首页> 中国专利> 一种研究天然气水合物开采过程中产沙行为与多孔介质径向形变的关系的实验装置及方法

一种研究天然气水合物开采过程中产沙行为与多孔介质径向形变的关系的实验装置及方法

摘要

本发明公开了一种研究天然气水合物开采过程中产沙行为及多孔介质形变的实验装置,包括高压反应釜、水合物样品腔、模拟井筒、形变测量单元、环境温度控制单元、出口控制单元、进口控制单元以及数据处理单元。本发明还公开了一种采用上述实验装置进行实验的方法。本发明的实验装置及方法能够便捷的测量水合物分解过程中多孔介质的变形情况和模拟井筒内的出砂情况,能够模拟天然气水合物开采过程产沙问题,能够模拟天然气水合物开采过程气液固井内流动问题,可以准确的获得天然气水合物分解过程中的气固液三相实时产出量,操作简单,易于控制,适用于各种大小和各种形状的反应釜,为水合物开采技术提供基础实验数据及理论依据。

著录项

  • 公开/公告号CN107045054A

    专利类型发明专利

  • 公开/公告日2017-08-15

    原文格式PDF

  • 申请/专利权人 中国科学院广州能源研究所;

    申请/专利号CN201611186227.5

  • 申请日2016-12-20

  • 分类号G01N33/24(20060101);

  • 代理机构44001 广州科粤专利商标代理有限公司;

  • 代理人莫瑶江

  • 地址 510640 广东省广州市天河区五山能源路2号

  • 入库时间 2023-06-19 02:59:30

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2019-07-12

    授权

    授权

  • 2017-09-08

    实质审查的生效 IPC(主分类):G01N33/24 申请日:20161220

    实质审查的生效

  • 2017-08-15

    公开

    公开

说明书

技术领域

本发明涉及天然气水合物开采领域,具体涉及一种研究天然气水合物开采过程中产沙行为与多孔介质径向形变的关系的实验装置及方法。

背景技术

天然气水合物(Natural gas hydrate,NGH)是一种在低温高压下由天然气和水生成的一种笼形结晶化合物,其外形如冰雪状,遇火既燃,俗称“可燃冰”。自然界的天然气水合物中的天然气成分主要是甲烷(>90%),在常温常压下1m3的天然气水合物分解释放约160m3天然气,所以天然气水合物具有极高的能量密度。自然界中的天然气水合物主要存在于海洋大陆架的沉积物层和陆地冻土带。1964年,科学家在西伯利亚冻土带首次发现了自然存在的天然气水合物,不久之后,在黑海也发现了赋存于海底沉积物中的天然气水合物。到上世纪90年代,业内学者一致认为,全球天然气水合物所储藏的能量超过所有石油、煤及天然气所储藏能量的总和。在过去的20年中,全球范围内展开包括深海钻探计划(DSDP)、大洋钻探计划(ODP)和综合大洋钻探计划(IODP),对天然气水合物的矿藏资源进行调研。目前全球天然气水合物总量的估计约1015~1018标准立方米,所以,天然气水合物被认为是21世纪石油天然气最具潜力的替代能源。资源调查显示,我国南海、东海陆坡-冲绳海、青藏高原冻土带都蕴藏着天然气水合物。因此,研究出天然气水合物有效、快速、经济的开采方法,为大规模开采天然气水合物提供实验基础和依据,是缓解与日俱增的能源压力的有效途径。

天然气水合物开采技术是实现天然气水合物资源开发利用的关键环节之一。与常规化石能源不同,天然气水合物以固体形态存在于多孔介质中。其开采的基本思路是:通过改变天然气水合物稳定存在的温-压环境,即水合物相平衡条件,造成固体水合物在储层原位分解成天然气和水后再将天然气采出。据此,科学家提出了几种常规开采技术,如:降压法、热激法以及化学试剂法。由于水合物矿藏地质环境复杂,赋存形式多样,并且开采过程包含了复杂的天然气-水-沉积物-水合物-冰组成的多相体系的相变过程及多相渗流过程,水合物开采过程中伴随水合物分解的多孔介质骨架变化是目前水合物开采中所遇到的最大问题之一。由于固态赋存的天然气水合物变为流动的水和气,原先的水合物矿藏地质特性会发生巨大变化,例如渗透率、孔隙度、力学性质和孔隙压力都发生强烈变化,从而导致多孔介质变形,引起气固液三相混合流动场,最终可能导致地层变形。所以研究天然气水合物分解过程中产沙对多孔介质变形的影响,对于水合物开采技术是否能够顺利完成以及水合物开采技术的安全性有着重要的作用。

当前世界上较为先进的天然气水合物开采研究,其研究重点在不同的开采方法对水合物相变分解的效果,以及水合物分解过程中热量的消耗传递,对于真实条件下,水合物分解过程的复杂相变渗流机理的认识还处于模糊的状态。在水合物开采模拟实验中几乎全部忽略水合物开采过程中产沙与多孔介质形变之间的关系,在以往的模拟实验中利用大颗粒组成多孔介质(粒径>100um),令水合物分解过程中的多孔介质骨架无法变化,但实际水合物矿藏中的多孔介质粒径是由0.01um的微颗粒至500um的大颗粒共同组成的,并且在水合物开采过程中产沙和形变是不可避免的。尤其是在井周围的多孔介质径向形变,可能是导致井壁坍塌和产沙的主要因素,而目前缺乏有效的实验手段对水合物分解引起的径向形变进行测量。目前天然气水合物开采实验装置已趋于更精确测量、贴近野外实际的样式发展,但具体工程实施仍面临着巨大的挑战,现有实验室装置研究成果尚不能完全满足安全经济的实地水合物开采技术的需要,需进一步研究开发可实现更精确反演海底实际水合物藏开采变化和开采设备运行情况的先进实验装备和平台,为实现安全可靠开采奠定坚实的基础。

发明内容

针对现有技术的上述缺陷,本发明的目的之一在于提供一种研究天然气水合物开采过程中产沙行为与多孔介质径向形变的关系的实验装置,通过搭载真实尺寸的开采井筒,以及可更换的射孔转接头,真实模拟水合物在开采过程中的产沙行为以及气液固在井筒内的流动行为,获取水合物开采过程中产沙以及多孔介质径向形变数据,从而找出产沙行为与多孔介质径向形变之间的关系,为水合物开采技术提供基础实验数据及理论依据。

为实现上述目的,本发明的技术方案是:

一种研究天然气水合物开采过程中产沙行为与多孔介质径向形变的关系的实验装置,包括高压反应釜、水合物样品腔、模拟井筒、形变测量单元、环境温度控制单元、出口控制单元、进口控制单元以及数据处理单元;

所述高压反应釜置于环境温度控制单元中,用于提供模拟实际地质条件的围压,其包括上釜盖、釜体和下釜盖;

所述高压反应釜内还设有柔性橡胶套,所述柔性橡胶套、上釜盖和下釜盖围成水合物样品腔,所述水合物样品腔填充有粒径小于100um多孔介质,所述柔性橡胶套、釜体以及上釜盖和下釜盖之间围成围压腔;

所述模拟井筒为侧壁设有射孔的中空圆柱结构,其位于水合物样品腔内,用以模拟水合物开采过程的产沙行为;

所述形变测量单元包括一组径向形变测量单元,所述径向形变单元包括多个沿柔性橡胶套径向均布的硬连接杆,所述硬连接杆的一端与柔性橡胶套外壁连接,所述硬连接杆的另一端穿出高压反应釜釜体外壁,并与位移传感器连接,所述位移传感器通过测量硬连接杆的移动以获取水合物样品腔中多孔介质的径向变形量;

所述环境温度控制单元用于控制高压反应釜中的水合物生成过程、分解过程以及取样过程的温度;

所述进口控制单元用于向水合物样品腔中注入水和天然气;

所述出口控制单元用于控制水合物开采过程中模拟井筒的出口压力,并进行出口产出物的分离及数据计量;

所述高压反应釜、形变测量单元、环境温度控制单元、出口控制单元、进口控制单元的感应元件均通过信号线与数据处理单元电连接,该数据处理单元用以采集和处理各感应元件的感应信号。

所述出口控制单元包括依次连通的流固分离器、出口压力控制器和气液分离器,所述流固分离器安装在模拟井筒的出口处。

所述径向形变测量单元为多组,且沿柔性橡胶套轴向均布,用于测量多孔介质在轴向方向的径向变形情况。

所述模拟井筒的尺寸与实际钻井井筒的尺寸一致,所述模拟井筒的射孔上还设有用于改变射孔大小的转接头,所述转接头可拆卸地安装在射孔上。

所述转接头上还设置有用于模拟防沙的防沙网或/和用于模拟堵塞状态的死堵。

所述模拟井筒内还设置有传感器和内窥镜,用于直接测量和观察模拟井筒内产沙情况以及井内流动情况。

所述高压反应釜的上釜盖和下釜盖与釜体均采用卡箍固定结构,通过橡胶圈密封使得高压反应釜可提供最高25Mpa的围压。

本发明的另一目的在于提供一种研究天然气水合物开采过程中产沙行为与多孔介质径向形变的关系的实验方法,通过真实模拟水合物在开采过程中的产沙行为以及气液固在井筒内的流动行为,获取水合物开采过程中产沙以及多孔介质径向形变数据,从而找出产沙行为与多孔介质径向形变之间的关系,为水合物开采技术提供基础实验数据及理论依据,该实验方法包括以下步骤:

S1、将高压反应釜置于环境温度控制单元中,将模拟井筒置于水合物样品腔中,在水合物样品腔内填充粒径小于100um的多孔介质;

S2、设定实验环境温度,设定高压反应釜的实验围压,通过进口控制单元向水合物样品腔中注入水和天然气,生成天然气水合物样品;

S3、当天然气水合物生成完成后,保持高压反应釜围压不变,通过环境温度控制单元控制分解温度,对天然气水合物样品进行分解;

S4、通过出口控制单元控制模拟井筒出口压力,通过出口控制单元实时计量模拟井筒的气、水、沙产出量;

S5、通过形变测量单元测量水合物样品腔中多孔介质的变形量;

S6、分析计算多孔介质的变形量、模拟井筒的产气量、产水量、产沙量,获取水合物开采过程中产沙行为与多孔介质径向形变的关系。

所述通过出口控制单元控制模拟井筒出口压力的方法是:首先将出口控制单元的流固分离器中注满水并保持流固分离器中压力与高压反应釜内相同,然后打开模拟井筒出口阀门,通过出口压力控制阀控制模拟井筒出口压力。

所述通过出口控制单元实时计量模拟井筒的气、水、沙产出量的方法是:首先通过流固分离器将沙分离,称量流固分离器中的筛网除砂器的重量变化实时计量沙的产出量,从流固分离器流出的流体再经过气液分离器分离成水和气,通过电子天平实时计量水的产出量,通过气体流量计实时计量气的产出量。

与现有技术相比,本发明的有益效果是:

1、通过设置在柔性橡胶套上的一组径向形变测量单元,实现对多孔介质在其一圆周截面的径向形变的测量,通过沿柔性橡胶套轴向设置多组径向形变测量单元,实现对多孔介质从上到下的多个圆周截面的径向形变的测量,从而得出多孔介质整体径向形变状况,采用硬连接杆和柔性橡胶套相结合的测量方式,克服了高压反应釜内无法测量多孔介质径向形变的缺点,传统测量方式通过轴向活塞杆移动仅能测量轴向形变,而本发明能够准确测量天然气水合物在开采过程中多孔介质的径向形变,并且柔性外套与硬连接杆连接的测量方式不会影响多孔介质本身的形变和产沙的过程,具有结构简单,测量效果好的优点。

2、通过出口控制单元实时计量模拟井筒的气、水、沙产出量,通过数据处理单元对气、水、沙产出量以及多孔介质径向形变量进行分析,找出它们之间的关系,为水合物开采技术提供基础实验数据及理论依据。

3、采用真实尺寸的模拟井筒,其尺寸大小与实际井筒一致,能够更加真实的模拟天然气水合物开采过程中可能出现的产沙问题,采用转接头调节射孔的大小,在不更换模拟井筒的情况下,就能实现不同的测试,通过在转接头上设置防沙网或死堵,能够更加真实的模拟天然气水合物开采过程气液固井内流动问题。

4、通过在模拟井筒内设置传感器和内窥镜,可直接测量和观察模拟井筒内产沙情况以及井内流动情况。

附图说明

图1是本发明的实验装置的方框图;

图2是本发明的实验装置结构示意图;

图3是本发明的模拟井筒和转接头的结构示意图;

附图标记说明:1-上釜盖;2-釜体;3-下釜盖;4-柔性橡胶套;5-模拟井筒;6-射孔;7-转接头;71-防沙网;72-死堵;8-内窥镜显示屏;9-数据处理单元;10-硬连接杆;11-位移传感器;12-恒温水浴;13-增压泵;14-平流泵;15-流固分离器;16-出口压力控制器;17-气液分离器;18-电子天平;19-气体流量计。

具体实施方式

下面结合附图和具体实施方式对本发明的内容做进一步详细说明。

实施例:

如图1和图2所示,一种研究天然气水合物开采过程中产沙行为及多孔介质形变的实验装置,包括高压反应釜、水合物样品腔、模拟井筒5、形变测量单元、环境温度控制单元、出口控制单元、进口控制单元以及数据处理单元9。

所述高压反应釜置于环境温度控制单元中,用于提供模拟实际地质条件的围压,其包括上釜盖1、釜体2和下釜盖3,所述上釜盖1和下釜盖3与釜体2可以采用如图2的螺栓固定方式,也可采用卡箍固定结构,通过橡胶圈密封,使得高压反应釜能够提供最高25Mpa的围压。

所述高压反应釜内还设有柔性橡胶套4,所述柔性橡胶套4、上釜盖1和下釜3盖围成水合物样品腔,水合物样品腔内部填充有粒径小于100um多孔介质,并在多孔介质中生成水合物,所述柔性橡胶套4、釜体2以及上釜盖1和下釜盖3之间围成围压腔。本实施例中,水合物样品腔为圆柱形,内部填充的多孔介质优选实际沉积物样品。在以往的模拟实验中利用大颗粒组成多孔介质(粒径>100um),令水合物分解过程中的多孔介质骨架无法变化,本发明的多孔介质粒径小于100um,能够直观观察到由于水合物分解引起的多孔介质骨架变化。

如图2和图3所示,所述模拟井筒5为侧壁设有射孔6的中空圆柱结构,其位于水合物样品腔内,用以模拟水合物开采过程的产沙行为,所述模拟井筒的尺寸5与实际钻井井筒的尺寸一致,能够更加真实的模拟天然气水合物开采过程中可能出现的产沙问题。所述模拟井筒5的射孔6上还设有用于改变射孔6大小的转接头7,所述转接头7可拆卸地安装在射孔6上,转接头7位于模拟井筒5外部的一端设置有用于模拟防沙的防沙网71或/和用于模拟堵塞状态的死堵72,用以研究水合物出沙及防沙手段,所述模拟井筒5内还设置有传感器和内窥镜(图中未示出),传感器与数据处理单元9连接,内窥镜通过内窥镜显示屏8与数据处理单元9连接,可直接测量和观察模拟井筒5内产沙情况以及井内流动情况。

所述形变测量单元包括至少一组径向形变测量单元,该径向形变测量单元包括多个沿柔性橡胶套4径向均布的硬连接杆10,所述硬连接杆10为不锈钢杆,其一端与柔性橡胶套4外壁连接,另一端穿出高压反应釜的釜体2外壁,并与位移传感器11连接,位移传感器11与数据处理单元9电连接,所述位移传感器11通过测量硬连接杆10的移动以获取水合物样品腔中多孔介质的径向变形量。

径向形变测量单元能够对柔性橡胶套4的一个圆周截面的径向形变进行测量,本实施例的径向形变测量单元包括2套硬连接杆10和位移传感器11,其分别设置在柔性橡胶套4的左右两侧,当然为了测量的更加准确,还可以设置为4套或更多套。为了对整个柔性橡胶套4内的多孔介质的径向形变进行测量,本实施例沿柔性橡胶套4轴向从上往下依次设置有4组径向形变测量单元,从而能够精确测量水合物样品腔中的多孔介质整体变形情况。

所述环境温度控制单元采用恒温水浴12,用于精准控制高压反应釜中的水合物生成过程、分解过程以及取样过程的温度。

所述进口控制单元通过增压泵13向水合物样品腔中注入设定量的天然气,通过平流泵14向水合物样品腔中注入设定量的水。

所述出口控制单元连接在模拟井筒5出口处,用于控制水合物开采过程中模拟井筒5的出口压力,并进行出口产出物的分离及气液固数据计量,包括依次连通的流固分离器15、出口压力控制器16和气液分离器17,流固分离器15安装在模拟井筒5的出口处,这样设计目的是防止模拟井筒5产出的沙将出口压力控制器16堵塞,导致出口压力无法控制,同时为防止流固分离器15对高压反应釜内部压力的影响,流固分离器15在实验开始前需要填充水达到与高压反应釜内部压力相同,再将流固分离器15与高压反应釜连通,然后打开模拟井筒出口阀门,通过出口压力控制阀16控制模拟井筒5出口压力。

从模拟井筒5出来的产出物首先通过流固分离器15将沙分离,通过称量流固分离器15中的筛网除砂器的重量变化实时计量沙的产出量,从流固分离器15流出的流体再通过气液分离器17分离成气和水,再分别通过电子天平18实时计量水的产出量,通过气体流量计19实时计量气的产出量。

所述高压反应釜、形变测量单元、环境温度控制单元、出口控制单元、进口控制单元的感应元件均通过信号线与数据处理单元9电连接,该数据处理单元9用以采集和处理各感应元件的感应信号。

本发明实施例的一种采用上述研究天然气水合物开采过程中产沙行为及多孔介质形变的实验装置的实验方法,包括以下步骤:

S1、将高压反应釜置于环境温度控制单元中,将模拟井筒5置于水合物样品腔中,在水合物样品腔内填充粒径小于100um的多孔介质;

S2、设定实验环境温度,设定高压反应釜的实验围压,通过进口控制单元向水合物样品腔中注入水和天然气,生成天然气水合物样品;

S3、当天然气水合物生成完成后,保持高压反应釜围压不变,通过环境温度控制单元控制分解温度,对天然气水合物样品进行分解;

S4、通过出口控制单元控制模拟井筒5出口压力,通过出口控制单元实时计量模拟井筒5的气、水、沙产出量;

S5、通过形变测量单元测量水合物样品腔中多孔介质的变形量;

S6、分析计算多孔介质的变形量、模拟井筒的产气量、产水量、产沙量,获取水合物开采过程中产沙行为与多孔介质形变的关系。

所述通过出口控制单元控制模拟井筒5出口压力的方法是:首先将出口控制单元的流固分离器15中注满水并保持流固分离器15中压力与高压反应釜内相同,然后打开模拟井筒5出口阀门,通过出口压力控制阀16控制模拟井筒5的出口压力。

所述通过出口控制单元实时计量气、水、沙产出量的方法是:首先通过流固分离器15将沙分离,称量流固分离器15中的筛网除砂器的重量变化实时计量沙的产出量,从流固分离器15流出的流体再经过气液分离器17分离成水和气,通过电子天平18实时计量水的产出量,通过气体流量计19实时计量气的产出量。

本发明所提供的研究天然气水合物开采过程中产沙行为与多孔介质径向形变的实验装置,与现有的实验装置相比,具有明显的优势:

(1)通过设置在柔性橡胶套上的一组径向形变测量单元,实现对多孔介质在其一圆周截面的径向形变的测量,通过沿柔性橡胶套轴向设置的多组径向形变测量单元,实现对多孔介质从上到下的多个圆周截面的径向形变的测量,从而得出多孔介质整体径向形变状况,采用硬连接杆和柔性橡胶套相结合的测量方式,能够准确测量天然气水合物在开采过程中多孔介质的径向形变,具有结构简单,测量效果好的优点。

(2)通过出口控制单元实时计量模拟井筒的气、水、沙产出量,通过数据处理单元对气、水、沙产出量以及多孔介质径向形变量进行分析,找出它们之间的关系,为水合物开采技术提供基础实验数据及理论依据。

(3)采用真实尺寸的模拟井筒,其尺寸大小与实际井筒一致,能够更加真实的模拟天然气水合物开采过程中可能出现的产沙问题,采用转接头调节射孔的大小,在不更换模拟井筒的情况下,就能实现不同的测试,通过在转接头上设置防沙网或死堵,能够更加真实的模拟天然气水合物开采过程气液固井内流动问题。

(4)通过在模拟井筒内设置传感器和内窥镜,可直接测量和观察模拟井筒内产沙情况以及井内流动情况。

上述实施例只是为了说明本发明的技术构思及特点,其目的是在于让本领域内的普通技术人员能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡是根据本发明内容的实质所做出的等效的变化或修饰,都应涵盖在本发明的保护范围内。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号