首页> 中国专利> 六氟代喹喔啉化合物和六氟代喹喔啉类共聚物及应用

六氟代喹喔啉化合物和六氟代喹喔啉类共聚物及应用

摘要

本发明公开了一种六氟代喹喔啉化合物和六氟代喹喔啉类共聚物及应用。六氟代喹喔啉化合物与含烷基噻吩侧链的苯并二噻吩通过Stille偶联聚合得到六氟代喹喔啉类共聚物材料,这类共聚物材料溶解性好,易于加工成膜,且具有良好的光电转换功能,用于制备聚合物太阳能电池器件,光电转换效率都超过7%,其中最高单层器件光电转换效率高达9.37%,具有较好的应用前景。

著录项

  • 公开/公告号CN106905306A

    专利类型发明专利

  • 公开/公告日2017-06-30

    原文格式PDF

  • 申请/专利权人 中南大学;

    申请/专利号CN201710022671.1

  • 申请日2017-01-12

  • 分类号C07D409/14(20060101);C07D519/00(20060101);C08G61/12(20060101);H01L51/42(20060101);H01L51/46(20060101);

  • 代理机构43114 长沙市融智专利事务所;

  • 代理人魏娟

  • 地址 410083 湖南省长沙市岳麓区麓山南路932号

  • 入库时间 2023-06-19 02:42:51

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2019-07-12

    授权

    授权

  • 2017-07-25

    实质审查的生效 IPC(主分类):C07D409/14 申请日:20170112

    实质审查的生效

  • 2017-06-30

    公开

    公开

说明书

技术领域

本发明涉及一种光伏材料,特别涉及一种六氟代喹喔啉单体以及六氟代喹喔啉单体与二(3-烷基噻吩)-苯并[1,2-b:4,5-b’]二噻吩单体共聚得到一系列通过碳-碳单键连接的六氟代喹喔啉共聚物光伏材料,且还涉及上述六氟代喹喔啉类共聚物材料在太阳电池上的应用;属于有机聚合物太阳电池技术领域。

背景技术

近十多年来,大量的含喹喔啉共轭聚合物被全球各个课题组报导,2012年PiTaiChou等报导了含有喹喔啉的受体系列聚合物,光电转换效率达到8.0%(Chen,H.-C.;Chen,Y.-H.;Liu,C.-C.;Chien,Y.-C.;Chou,S.-W.;Chou,P.-T.,Prominent Short-CircuitCurrents of Fluorinated Quinoxaline-Based Copolymer Solar Cells with a PowerConversion Efficiency of 8.0%.Chemistry of Materials 2012,24(24),4766-4772.)。候建辉等也合成了一系列氟代喹喔啉结构单体的聚合物,最高光电转换效率为8.55%,四个聚合物的短路电流都达到12mA/cm2以上(Liu,D.;Zhao,W.;Zhang,S.;Ye,L.;Zheng,Z.;Cui,Y.;Chen,Y.;Hou,J.,Highly>

氟原子作为一个功能基团被广泛运用到本体异质结(BHJ)聚合物太阳电池(PSCs)中,来提高光电转换效率(PCE)往往会起到意想不到的效果(Zhou,H.;Yang,L.;Stuart,A.C.;Price,S.C.;Liu,S.;You,W.,Development of fluorinated benzothiadiazole asa structural unit for a polymer solar cell of 7%efficiency.Angewandte Chemie2011,50(13),2995-8.)。氟原子它的电负性为4.0,是最强吸电子原子,当它引入到受体单元能够有效降低HOMO能级,提高Voc。而且它的范德华半径为1.35A,较小半径不会产生较大的空间位阻,却可以改变聚合物表面形貌(Li,W.;Albrecht,S.;Yang,L.;Roland,S.;Tumbleston,J.R.;McAfee,T.;Yan,L.;Kelly,M.A.;Ade,H.;Neher,D.;You,W.,Mobility-controlled>

苯并二噻吩(BDT)类衍生物是经典的给体单元,它合成简单,容易修饰,衍生物种类繁多(Ge,G.;Gu,J.;Yu,J.;Zhu,E.;Hai,J.;Bian,L.;Zhang,F.;Xu,Z.;Ma,W.;Tang,W.,Design and photovoltaic characterization of dialkylthio benzo[1,2-b:4,5-b']dithiophene polymers with different accepting units.Physical chemistrychemical physics:PCCP 2015,17(12),7848-56.)。它共轭骨架的平面性与规整性较好,使得它具有较高的分子能级,电子与空穴迁移率(Li,K.;Li,Z.;Feng,K.;Xu,X.;Wang,L.;Peng,Q.,Development of large band-gap conjugated copolymers for efficientregular single and tandem organic solar cells.Journal of the AmericanChemical Society 2013,135(36),13549-57.)。在聚合物太阳电池材料中有着非常重要的作用(Uy,R.L.;Yan,L.;Li,W.;You,W.,Tuning Fluorinated Benzotriazole Polymersthrough Alkylthio Substitution and Selenophene Incorporation for BulkHeterojunction Solar Cells.Macromolecules 2014,47(7),2289-2295.)。

发明内容

针对现有技术存在的缺陷,本发明的目的是在于提供一种含多氟取代基、烷氧取代基等的5,8-双(5-溴-2-噻吩基)-2,3双(4-(2-烷氧基-3,5-二氟代苯)-6,7-二氟代喹喔啉化合物,该化合物可以作为有机聚合物光伏材料的电子受体单元,获得高效的二维HFQx衍生物光伏材料。

本发明的另一个目的是在于提供一种由5,8-双(5-溴-2-噻吩基)-2,3双(4-(2-烷氧基-3,5-二氟代苯)-6,7-二氟代喹喔啉与侧链为烷基噻吩的苯并二噻吩二维电子给体单元共聚得到的六氟代喹喔啉类共聚物,其光伏性能好、溶解性好及稳定性好。

本发明还提供了所述六氟代喹喔啉类共聚物作为光伏材料在聚合物太阳能电池中的应用,六氟代喹喔啉类共聚物表现出较好的光电转化效率。

大量研究表明:氟原子引入聚合物光伏材料能有效降低HOMO能级提高开路电压(Voc),改变薄膜形貌进而提高短路电流(Jsc)和填充因子(FF)。在本发明的技术方案中选用容易进行结构修饰与优化的喹喔啉单元作为基底,将大量氟原子引入它的共轭主链和侧链,利用氟原子特性来同时提高Voc、Jsc和FF进而得到理想的光电转换性能。

为了实现上述技术目的,本发明提供了一种六氟代喹喔啉化合物,具有式1结构:

其中,R为C5~C10的烷基。

优选的方案,R为C8的烷基。更优选的六氟代喹喔啉类共聚物具有式3结构:

本发明还提供了一种六氟代喹喔啉类共聚物,其具有式2结构:

其中,

n=8~25;

R为C5~C10的烷基,R1为C5~C10的烷基、C5~C10的烷氧基或C5~C10的烷硫基。

优选的方案,R和R1独立选自C8的烷基。

优选的方案,n=8~10。

更优选的方,六氟代喹喔啉类共聚物具有式4结构:

聚-[4,8-二(3-异辛基噻吩)-苯并[1,2-b:4,5-b’]二噻吩-5,6-双(4-(2-异辛氧基-3,5-二氟代苯))-4,7-二噻吩基-2,3-氟代苯](HFQx-BDT)

本发明的六氟代喹喔啉类共聚物的合成路线如下:以式4结构HFQx-BDT共聚物为例进行具体说明:

本发明还提供了所述的六氟代喹喔啉类共聚物的应用,将其作为光伏材料应用于制备聚合物太阳电池器件。

优选的方案,将六氟代喹喔啉类共聚物与电子受体物质混合溶于溶剂后,涂覆在导电玻璃上制备薄膜,再在薄膜制备金属电极,即得聚合物太阳能电池器件。

较优选的方案,所述电子受体物质为PC60BM、PC60BM衍生物、PC70BM、PC70BM衍生物、有机小分子电子受体中至少一种。

较优选的方案,所述溶剂为邻二氯苯、三氯甲烷、四氢呋喃中至少一种。

本发明的六氟代喹喔啉类共聚物应用于制备聚合物太阳电池器件的方法:将所述的共聚物HFQx-BDT与电子受体物质混合,加入溶剂及添加剂,使混合物溶解即可,涂覆在导电玻璃上制备出薄膜,在薄膜上旋涂ZrAcac或PDIN或PDINO溶液作为界面层,蒸镀金属电极做成聚合物太阳能电池器件。本发明通过使用乙酰丙酮锆(ZrAcac),苝酰亚胺衍生物(PDIN和PDINO)作为界面层,0.5%的1,8-二碘辛烷(DIO)作为添加剂,对太阳能电池器件进行优化。

相对现有技术,本发明的技术方案带来的有益技术效果:

本发明的六氟代喹喔啉与侧链为烷氧基噻吩、烷硫基噻吩或烷基噻吩的苯并二噻吩二维电子给体单元共聚,通过碳-碳单键偶联得到二维线性HFQx-BDT光伏材料,其单层光伏性能都超过7%,其中最高的光电转换率高达9.37%。

本发明的六氟代喹喔啉类共聚物在支链上引入四个氟取代基,同时在主链上引入2个氟原子,大量强吸电子性的氟原子的引入,不仅大大提高了受体单元的吸电子能力,拉低了给体材料的HOMO能级,从而有效地提高了聚合物的Voc,而且拓宽了聚合物光伏材料的吸收,提高了对紫外-可见光的利用,从而获得较好的Jsc。特别是在侧链通过4-烷氧基苯基的3,5位上引入2个氟原子,形成对称的结构,可以稳定聚合物的构象,提高聚合物的结晶性能。六氟代喹喔啉类共聚物通过在侧链引入了大量的长链烷基和烷氧基,不但有效的改善它们的溶解性,而且烷氧基苯基的3,5位的氟原子的存在可有效的改善聚合物薄膜的形貌,为电荷传输提高有效的通道,从而提高Jsc和FF。综上所述,六氟代喹喔啉类共聚物中引入6氟代喹喔啉结构,可同时提高光伏器件的Voc,Jsc和FF,进而得到一个较高的光电转换效率。

附图说明

【图1】为本发明基于HFQx聚合物的吸收光谱。

【图2】为本发明基于HFQx聚合物的电化学分析。

【图3】为本发明基于HFQx聚合物的光电转换效率。

【图4】为本发明基于HFQx聚合物的外量子转换效率。

具体实施方案

以下实施例旨在进一步说明本发明内容,而不像限制本发明权利要求的保护范围。

本发明制备了六氟化喹喔啉类(HFQx)二溴单体,并进一步用Stille偶联聚合方法合成了一系列基于HFQx的给受聚合物材料,对它们进行了热学、光学、电化学等表征,并对其在太阳电池上的应用进行了研究,这系列的聚合物单层器件光电转换效率都超过7%,其中最高单层器件光电转换效率高达9.37%,而且具有优异的稳定性。研究结果表明氟代喹喔啉是种具有普适性且能与电子给体很好匹配的结构,此类结构是一个全新的、富有潜力的电子受体单元。

以下实施例中采用的试剂和条件:(a)碳酸钾、N,N-二甲基甲酰胺(DMF),溴代异辛烷;(b)镁粉、溴化亚铜、无水溴化锂、草酰氯、单质碘、四氢呋喃;(c)无水乙醇、硼氢化钠(d)冰醋酸(e)二(三苯基膦)二氯化钯(PdCl2(pph3)2)、无水甲苯;(f)N-溴代丁二酰亚胺(NBS)、DMF;(g)四(三苯基膦)钯(Pd(pph3)4)、无水甲苯;如无特殊说明,实施例中采用的试剂和原料都为市售常规原料。

实施例1

a)在250mL单口圆底烧瓶中加入3,5-二氟-4-溴苯酚(15.67g,75mmol),溴代异辛烷(14.40g,75mmol)和碳酸钾(11.04g,80mmol),选择N-N二甲基甲酰胺(80mL)为溶剂,充放气三次,在氩气为保护气的条件下150℃回流搅拌,反应过夜。反应完全后,停止反应,待反应液充分冷却至室温,用二氯甲烷萃取,有机相水洗多次,去除其中溶于水未反应的原料或杂质,直至水层清亮,用旋转蒸发仪旋干有机相,以石油醚为洗脱机过硅胶柱,接液与原料用薄层色谱法对照跑板,收集产物点,旋干溶剂,放入真空干燥烘箱烘干,得无色液体化合物2(21.92g,产率:91.0%),核磁共振氢谱确认产物。

1HNMR(400MHz,CDCl3,ppm):7.15(m,2H),3.98-3.86(m,2H)1.86-1.72(m,1H),1.57-1.30(m,8H),1.02-0.88(m,6H).

b)250mL三口烧瓶a中加入镁粉(1.3g,54.1mmol)和一小粒碘,充放氩气三次,氩气保护下,将化合物2(14.94g,45.6mmol)溶于25mL的四氢呋喃溶液中,滴加适量(没过Mg粉)的化合物2的四氢呋喃溶液到烧瓶中,电吹风对着碘吹加热引发,当溶液产生大量气泡,碘的颜色逐渐褪去,有大量热放出时,缓慢将剩余的化合物1的四氢呋喃溶液滴加到烧瓶中,再将圆底烧瓶油浴锅内50℃下回流搅拌3h。在三口烧瓶b中加入无水溴化亚铜(6.56g,45.6mmol),充放气三次,在氩气保护下加入四氢呋喃(30mL),0℃下,搅拌至匀相后加入无水溴化锂(7.92g,91.2mmol),继续搅拌至匀相。将制备好的格式试剂注入三口瓶b中,0℃缓缓滴加,滴加完毕后继续反应30min。将草酰氯(2.54g,20.0mmol)滴加入上述反应体系继续反应2h(0℃)。然后移至室温下反应过夜,反应结束后,将产物倒入饱和氯化铵溶液中除去未反应完全的溴化亚铜,用二氯甲烷萃取,水洗有机相多次除去溶于水的杂质和原料,直至水层清亮,收集下层液体,用旋转蒸发仪旋干溶剂,留样,用石油醚过硅胶柱,旋干溶剂,真空干燥得到黄色粘稠状液体化合物3(2.28g,产率:21.2%)。

1H NMR(400MHz,CDCl3)δ7.60–7.52(m,2H),4.28–4.19(m,2H),1.79–1.25(m,11H),0.94(dt,J=10.1,7.2Hz,7H).

c)将3,4-二氟-4,7-二溴苯并噻二唑(2.9mmol,0.92g)与无水乙醇(30mL)混合至250mL单口瓶中,在0℃下将NaBH4(2.9mmol,1.13g)分批加入后室温反应6h,反应后用100mL蒸馏水淬灭反应。用二氯甲烷萃取,有机相水洗三次除去溶于水的杂质和未反应的原料,旋转蒸发仪旋干溶剂,真空干燥后得白色晶状固体5。不用提纯直接进行下一步反应。(0.75g,产率:86%)。

d)将化合物5(0.645g,2.1mmol)溶于80mL乙酸置于三口瓶中,充放气三次,在氩气保护。60℃下用恒压滴液漏斗滴加30mL乙酸与化合物3(0.97g,1.8mmol)的混合物,滴加结束后继续反应一个小时,然后将体系反应温度设置成120℃,反应3h,然后将温度设置成90℃反应过夜。停止反应,冷却至室温,混合物倒至冰水中,用二氯甲烷萃取混合液,有机相水洗三次除去溶于水的杂质和未反应完全的原料,旋转蒸发仪旋干溶剂,所得产物经薄层色谱法与原料对照跑板后确定极性与接液点,DCM:PE=1:7过柱。核磁共振氢谱确认产物6。(0.93g,产率:63.9%)。

1H>3)δ7.28–7.19(m,2H),4.20–4.11(m,2H),1.80–1.24(m,12H),0.94(ddd,J=22.0,14.9,7.3Hz,6H).

e)将化合物6(1.05g,1.3mmol),三丁基(2-噻吩基)锡(0.976g,2.6mmol),PdCl2(pph3)2(0.032g,0.046mmo)及30mL无水甲苯加入反应瓶中,在氩气保护下反应混合液加热回流48小时。反应结束后,冷却至室温,减压旋蒸掉多余的溶剂,粗产物用DCM:PE=1:6过硅胶柱,得到橘黄色固体8。(0.96g,产率:91%)

1H>3)δ8.06–8.00(m,1H),7.71(dd,J=5.2,0.9Hz,1H),7.31(dd,J=10.9,4.4Hz,2H),4.20–4.11(m,2H),1.80–1.24(m,13H),1.02–0.76(m,7H).

f)在反应瓶子依次加入化合物8(0.94g,1.16mmol),20mL DMF,然后避光,分三次往反应瓶中加NBS(0.413g,2.32mmol)。室温避光反应过夜。反应结束后,减压旋蒸掉多余溶剂,粗产物用DCM:PE=1:10过硅胶柱,得红色晶体M1(0.91g,产率81%)

1H>3)δ7.81(d,J=4.1Hz,1H),7.26(s,2H),7.23(d,J=4.2Hz,1H),4.19(d,J=5.5Hz,2H),1.80–1.30(m,13H),1.02–0.85(m,6H).

g)采用Stille反应制备聚合物(HFQx-BDT):氮气保护下,将M1(0.14531g,0.15mmol)和2,6-二(三甲基锡)-4,8-二(3-异辛基噻吩)-苯并[1,2-b:4,5-b’]二噻吩(0.13595g,0.15mmol)加入到10mL无水甲苯与2mL DMF中,再加入Pd(PPh3)4(10mg),110℃下搅拌反应24小时后,冷却至室温,倒入100mL甲醇中沉析,过滤,于索氏提取器中依次用甲醇、正己烷、氯仿抽提,回收氯仿溶液,旋干多余溶剂,再加入少量氯仿使之溶解后倒入离心管中,加入甲醇使之层析出来,高速离心后倒掉上层清夜,反复几次,得到墨蓝色目标聚合物HFQx-BDT(151mg,产率:53%).

实施例2

HFQx-BDT的光伏性质

器件结构为ITO/PEDOT:PSS/HFQx-BDT:PC71BM/ZrAcac/Al

或者ITO/PEDOT:PSS/HFQx-BDT:ITIC/PDINO/Al

本发明以上述聚合物作为工作介质,制备聚合物太阳能电池的方法是:将HFQx-BDT与适量的PC61BM或者PC71BM及其衍生物,小分子受体(ITIC)或其它的可以作为电子受体的物质混合,加入适量的溶剂溶解,通过常规的旋涂或其他方式在ITO导电玻璃上制备出一层半透明的薄膜,然后通过真空蒸镀的方式在聚合物上蒸镀金属电极,制备聚合物太阳能电池器件。

15mg的HFQx-BDT与10mg的PC71BM混合,加入0.5mL邻二氯苯溶解,通过旋涂方式在经PEDOT:PSS修饰过的导电玻璃上制备出一层约100nm厚的薄膜,作为活性层,然后通过真空蒸镀的方式用铝在活性层上制备金属电极。其器件性能表现为:

短路电流=13.40mA/cm2;开路电压=0.87V;填充因子=66.25%;

模拟太阳光(A.M.1.5,100mW/cm2)下的能量转换效率=7.76%。

8mg的PHFQx-BDT与9mg的ITIC混合,加入0.5mL邻二氯苯溶解,通过旋涂方式在经PEDOT:PSS修饰过的导电玻璃上制备出一层约100nm厚的薄膜,作为活性层,然后通过真空蒸镀的方式用铝在活性层上制备金属电极。其器件性能表现为:

短路电流=15.59mA/cm2;开路电压=0.92V;填充因子=65.17%;

模拟太阳光(A.M.1.5,100mW/cm2)下的能量转换效率=9.37%。

光谱分析:

本发明的共轭聚合物材料光谱吸收利用紫外-可见吸收光谱仪来分析,从而判断其捕获光子能力。聚合物在三氯甲烷溶液和薄膜状态下的吸收光谱如图1所示。

图中红线表示聚合物氯仿溶液的吸收曲线,黑色曲线则表示固体薄膜的吸收曲线。可以看出该聚合物吸收光谱较宽,边带吸收达到740nm。有3个典型的吸收峰,尤其是其膜的最大吸收峰在601nm有一个较好的吸收。在短波方向上的吸收峰对应于聚合物共轭主链π-π*的电子跃迁,长波方向上的吸收峰对应于D-A单元间的ICT作用。从固体膜吸收光谱的边带吸收(λonset)可以通过经验公式计算出聚合物的光学带隙为1.76eV(Egopt=1240/λonset)。这种较低的能隙归功于噻吩烷基苯并二噻吩与氟代喹喔啉构建D-A聚合物,形成了电荷转移态,从而带隙降低,达到了更好的吸光效果。该化合物的薄膜吸收和该化合物的溶液吸收相比,其吸收宽度并未有太大改变,吸收位置并没有明显红移,这可能是因为6个氟的强吸电子性使得聚合物在溶液中就有很好的聚集,所以成膜后的聚集与溶液相比并未有太大的改变。

该类在可见光区有着宽吸收的窄带隙聚合物在聚合物太阳能电池的制备中有着广阔的应用前景。

电化学性能:

图2为PHFQx-BDT薄膜的循环伏安图。将HFQx-BDT的三氯甲烷溶液涂在铂电极上,以Ag/AgCl为参比电极,等晾干成膜后置于六氟磷酸四丁基胺乙腈溶液中测量。从图3中得到HFQx-BDT起始氧化电位为:1.09V,起始还原电位为:-3.50V。我们可以从氧化曲线部分看出这类聚合物材料有较低的HOMO能级。低的HOMO能级表明这类聚合物材料有良好的空气稳定性,非常适合制备太阳能电池器件。光学性能和电话学性能总结在表1中。

表1.聚HFQx衍生物材料PHFQx-BDT的光学与电化学结果。

光伏性能(太阳能电池性能):

从图3所示,在DIO作为添加剂存在下基于HFQx-BDT与PC71BM共混的器件中,拥有0.87V的高开路电压,短路电流为13.40mA/cm2,填充因子为66.25%,进而得到较高的能量转化效率为7.76%。在没有任何添加剂存在时,基于PHFQx-BDT与ITIC共混的器件中,拥有0.92V的最高开路电压值,短路电流15.59mA/cm2,填充因子为65.17%,进而得到最高的能量转化效率为9.37%。太阳电池的转换效率和稳定性可以通过优化器件和使用不同添加剂获得。表2为不同条件下器件性能。图4中我们可以看出聚合物具有较宽的光谱响应和EQE效率,同时也印证了HFQx衍生物材料HFQx-BDT的高效率。

表2.HFQx衍生物材料HFQx-BDT的光伏性能结果。

溶解性能:

该聚合物在二氯甲烷,三氯甲烷,四氢呋喃,甲苯等常用溶剂中溶解良好。

总之,本发明首次合成一种六氟代喹喔啉(HFQx)材料具有良好的可加工性,并将其用于聚合物太阳能电池上,经过初步尝试证明具有较好的光电转换特性,这类材料具有好的热稳定性,优越的吸光特性,良好的电化学性能,这类氟代喹喔啉类聚合物材料用于有机太阳电池中具有普适性且拥有巨大的发展前景。电池转换效率PCE达到都超过7%,其中HFQx-BDT最高效率达到的9.37%,在聚合物太阳电池的应用上有巨大的商业前景。

本发明参照特定的实施方案和实施例进行描述。然而,本发明不局限于仅仅所述的实施方案和实施例子。本领域普通技术人员应认识到,基于本专利,在不偏离权利要求书所限定的本发明的范围下可进行许多改变和替代。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号