首页> 中国专利> 一种具有X‑射线屏蔽性能的超轻、超薄柔性纳米金属/纳米纤维复合膜及其制备方法

一种具有X‑射线屏蔽性能的超轻、超薄柔性纳米金属/纳米纤维复合膜及其制备方法

摘要

一种具有X‑射线屏蔽性能、超薄、超轻的柔性纳米金属/纳米纤维复合膜及其制备方法,属于X‑射线屏蔽材料技术领域。该膜以静电纺丝技术与金属化学沉积技术相结合的方法,在有机纳米纤维的表面上构筑特定形貌的、连续紧密堆积的纳米金属粒子,形成纳米金属沉积的纳米纤维膜,再通过热压或树脂类强化剂层层叠加,其密度仅为纯金属的5%~20%,电导率表现出各向异性,横向电导率具有金属电导率的性质,纵向电导率为横向电导率的千万分之一。利用纳米金属粒子的吸收损耗、纤维膜层间的多次反射、纳米结构散射和宏观结构散射,使入射的X‑射线难以溢出,从而达到有效的吸收,获得性能良好的新型全纳米结构X‑射线等宽频段电磁防护材料。

著录项

  • 公开/公告号CN106827553A

    专利类型发明专利

  • 公开/公告日2017-06-13

    原文格式PDF

  • 申请/专利权人 盐城迈迪科技有限公司;

    申请/专利号CN201710051718.7

  • 发明设计人 王策;姬鹤;张楠;金昌显;

    申请日2017-01-20

  • 分类号B29C65/02(20060101);D01F1/10(20060101);D01F8/08(20060101);D01F8/16(20060101);C23C18/42(20060101);C23C18/40(20060101);C23C18/52(20060101);C23C18/48(20060101);C23C18/20(20060101);B29L7/00(20060101);B29L9/00(20060101);

  • 代理机构22201 长春吉大专利代理有限责任公司;

  • 代理人刘世纯;王恩远

  • 地址 224000 江苏省盐城市新跃路2号智慧科技城创新创业基地1号楼3楼

  • 入库时间 2023-06-19 02:30:15

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2019-07-09

    授权

    授权

  • 2019-05-21

    专利申请权的转移 IPC(主分类):B29C65/02 登记生效日:20190505 变更前: 变更后: 申请日:20170120

    专利申请权、专利权的转移

  • 2017-07-07

    实质审查的生效 IPC(主分类):B29C65/02 申请日:20170120

    实质审查的生效

  • 2017-06-13

    公开

    公开

说明书

技术领域

本发明属于X-射线屏蔽材料技术领域,具体涉及一种具有X-射线屏蔽性能、超薄、超轻的柔性纳米金属/纳米纤维复合膜及其制备方法。

背景技术

X-射线是一种波长极短、频率极高、能量很大、穿透能力很强的电磁波。其波长约在0.001~100nm,能量范围在0.1eV~10GeV。随着对X-射线研究的深入和发展,X-射线的应用广泛的分布在医院、核电站、半导体加工、电子元器件各个领域,如医院里使用的透射影像学、X-射线断层成像、心血管成形技术,防核辐射服等等。长期接触X-射线的工作者,身体会受到极大的危害,可使生物细胞受到抑制、破坏甚至坏死,致使机体发生不同程度病变。同时宇宙射线、航空航天、雷达、电子通讯、家用电器等现代化设备产生了大量的微波辐射,日益的危害着人们的生活环境及身体健康。

现有的X-射线防护服主要为含铅硫化橡胶,在X-射线弱吸收区对X-射线散射强,沉而笨重,每件达15kg,厚度为2.5~5mm,无舒适感。另外,铅具有毒性,不利与皮肤接触,废弃物对环境污染较大,所以寻找一种轻质无毒X-射线屏蔽材料得到越来越多的关注。

纳米材料是指材料组分的特征尺寸在纳米级别(1~100nm)的材料,是介于宏观物质和微观原子、分子的中间领域,是一种新的结构状态。纳米材料由于具有一系列的特殊结构,使其在光、电、磁等物理性质方面发生质的变化,不仅可以有效的屏蔽电磁波,并且对高能射线有较强的吸收,是一种极具发展前途的电磁波及X-射线屏蔽材料。

近些年来,高压静电纺纳米纤维在电磁屏蔽领域被学者们广泛的研究,但对X-射线等高能射线的屏蔽研究较少。静电纺纳米纤维由于其纳米尺寸且具有大的比表面积、高的孔隙率等特点,使其有利于对X-射线的吸收且使入射的X-射线难以溢出,通过层层吸收与反射达到有效的X-射线屏蔽。同时也可以有效的屏蔽日常生活中的微波辐射,实现对宽频段电磁波的有效阻隔

发明内容

本发明目的是提供一种具有X-射线屏蔽性能的超轻超薄柔性纳米金属/纳米纤维复合膜及其制备方法。

一种具有X-射线阻隔性能的超轻超薄柔性纳米金属/纳米纤维复合膜,该膜以静电纺丝技术与金属化学沉积技术相结合的方法,在有机纳米纤维的表面上构筑特定形貌的、连续紧密堆积的金属纳米粒子,形成纳米金属沉积的纳米纤维膜,再通过热压或树脂类强化剂层层叠加,其密度仅为纯金属的5%~20%,电导率表现出各向异性,横向电导率具有金属电导率的性质,纵向电导率为横向电导率的千万分之一。利用金属纳米粒子的吸收损耗、纤维膜层间的多次反射、纳米结构散射和宏观结构散射,使入射的X-射线难以溢出,从而达到有效的吸收,获得性能良好的新型全纳米结构X-射线等宽频段电磁防护材料。

其中,该纳米纤维复合膜具有极好的柔韧性和机械强度。

其中,该纳米纤维复合膜内部的单根纤维直径平均为150~650nm,纤维上生长的金属纳米粒子的平均直径为30~150nm,单层纳米纤维复合膜的平均厚度为20~50μm。

上述具有良好X-射线屏蔽性能的超轻、超薄柔性纳米金属/纳米纤维复合膜的制备方法包括以下几个步骤:

(1)高压静电纺丝:将聚丙烯腈和聚氨酯加入到N,N-二甲基甲酰胺中,加热搅拌至聚丙烯腈和聚氨酯完全溶解,再加入金属盐(硝酸银、氯金酸、硝酸铜、硝酸锌、硝酸镍、硝酸铁、硝酸铟、氯铂酸、硝酸钯、硝酸钴、硝酸锢、硝酸铅、硝酸锡或氯化钨中的一种),避光搅拌得到均匀、透明、稳定的纺丝溶液,然后进行高压静电纺丝,制得聚丙烯腈/聚氨酯/金属盐复合的前驱体纤维,干燥后得到聚丙烯腈/聚氨酯/金属盐复合纳米纤维;

(2)微波还原:将步骤(1)得到的复合纳米纤维膜浸入到氢氧化钠和乙二醇的混合溶液中,进行微波还原,得到在纳米纤维表面生长有金属粒子的种子膜;

(3)金属化学沉积:将步骤(2)得到的种子膜浸入到与步骤(1)中使用的金属盐相对应的金属盐溶液中进行如下之一的化学沉积:

①化学沉积银或金:将步骤(2)得到的种子膜放入银氨溶液或氯金酸溶液中,然后向其中加入葡萄糖水溶液,轻微震荡一段时间后取出,洗涤,干燥,从而得到银或金纳米粒子/纳米纤维复合膜;

②化学沉积铜或锌:将步骤(2)得到的种子膜放入硝酸铜或硝酸锌水溶液中,然后向其中加入甲醛、酒石酸钾钠、氢氧化钠、亚铁氰化钾的混合水溶液,轻微震荡一段时间后取出,洗涤干燥,从而得到铜或锌纳米粒子/纳米纤维复合膜。

③化学沉积镍、铁或铟:将步骤(2)得到的种子膜放入硝酸镍、硝酸铁或硝酸铟水溶液中,然后向其中加入硼氢化钠、乙二胺、氢氧化钠、亚铁氰化钾的混合水溶液,加热,轻微震荡一段时间后取出,洗涤干燥,从而得到镍、铁或铟纳米粒子/纳米纤维复合膜。

④化学沉积铂:将步骤(2)得到的种子膜放入氯铂酸水溶液中,然后向其中加入水合肼、乙二胺的混合水溶液,轻微震荡一段时间后取出,洗涤干燥,从而得到铂纳米粒子/纳米纤维复合膜。

⑤化学沉积钯、钴或铬:将步骤(2)得到的种子膜放入硝酸钯、硝酸钴或硝酸铬的水溶液中,然后向其中加入次磷酸钠、柠檬酸钠、氯化铵的混合水溶液,加热,轻微震荡一段时间后取出,洗涤干燥,从而得到钯、钴或铬纳米粒子/纳米纤维复合膜。

⑥化学沉积铅或锡:将步骤(2)得到的种子膜放入硝酸铅或硝酸锡水溶液中,然后向其中加入盐酸、次磷酸钠、硫脲的混合水溶液,加热,轻微震荡一段时间后取出,洗涤干燥,从而得到铅或锡纳米粒子/纳米纤维复合膜

⑦化学沉积钨、钨-银合金:将步骤(2)得到的种子膜放入氯化钨或硝酸银和氯化钨的混合水溶液中,然后向其中加入氨水、冰醋酸、水合肼的混合水溶液,加热,轻微震荡一段时间后取出,洗涤干燥,从而得到钨或钨-银合金纳米粒子/纳米纤维复合膜。

⑧化学沉积镍-钨-磷、镍-铁-磷、镍-铜-磷、镍-钴-磷、钴-铁-磷、钴-铜-磷或钴-钨-磷合金:将步骤(2)得到的种子膜放入硝酸镍和氯化钨、硝酸镍和硝酸铁、硝酸镍和硝酸铜、硝酸镍和硝酸钴、硝酸钴和硝酸铁、硝酸钴和硝酸铜或硝酸钴和氯化钨的水溶液中,然后向其中加入次磷酸钠、柠檬酸钠、酒石酸钾钠、氯化铵、乳酸、氨水的混合水溶液,加热,轻微震荡一段时间后取出,洗涤干燥,从而得到镍-钨-磷、镍-铁-磷、镍-铜-磷、镍-钴-磷、钴-铁-磷、钴-铜-磷或钴-钨-磷合金纳米粒子/纳米纤维复合膜。

⑨化学沉积铅-锡合金:将步骤(2)得到的种子膜放入硝酸铅和硝酸锡水溶液中,然后向其中加入盐酸、次磷酸钠、硫脲的混合水溶液,加热,轻微震荡一段时间后取出,洗涤干燥,从而得到铅-锡纳米粒子/纳米纤维复合膜。

(4)多层膜的叠加:将步骤(3)得到的长有纳米金属或合金粒子的纳米纤维进行多层叠加,并通过热压得到纳米金属/纳米纤维复合膜。

其中,步骤(1)中,纺丝溶液中聚丙烯腈的质量分数为2%~10%,聚氨酯的质量分数为2%~10%,55℃~85℃搅拌下6~10h;金属盐的质量为聚丙烯腈和聚氨酯质量和的5%~30%,避光搅拌15~30h;静电纺丝的工艺参数为:纺丝电压10~20kV,接收距离为15~30cm,喷丝头直径为0.8~1.5mm,纺丝温度为15~30℃,纺丝湿度小于60%;接收板厚度为50~80μm的铝箔。

其中,步骤(2)中,乙二醇中氢氧化钠的质量分数为5~25%,微波还原时间为10~40s,微波的功率为500W;

其中,步骤(3)①中,银氨溶液的浓度为0.01~0.08M、氯金酸水溶液的浓度为0.5~5g/L、葡萄糖水溶液的浓度为20~60g/L,常温下轻微震荡反应30~120min;

其中,步骤(3)②中,硝酸铜或硝酸锌水溶液的浓度为5~50g/L、甲醛水溶液的浓度为10~50mL/L、酒石酸钾钠水溶液的浓度为10~50g/L、氢氧化钠水溶液的浓度为5~30g/L、亚铁氰化钾水溶液的浓度为0.2~1.0mg/L,常温下轻微震荡反应30~120min;

其中,步骤(3)③中,硝酸镍、硝酸铁、硝酸铟水溶液的浓度为5~40g/L、硼氢化钠水溶液的浓度为0.4~2.0g/L、乙二胺水溶液的浓度为30~80g/L、氢氧化钠水溶液的浓度为90~140g/L、亚铁氰化钾水溶液的浓度为15~40mg/L,60~95℃下轻微震荡反应30~120min;

其中,步骤(3)④中,氯铂酸水溶液的浓度为0.01~0.08M、水合肼水溶液的浓度为0.05~2g/L、乙二胺水溶液的浓度为0.5~5g/L,常温下轻微震荡反应30~120min;

其中,步骤(3)⑤中,硝酸钯、硝酸钴或硝酸铬水溶液的浓度为5~40g/L、次磷酸钠水溶液的浓度为10~50g/L、柠檬酸钠水溶液的浓度为20~50g/L、氯化铵水溶液的浓度为20~50g/L,温度在40~90℃下轻微震荡反应30~120min;

其中,步骤(3)⑥中,硝酸铅或硝酸锡水溶液的浓度为5~40g/L、盐酸水溶液的浓度为30~100g/L、次磷酸钠水溶液的浓度为30~80g/L、硫脲水溶液的浓度为80~150g/L,温度在50~90℃下轻微震荡反应30~120min;

其中,步骤(3)⑦中,硝酸银水溶液的浓度为2~15g/L、氯化钨水溶液的浓度为5~50g/L、氨水的浓度为20~90ml/L、冰醋酸水溶液的浓度为10~80g/L、水合肼水溶液的浓度为2~40mg/L,60~95℃下轻微震荡反应30~120min;

其中,步骤(3)⑧中,硝酸镍和钨酸钠、硝酸镍和硝酸铁、硝酸镍和硝酸铜、硝酸镍和硝酸钴、硝酸钴和硝酸铁、硝酸钴和硝酸铜、硝酸钴和氯化钨水溶液的浓度为10~80g/L、次磷酸钠水溶液的浓度为5~30g/L、柠檬酸钠水溶液的浓度为50~250g/L、酒石酸钾钠水溶液的浓度为10~80g/L、氯化铵水溶液的浓度为10~50g/L、乳酸水溶液的浓度为5~20mg/L、氨水水溶液的浓度为5~30g/L,温度在50~90℃下轻微震荡反应30~120min;

其中,步骤(3)⑨中,硝酸铅或硝酸锡水溶液的浓度为5~40g/L、盐酸水溶液的浓度为30~100g/L、次磷酸钠水溶液的浓度为30~80g/L、硫脲水溶液的浓度为80~150g/L,温度在50~80℃下轻微震荡反应30~120min;

其中,步骤(4)中,热压温度为50~90℃,热压时间为2~8min,压力为10~40Kg/cm2

一种具有良好X-射线屏蔽性能的纳米金属/纳米纤维复合柔性膜的制备方法可在有机纳米纤维上可生长不同种类的金属纳米粒子或合金纳米粒子,金属纳米粒子为Ag、Cu、Ni、Au、Ln、Zn、Fe、Co、Cr、Sn、Pa、Pt或W中的一种;合金纳米粒子为W-Ag、Ni-Cu-P、Ni-Co-P、Ni-Cr-P、Co-Fe-P或Co-Cu-P中的一种;纳米粒子的形貌为片状、棒状、球状、网状、线状、花状或针状中的一种。

本发明所制备的材料可以实现X-射线强度在40~150keV,160~320mX/s范围内的有效防护。通过纳米纤维膜的层层叠加,当叠加厚度为1mm时屏蔽效率可达10个铝当量。

本发明所得的纳米金属/纳米纤维复合膜的阻隔性能利用医用成像X-射线机进行测试,其X-射线强度为40~150keV,160~320mX/s。如将该纳米纤维复合膜放置于该X-射线机下,用强度为40~150keV,160~320mX/s的X-射线在距离复合纳米纤维膜60mm的距离处照射(曝光时间为0.125s),并测量该条件下标准厚度铝板的X-射线强度,与本发明材料进行对比,计算材料的铝当量。

相比于现有技术,本发明具有以下优势:

(1)本发明以金属纳米粒子/纳米纤维为模板生长外层金属纳米粒子,粒子分布均匀、堆积紧密连续,使复合膜即具有金属的导电性,又具有有机纳米纤维的柔韧性。

(2)通过对金属纳米粒子/纳米纤维的化学沉积后处理技术,可在有机纳米纤维上生长不同种类的可通过化学沉积的金属粒子及其合金如Ag、Au、Cu、Zn、Ni、Fe、Ln、Pt、Pd、Co、Cr、Pb、Sn、W及W-Ag、Ni-W-P、Ni-Fe-P、Ni-Cu-P、Ni-Co-P、Co-Fe-P、Co-Cu-P、Co-W-P。同时可以控制金属粒子的形貌如形成片状、棒状、球状、网状、线状等。

(3)在有机纳米纤维上生长不同形貌的无机金属纳米粒子,由于其特殊的屏蔽机理和散射性质及多层不同的纳米金属/纳米纤维膜间的相互匹配性,实现对X-射线的有效吸收,极大提高了对X-射线的屏蔽性能。

(4)所得纳米纤维复合膜电导率表现出各向异性,横向电导率具有金属电导率的性质,纵向电导率为横向电导率的千万分之一,如实施例1中,金属银纳米粒子/纳米纤维的横向电导率为7.397*106S/m,纵向电导率为0.042S/m;重量轻,其密度仅为纯金属的5%~20%;厚度薄,50μm厚的复合纳米纤维膜的屏蔽效果相当于6cm厚的铝板;阻隔性能强;具有较好的柔韧性和机械强度。

附图说明

图1为实施例中所制备的具有X-射线屏蔽性能的超轻超薄柔性纳米金属/纳米纤维复合材料的SEM照片(a)纳米银粒子/纳米纤维SEM照片;(b)纳米铜粒子/纳米纤维SEM照片;(c)纳米镍粒子/纳米纤维SEM照片;(d)纳米钨-银合金粒子/纳米纤维SEM照片。图中银、铜、镍、钨-银合金粒子直径平均是30nm,大多数粒子呈球型位于纳米纤维外侧,并面朝各个方向;铜纳米粒子为锥形,紧密堆积在纳米纤维表面,大多数与纤维表面垂直。

图2为实施例中所制备的具有X-射线屏蔽性能的超轻超薄柔性纳米金属/纳米纤维复合材料的XRD谱图(a)纳米银粒子/纳米纤维XRD谱图;(b)纳米铜粒子/纳米纤维XRD谱图;(c)纳米镍粒子/纳米纤维XRD谱图;(d)纳米钨-银合金粒子/纳米纤维XRD谱图。图(a)中的五个衍射峰2θ=37.9°、44.3°、64.4°、77.3°、81.4°对应立方金属银的(1 1 1)、(2 0 0)、(2 2 0)、(3 1 1)、(2 2 2)晶面;图(b)中的三个衍射峰2θ=43.69°、50.63°、74.25°对应立方金属铜的(111)、(200)、(220)晶面;图(c)中的三个衍射峰2θ=44.67°、51.69°、76.77°对应面心立方金属镍的(1 1 1)、(2 0 0)、(2 2 2)晶面;图(d)中的五个衍射峰2θ=37.9°、44.3°、64.4°、77.3°、81.4°对应立方金属钨-银合金的(1 1 1)、(2 0 0)、(2 2 0)、(3 11)、(2 2 2)晶面;

图3为实施例中所制备的具有X-射线屏蔽性能的超轻超薄柔性纳米金属/纳米纤维复合材料X-射线屏蔽照片(a)纳米银粒子/纳米纤维X-射线屏蔽照片;(b)纳米铜粒子/纳米纤维X-射线屏蔽照片;(c)纳米镍粒子/纳米纤维X-射线屏蔽照片;(d)纳米钨-银合金粒子/纳米纤维X-射线屏蔽照片;(e)1~10mm标准铝梯X-射线屏蔽照片。图(a)中0.5mm厚的纳米银粒子/纳米纤维通过灰度值计算,其X-射线屏蔽效率为6个铝当量;图(b)中0.5mm厚的纳米铜粒子/纳米纤维通过灰度值计算,其X-射线屏蔽效率为3.5个铝当量;图(c)中0.5mm厚的纳米镍粒子/纳米纤维通过灰度值计算,其X-射线屏蔽效率为5个铝当量;图(d)中0.5mm厚的纳米钨-银合金粒子/纳米纤维通过灰度值计算,其X-射线屏蔽效率为5.5个铝当量;

具体实施方式

下面的实施例将对本发明做进一步说明。应理解,这些实施案例仅用于说明本发明而不用于限制本发明的保护范围。

实施例1

步骤1,将0.4g聚丙烯腈(Mn=80000)、0.6g聚氨酯(Mn=8000)加入到盛有10g N,N-二甲基甲酰胺(DMF)的锥形瓶中,于60℃水浴加热并磁力搅拌6h至聚合物完全溶解,然后加入0.2g硝酸银常温避光搅拌20h制得均匀、透明、稳定的纺丝溶液。将其移入静电纺丝装置的喷丝管中,在电压为15kV、接受距离为15cm、喷丝头直径为1.2mm、环境温度25℃、湿度为35%的条件下进行静电纺丝制得聚丙烯腈/聚氨酯/硝酸银复合前驱体纤维,并将收集到的前驱体纤维放入烘箱中内65℃干燥12h。

步骤2,将步骤1所得的复合纳米纤维膜浸入6.5g氢氧化钠和100mL乙二醇的混合溶液中,在微波炉中500W微波处理10s,得到在纳米纤维表面长有金属粒子的种子膜。

步骤3,化学沉积银:将0.5g硝酸银加入50mL去离子水中,搅拌均匀后缓慢滴加氨水至溶液变为澄清得到银氨溶液,将步骤2得到的种子膜放入该溶液中,随后加入50mL溶有2g葡萄糖的水溶液,轻微振荡30min。将纤维膜从镀液中取出,去离子水洗涤数次,在65℃下干燥12h,得到银纳米粒子/纳米纤维复合膜,其平均厚度为40μm,金属粒子呈球型位于纳米纤维外侧,并面朝各个方向,通过控制化学沉积的时间可得到长有不同直径金属粒子的纳米纤维(如图1(a),扫描电子显微镜照片;如图2(a),XRD谱图)。

步骤4,多层膜叠加:将得到的银纳米粒子/纳米纤维复合膜进行多层叠加,通过热压得到0.5mm厚的银纳米粒子/纳米纤维复合膜,热压温度60℃,热压时间3min,压力20Kg/cm2,在X-射线强度为120keV,320mX/s下其屏蔽性能相当于6个铝当量(如图3(a)X-射线屏蔽照片)。得到的单层银纳米粒子/纳米纤维复合膜的密度为1.71g/cm3,为纯银密度10.49g/cm3的16%;通过四探针测量其横向电导率为7.397*106S/m,纵向电导率为0.042S/m。拉伸强度为6.01MPa,断裂伸长率为3.56%。

实施例2

步骤1,将0.5g聚丙烯腈、0.5g聚氨酯加入到盛有10g N,N-二甲基甲酰胺(DMF)的锥形瓶中,于55℃水浴加热并磁力搅拌6h至聚合物完全溶解,然后加入0.25g硝酸铜,常温避光搅拌20h制得均匀、透明、稳定的纺丝溶液。将其移入纺丝管中,在电压为15kV、接受距离为15cm、喷丝头直径为1.2mm、环境温度为25℃、湿度为35%的条件下进行静电纺丝,制得聚丙烯腈/聚氨酯/硝酸铜复合前驱体纤维,并将收集到的纤维放入烘箱中内65℃干燥12h。

步骤2,将所得的金属盐/纤维膜浸入8g氢氧化钠、100mL乙二醇的混合溶液中,在微波炉中微波20s,得到在纳米纤维表面长有金属粒子的种子膜。

步骤3,化学沉积铜:将1.8g硫酸铜加入50mL去离子水中,搅拌均匀后将步骤2得到的种子膜放入上述溶液中,随后加入50mL含有1.5mL甲醛、1.8g酒石酸钾钠、0.8g氢氧化钠、0.05mg亚铁氰化钾的混合溶液,轻微振荡30min。将纤维膜从镀液中取出,去离子水洗涤数次,在65℃下干燥12h。得到铜纳米粒子/纳米纤维复合膜,其平均厚度为45μm,铜纳米粒子为锥形,紧密堆积在纳米纤维表面,大多数与纤维表面垂直,通过控制化学沉积的时间可得到长有不同长度的锥形金属粒子的纳米纤维(如图1(b),扫描电子显微镜照片;如图2(b),XRD谱图)。

步骤4,多层膜叠加:将得到的铜纳米粒子/纳米纤维复合膜多进行多层叠加,通过热压得到0.5mm厚的铜纳米金属/纳米纤维复合膜,热压温度60℃,热压时间3min,压力为20Kg/cm2,在X-射线强度为120keV,320mX/s下其屏蔽性能X-射线屏蔽性能相当3.5个铝当量(如图3(b)X-射线屏蔽照片)。得到的铜纳米粒子纳米纤维膜的密度为0.574g/cm3,为纯铜密度8.96g/cm3的6.4%;通过四探针测量其横向电导率为1.880*104S/m,纵向电导率为0.0267S/m。拉伸强度为7.23MPa,断裂伸长率为13.18%。

实施例3

步骤1,将0.6g聚丙烯腈、0.4g聚氨酯加入到盛有10g N,N-二甲基甲酰胺(DMF)的锥形瓶中,于60℃水浴加热并磁力搅拌6h至聚合物完全溶解,然后加入0.2g硝酸镍常温避光搅拌20h制得均匀、透明、稳定的纺丝溶液。将其移入静电纺丝装置中,在电压为15kV、接受距离为15cm、喷丝头直径为1.2mm、环境温度为25℃、湿度为35%的条件下进行静电纺丝,制得聚丙烯腈/聚氨酯/硝酸镍复合前驱体纤维,并将收集到的复合纤维放入烘箱中内65℃干燥12h。

步骤2,将所得的纳米纤维膜浸入8.5g氢氧化钠和100mL乙二醇的混合溶液中,在微波炉中微波30s,得到在纳米纤维表面长有金属粒子的种子膜。

步骤3,化学沉积镍:将1.5g氯化镍加入50mL去离子水中,搅拌均匀后将步骤2得到的种子膜放入上述溶液中,随后加入50mL含有0.08g硼氢化钠、4g乙二胺、5.5g氢氧化钠、2mg亚铁氰化钾的混合溶液,90℃下轻微振荡30min。将纤维膜从镀液中取出,去离子水洗涤数次,在60℃下干燥12h。得到镍纳米粒子/纳米纤维复合膜。其平均厚度为40μm,金属粒子呈球型位于纳米纤维外侧,并面朝各个方向,通过控制化学沉积的时间可得到长有不同直径金属粒子的纳米纤维(如图1(c),扫描电子显微镜照片;如图2(c),XRD谱图)。

步骤4,多层膜叠加:将得到的镍纳米粒子/纳米纤维复合膜多进行多层叠加,通过热压得到0.5mm厚的镍纳米金属/纳米纤维复合膜,热压温度60℃,热压时间3min,压力为20Kg/cm2,在X-射线强度为120keV,320mX/s下其屏蔽性能相当于5个铝当量(如图3(c)X-射线屏蔽照片)。得到的镍纳米粒子纳米纤维膜的密度为0.630g/cm3,为纯镍密度8.90g/cm3的7%;通过四探针测量其横向电导率为5.000*103S/m,纵向电导率为1.4*10-4S/m。拉伸强度为7.08MPa,断裂伸长率为12.29%。

实施例4

步骤1,将0.4g聚丙烯腈、0.6g聚氨酯加入到盛有10g N,N-二甲基甲酰胺(DMF)的锥形瓶中,于60℃水浴加热并磁力搅拌10h至聚合物完全溶解,然后加入0.08g硝酸银常温避光搅拌20h制得均匀、透明、稳定的纺丝溶液。将其移入静电纺丝装置中,在电压为15kV、接受距离为15cm、喷丝头直径为1.2mm、环境温度为25℃、湿度为35%的条件下进行静电纺丝,制得聚丙烯腈/聚氨酯/硝酸银复合前驱体纤维,并将收集到的复合纤维放入烘箱中内65℃干燥12h。

步骤2,将所得的纳米纤维膜浸入8.5g氢氧化钠和100mL乙二醇的混合溶液中,在微波炉中微波30s,得到在纳米纤维表面长有金属粒子的种子膜。

步骤3,化学沉积钨-银合金:将0.25g硝酸银、0.3g钨酸钠加入50mL去离子水中,搅拌均匀后将步骤2得到的种子膜放入上述溶液中,随后加入50mL含有2mL氨水、2g冰醋酸、1mg水合肼的混合溶液。30℃下轻微振荡30min。将纤维膜从镀液中取出,去离子水洗涤数次,在65℃下干燥12h。得到银-钨合金纳米粒子/纳米纤维复合膜,其平均厚度为40μm,金属粒子呈球型位于纳米纤维外侧,并面朝各个方向,通过控制化学沉积的时间可得到长有不同直径金属粒子的纳米纤维(如图1(d),扫描电子显微镜照片;如图2(d),XRD谱图)。

步骤4,多层膜叠加:将得到的银-钨合金纳米粒子/纳米纤维复合膜多进行多层叠加,通过热压得到0.5mm厚的银-钨合金纳米金属/纳米纤维复合膜,热压温度60℃,热压时间3min,压力为20Kg/cm2,在X-射线强度为120keV,320mX/s下其屏蔽性能相当于5.5个铝当量(如图3(d)X-射线屏蔽照片)。得到的银-钨合金纳米粒子纳米纤维膜的密度为1.230g/cm3,为纯钨密度19.35g/cm3的6.36%;通过四探针测量其横向电导率为4.732*105S/m,纵向电导率为0.0067S/m。拉伸强度为5.63MPa,断裂伸长率为5.90%。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号