代顺丁烯二酰亚胺(I-19)的制备

称取井冈霉胺0.176g(1mmol)加入到圆底烧瓶中,加入6ml 0.26mol/L甲醇钠的甲醇溶液,30℃搅拌反应20min,量取0.2088g(1.2mmol)3-苯基顺丁烯二酸酐加入到圆底烧瓶中,30℃搅拌反应1h,再加入150μL三乙胺,反应20min,体系加热至60℃反应2h,反应结束后冷却至室温,减压蒸馏,得到黄色油状浓缩液,将浓缩液用200目硅胶上柱分离,流动相为正V正丙醇:V乙酸:V=6:1:1,收集目标液浓缩,得到浅黄色油状产物。所得产物经1H>

Yield 61.3%1H>

实施例20:N-井冈醇胺-3-苯基N-取代顺丁烯二酰亚胺(I-20)的制备

称取井冈霉醇胺0.193g(1mmol)加入到圆底烧瓶中,加入6.6ml 0.26mol/L甲醇钠的甲醇溶液,30℃搅拌反应20min,量取0.193g(1.1mmol)3-苯基顺丁烯二酸酐加入到圆底烧瓶中,30℃搅拌反应1h,再加入190μL三乙胺,反应20min,体系加热至60℃反应2h,反应结束后冷却至室温,减压蒸馏,得到黄色油状浓缩液,将浓缩液用200目硅胶上柱分离,流动相为正V正丙醇:V乙酸:V=6:1:1,收集目标液浓缩,得到浅黄色油状产物。所得产物经1H>

Yield 17.3%1H>

实施例21:N-葡萄糖胺-3-苯基N-取代顺丁烯二酰亚胺(I-21)的制备

称取氨基葡萄糖0.179g(1mmol)加入到圆底烧瓶中,加入6ml 0.26mol/L甲醇钠的甲醇溶液,30℃搅拌反应20min,量取0.2088g(1.2mmol)3-苯基顺丁烯二酸酐加入到圆底烧瓶中,30℃搅拌反应1h,再加入150μL三乙胺,反应20min,体系加热至60℃反应2h,反应结束后冷却至室温,减压蒸馏,得到黄色油状浓缩液,将浓缩液用200目硅胶上柱分离,流动相为正V正丙醇:V乙酸:V=6:1:1,收集目标液浓缩,得到浅黄色油状产物。所得产物经1H>

Yield 15%1H>

实施例22:N-井冈霉胺-3,4-二氯N-取代顺丁烯二酰亚胺(I-22)的制备

称取井冈霉胺0.176g(1mmol)加入到圆底烧瓶中,加入6ml 0.26mol/L甲醇钠的甲醇溶液,30℃搅拌反应20min,量取0.2004(1.2mmol)3,4-二氯顺丁烯二酸酐加入到圆底烧瓶中,30℃搅拌反应1h,再加入150μL三乙胺,反应20min,体系加热至60℃反应2h,反应结束后冷却至室温,减压蒸馏,得到黄色油状浓缩液,将浓缩液用200目硅胶上柱分离,流动相为正V正丙醇:V乙酸:V=6:1:1,收集目标液浓缩,得到浅黄色油状产物。所得产物经1H>

Yield 33.8%1H>

实施例23:N-井冈霉烯胺-3,4-二氯N-取代顺丁烯二酰亚胺(I-23)的制备

称取井冈霉烯胺0.175g(1mmol)加入到圆底烧瓶中,加入6ml 0.26mol/L甲醇钠的甲醇溶液,30℃搅拌反应20min,量取0.2004g(1.2mmol)3,4-二氯顺丁烯二酸酐加入到圆底烧瓶中,30℃搅拌反应1h,再加入150μL三乙胺,反应20min,体系加热至60℃反应2h,反应结束后冷却至室温,减压蒸馏,得到黄色油状浓缩液,将浓缩液用200目硅胶上柱分离,流动相为正V正丙醇:V乙酸:V=6:1:1,收集目标液浓缩,得到浅黄色油状产物。所得产物经1H>

Yield 71.2%1H>

实施例24:N-井冈霉醇胺-3,4-二氯N-取代顺丁烯二酰亚胺(I-24)的制备

称取井冈霉醇胺0.193g(1mmol)加入到圆底烧瓶中,加入6ml 0.26mol/L甲醇钠的甲醇溶液,30℃搅拌反应20min,量取0.2004g(1.2mmol)3,4-二氯顺丁烯二酸酐加入到圆底烧瓶中,30℃搅拌反应1h,再加入150μL三乙胺,反应20min,体系加热至60℃反应2h,反应结束后冷却至室温,减压蒸馏,得到黄色油状浓缩液,将浓缩液用200目硅胶上柱分离,流动相为正V正丙醇:V乙酸:V=6:1:1,收集目标液浓缩,得到浅黄色油状产物。所得产物经1H>

Yield 65.9%1H>

实施例25:N-葡萄糖胺-3,4-二氯N-取代顺丁烯二酰亚胺(I-25)的制备

称取氨基葡萄糖0.179g(1mmol)加入到圆底烧瓶中,加入6ml 0.26mol/L甲醇钠的甲醇溶液,30℃搅拌反应20min,量取0.2004g(1.2mmol)3,4-二氯顺丁烯二酸酐加入到圆底烧瓶中,30℃搅拌反应1h,再加入150μL三乙胺,反应20min,体系加热至60℃反应2h,反应结束后冷却至室温,减压蒸馏,得到黄色油状浓缩液,将浓缩液用200目硅胶上柱分离,流动相为正V正丙醇:V乙酸:V=6:1:1,收集目标液浓缩,得到浅黄色油状产物。所得产物经1H>

Yield 28%1H>

实施例26:N-取代顺丁烯二酰亚胺类化合物对水稻纹枯病菌抑菌活性的测定

以水稻纹枯病菌为模型,测试了本发明所述的N-取代顺丁烯二酰亚胺类化合物的抑菌活性。分别将实施例1-25所制备的N-取代顺丁烯二酰亚胺类化合物(I-1)-(I-25)与吐温-80和水混合,获得混合液,混合液为2.5mgN-取代顺丁烯二酰亚胺类化合物(I-1)-(I-25)和25mL的0.1%吐温-80的水溶液配制成100ppm的含药溶液,然后取100ppm含药溶液1mL,用0.1%的吐温-80水溶液稀释成10ppm的含药溶液;根据上述方法,再取10ppm的含药溶液1mL稀释成1ppm含药溶液,然后分别取含药溶液lmL,加入9mL的琼脂培养基中,分别配制成0.1ppm的含药培养基平板,每个梯度设2个平行。采用菌丝生长速率法测定N-取代顺丁烯二酰亚胺类化合物对水稻纹枯病菌菌丝生长的抑制率,在丕氏培养基预培养的水稻纹枯病菌菌落边缘用直径为5mm的打孔器取菌碟,分别接种至含药琼脂培养基平板正中央,以含0.1%吐温-80的平板为对照,于23℃的恒温培养箱中培养24h,待对照菌落生长至少50mm但未长满全皿时,采用十字交叉法测量含药培养基培养的菌落生长直径,根据公式(1)计算菌丝生长抑制率,结果如表1所示,所述丕氏培养基终浓度组成为:马铃薯200g,葡萄糖20g,酵母膏5g,加去离子水至1000mL,分装至500mL锥形瓶中,总共4瓶。每瓶加入琼脂条5g,pH自然,121℃灭菌20min。菌丝生长抑制率计算公式(长度单位:mm)如下:

表1N-取代顺丁烯二酰亚胺类化合物离体水稻纹枯病菌的抑制情况(单位:μg/mL)

注:*:无抑制效果;+:抑制效果不明显,0~30%;++:抑制效果明显,30~60%;+++:抑制效果明显,但未完全抑制,60~90%;++++:完全抑制,100%

结果表明,测试的25个化合物对水稻纹枯病菌的抑制不佳,在低浓度时对水稻纹枯病菌菌的菌丝抑制比较弱,随着浓度升高,抑制效果增加,但是大部分的化合物的抑制效果还是相对较弱的,未能完全抑制。同时发现当化合物浓度由25μg/mL降为1.5μg/mL时,抑制率下降幅度均大于50%。其中I-3、I-11、I-20呈现较好的生物抑菌活性,其EC50分别为24.38、20.00、51.83。

实施例27:N-取代顺丁烯二酰亚胺类化合物对菌核病病菌抑菌活性的测定

以菌核病病菌为模型,测试了本发明所述的N-取代顺丁烯二酰亚胺类化合物的抑菌活性。分别将实施例1-25所制备的N-取代顺丁烯二酰亚胺类化合物(I-1)-(I-25)与吐温-80和水混合,获得混合液,混合液为2.5mgN-取代顺丁烯二酰亚胺类化合物(I-1)-(I-25)和25mL的0.1%吐温-80的水溶液配制成100ppm的含药溶液,然后取100ppm含药溶液1mL,用0.1%的吐温-80水溶液稀释成10ppm的含药溶液;根据上述方法,再取10ppm的含药溶液1mL稀释成1ppm含药溶液,然后分别取含药溶液l mL,加入9mL的PDA培养基中,分别配制成0.1ppm的含药培养基平板,每个梯度设2个平行。采用菌丝生长速率法测定N-取代顺丁烯二酰亚胺类化合物对菌核病菌菌丝生长的抑制率,在丕氏培养基预培养的菌核菌菌落边缘用直径为5mm的打孔器取菌碟,分别接种至含药PDA培养基平板正中央,以含0.1%吐温-80的平板为对照,于23℃的恒温培养箱中培养24h,待对照菌落生长至少50mm但未长满全皿时,采用十字交叉法测量含药培养基培养的菌落生长直径,根据公式(1)计算菌丝生长抑制率,结果如表1所示,所述丕氏培养基终浓度组成为:马铃薯200g,葡萄糖20g,酵母膏5g,加去离子水至1000mL,分装至500mL锥形瓶中,总共4瓶。每瓶加入琼脂条5g,pH自然,121℃灭菌20min。菌丝生长抑制率计算公式(长度单位:mm)如下:

表2N-取代顺丁烯二酰亚胺类化合物离体菌核病菌的抑制情况(单位:μg/mL)

注:*:无抑制效果;+:抑制效果不明显,0~30%;++:抑制效果明显,30~60%;+++:抑制效果明显,但未完全抑制,60~90%;++++:完全抑制,100%

结果表明,在制备的25个全新化合物中,除了Ⅰ-2,Ⅰ-7,Ⅰ-12,Ⅰ-15,Ⅰ-18,Ⅰ-22这5个化合物在低浓度没有抑菌活性,而其他不同含氨基环多醇的顺丁烯二酰亚胺类化合物对菌核病菌的菌丝生长都具有一定的抑制作用,大部分在50μg/mL以内没有抑制菌丝的生长,这有可能与合成顺丁烯二酰亚胺化合物的胺有关,由于环多醇含有较多的羟基亲水基,化合物极性较大不易透过真菌的细胞壁而难以与胞内酶作用。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号