首页> 中国专利> 具有连续孔径分布特征的污水处理用污泥活性炭及其制备方法

具有连续孔径分布特征的污水处理用污泥活性炭及其制备方法

摘要

本发明公开具有连续孔径分布特征的污水处理用污泥活性炭及其制备方法,在缺氧气氛下,以ZnCl

著录项

  • 公开/公告号CN106560236A

    专利类型发明专利

  • 公开/公告日2017-04-12

    原文格式PDF

  • 申请/专利权人 天津城建大学;

    申请/专利号CN201610493575.0

  • 发明设计人 朱玉雯;李浩宇;刘汉桥;刘翠萍;

    申请日2016-06-25

  • 分类号B01J20/20;B01J20/30;B01J20/28;C01B32/342;C02F1/28;C02F11/10;C02F11/00;

  • 代理机构天津创智天诚知识产权代理事务所(普通合伙);

  • 代理人王秀奎

  • 地址 300384 天津市西青区津静路26号

  • 入库时间 2023-06-19 01:55:21

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2019-04-05

    授权

    授权

  • 2017-05-10

    实质审查的生效 IPC(主分类):B01J20/20 申请日:20160625

    实质审查的生效

  • 2017-04-12

    公开

    公开

说明书

技术领域

本发明属于环境资源化技术领域,更加具体的说,涉及利用污泥制备活性炭的方法,并将活性炭用于污水处理。

背景技术

制备活性炭通常采用煤炭、木材、果壳等碳质原料,受资源、环保等影响,活性炭生产成本逐年增加。污泥因含有大量的有机物,碳含量较高,具有制备活性炭的客观条件。以污泥为原料制备活性炭,能够有效降低原料成本,同时使污泥本身得到合理处置,实现资源化利用。经炭化处理的污泥对本身的重金属具有固化作用,可作为污水处理的吸附剂,实现以废治废。

现有的污泥活性炭制备技术主要包括热解法、化学活化法和气体活化法。研究结果表明,单以热解过程制备的活性炭具有中、大孔为主的孔隙结构。热解温度在400-650℃,大孔所占比例为40%-55%,比表面积较小,一般不超过150m2/g,吸附性能有限。化学活化法通常采用ZnCl2、KOH、磷酸、硫酸等作为活化剂。单以磷酸活化时,活性炭以中孔结构为主;硫酸活化的孔容积和比表面积一般低于磷酸活化;采用ZnCl2和KOH活化,可生成微孔结构,但ZnCl2和KOH消耗量大,且对设备的腐蚀性强,经济性较低。气体活化剂主要包括烟道气和水蒸气,活化有利于微孔的发展,特别是水蒸气活化,高温下能使孔加深,有利于丰富微孔结构。与化学活化法相比,气体活化法生产成本低,而且避免造成设备腐蚀和环境污染。然而,单独采用气体活化法,成孔效率较低。受气体内扩散的控制,活性炭内部微孔发展的同时,表面也会严重烧失,降低了得炭率。

污泥活性炭用于污水处理,吸附不同的污染物,所需孔径不同。吸附重金属离子等小分子型污染物时,需要丰富的微孔结构;吸附大分子有机物时,中孔和大孔结构更为有效。现有活化方法制备的污泥活性炭多以中孔结构为主,微孔结构欠缺,难以实现重金属离子和大分子污染物的同时高效吸附。

发明内容

本发明的目的在于克服现有技术的不足,提供具有连续孔径分布特征的污水处理用污泥活性炭及其制备方法,涉及一种分阶段组合活化的污泥活性炭制备方法,以得到具有连续孔径分布特征、且得炭率高的污水处理用污泥活性炭。本发明提出一种具有连续孔径分布特征的污泥活性炭制备方法,利用复配活化剂和气体活化剂分阶段创造丰富的中孔结构和微孔结构,并且K+和Na+含量较高,碳损失较低。

本发明的技术目的通过下述技术方案予以实现:

具有连续孔径分布特征的污水处理用污泥活性炭及其制备方法,按照下述步骤进行制备:

步骤1,将污泥与复配活化剂水溶液混合均匀并浸泡,其中污泥的干燥基碳含量不低于30%,灰分不高于40%,含水率在10wt%-20wt%;复配活化剂水溶液由ZnCl2、磷酸、K2S、NaCl和水组成,ZnCl2浓度为1-2.5mol/L,磷酸浓度为2-5mol/L,K2S加入量为干污泥质量的8%-15%,NaCl加入量为干污泥质量的0.5%-2%;污泥质量与复配活化剂水溶液体积比为1:(1—2.5),20—25℃下浸泡8-12h;

在步骤1中,选择污水处理厂的污泥,干燥基碳含量不低于30%,灰分不高于40%;经晒干、脱水处理,使含水率在10%-20%,经破碎、过筛,将污泥制备成粒径200μm以下的污泥粉末,优选100—200μm。

步骤2,将步骤1制备的污泥与复配活化剂的混合物干燥至含水率低于10wt%,加入粘结剂成型,制备成型原料,以便于成品活性炭在污水处理中应用;

在步骤2中,粘结剂为煤焦油,来自于煤炭高温干馏,其中沥青质量百分比不低于55%,蒽油质量百分比不高于10%。

在步骤2中,污泥与复配活化剂的混合物与粘结剂的质量比为1:(0.2—0.35)。

在步骤2中,选择造粒成型为圆柱体,直径6-9mm,长度12-18mm。

步骤3,将步骤2制备的成型原料在氮气中予以炭化,自室温20—25℃起,以8-15℃/min的升温速率升温至450-650℃并保温1—2.5h。

在步骤3中,先以氮气去除反应系统内的空气(即氧气成分),以使整个反应系统内充满氮气,再自室温20—25℃起,以8-15℃/min的升温速率升温至450-650℃并保温1—2.5h。

在步骤3中,自室温20—25℃起,以10-12℃/min的升温速率升温至500-600℃并保温1.5—2h。

在步骤3中,氮气流量以维持反应系统内氮气为准,且与成型原料密切接触,成型原料的质量份与氮气流量的体积份之比为1:(10—15),每一质量份为1g,每一体积份为1ml/min。

步骤4,在经过步骤3的保温后,对成型原料进行第二步处理,以12-20℃/min的升温速率,将温度升高至700-850℃,并向反应体系中通入水蒸气和氮气的混合气体同时保温反应0.5-2h,在混合气体中水蒸气体积百分数为30-80%,在反应完成后停止通入水蒸气和氮气的混合气体,并持续向反应体系中通入氮气,以使在氮气气氛下自然冷却至室温20—25℃。

在步骤4中,将温度升高至750-800℃并向反应体系中通入水蒸气和氮气的混合气体同时保温反应1-2h。

在步骤4中,在混合气体中水蒸气体积百分数为40-60%。

在步骤4中,水蒸气和氮气的混合气体流量以维持反应系统内有充足水蒸气为准,且使水蒸气与成型原料密切接触,成型原料的质量份与水蒸气和氮气的混合气体流量的体积份之比为1:(10—15),每一质量份为1g,每一体积份为1ml/min。

步骤5,对自然冷却至室温的产物进行酸洗后,水洗至中性即可。

在步骤5中,进行酸洗时,使用质量百分数12—15%的氯化氢水溶液;水洗时直接使用蒸馏水即可。

与现有技术相比,本发明利用复配活化剂和气体活化剂分阶段创造丰富的中孔结构和微孔结构,并且有效降低碳损失。第一阶段采用复配活化剂,以创造中孔结构为主。在缺氧气氛下,以ZnCl2、磷酸、K2S和NaCl组成复配活化剂,对污泥进行活化。主要以磷酸发展中孔结构,使中孔孔容不低于0.15cm3/g;较低浓度的ZnCl2发展一定量微孔结构;少量K2S促进孔隙发展并增加污泥活性炭的K+含量,微量NaCl增加活性炭的Na+含量。污泥活性炭K+和Na+含量增加,有利于增强与污水中重金属离子的置换性能。第二阶段采用气体活化法,进一步发展微孔结构。采用水蒸气,在中孔表面生成丰富的微孔,使其微孔孔容不低于0.1cm3/g,且碘吸附值不低于420mg/g。经两个阶段活化,最终得到的污泥活性炭BET比表面积不低于400m2/g,孔径在0.5-50nm连续分布,可用于吸附污水中多种污染物。第一阶段活化形成的中孔结构,可减小第二阶段的气体扩散阻力,避免了因气体内扩散控制造成的碳损失,解决了气体活化法得炭率低的问题。第二阶段采用气体活化持续发展微孔,可降低ZnCl2等化学品的添加量,降低制备成本,避免设备腐蚀等问题。制备的污泥活性炭作为污水处理的吸附剂,吸附污水中以Pb2+为代表的重金属离子和大分子污染物,具有良好的效果。

本发明得到具有连续孔径分布特征的污泥活性炭,可用于水中主要污染物重金属离子和有机物的同时吸附,活性炭表面K+、Na+含量较高,进一步增强对重金属离子的吸附性能;采用复配活化剂、气体活化剂分阶段组合活化,可减轻化学活化法成本高、腐蚀性强、污染性高等问题,亦可解决气体活化法的表面碳损失问题。

附图说明

图1是本发明制备的污泥活性炭对Pb2+的吸附量示意图。

图2是本发明制备的污泥活性炭的孔径分布示意图。

图3是本发明制备中,水蒸气活化时间对碘吸附值的影响示意图。

图4是本发明制备中,磷酸浓度对污泥活性炭中孔孔容的影响示意图。

具体实施方式

下面结合具体实施例进一步说明本发明的技术方案。选取某城市污水处理厂剩余污泥,干燥基碳含量32.5%,灰分29.8%;经晒干、脱水处理后,含水率降为12%,经破碎、过筛,粒径在100—200μm;粘结剂煤焦油为市售煤焦油,来自于煤炭高温干馏,其中沥青质量百分比不低于55%,蒽油质量百分比不高于10%;氯化氢水溶液的质量百分数12%(即盐酸)。

实验选取污泥的干燥基元素组成见表1。采用德国Elementar公司生产的Vario MACRO cube型元素分析仪,对污泥C、H、N、S等元素含量进行分析;灰分含量的测定依据我国国家标准GB/T212-2008《煤的工业分析方法》;氧含量由差减法计算得到。

表1实验污泥的元素组成

实施例1

将污泥粉末浸入复配活化剂溶液,固体质量与溶液体积比为1:2,20摄氏度下浸渍12h;复配活化剂包括ZnCl2、磷酸、K2S和NaCl,其中ZnCl2浓度为2mol/L,磷酸浓度为3mol/L,K2S加入量为干污泥质量的10%,NaCl加入量为干污泥质量的1%。将混合物干燥至含水率8%,加入煤焦油,混合物与煤焦油的质量比为1:0.3;造粒为直径8mm,长度15mm的圆柱。在氮气流量350ml/min条件下,将成型原料35g自室温20摄氏度以10℃/min的升温速率,升温至550℃,并停留1.5h。然后以15℃/min的升温速率,将温度升高至800℃,同时通入水蒸气和氮气的混合气体,流量350ml/min,水蒸气体积百分数为50%,活化时间1.5h,在隔绝空气(即氮气气氛)条件下冷却至室温20摄氏度。采用盐酸溶液洗涤,蒸馏水漂洗至中性,即得到所述活性炭产品。

实施例2

将污泥粉末浸入复配活化剂溶液,固体质量与溶液体积比为1:2.5,20摄氏度下浸渍8h;复配活化剂包括ZnCl2、磷酸、K2S和NaCl,其中ZnCl2浓度为2.5mol/L,磷酸浓度为2mol/L,K2S加入量为干污泥质量的15%,NaCl加入量为干污泥质量的2%。将混合物干燥至含水率8%,加入煤焦油,混合物与煤焦油的质量比为1:0.35;造粒为直径8mm,长度15mm的圆柱。在氮气流量350ml/min条件下,将成型原料52.5g自室温25摄氏度以15℃/min的升温速率,升温至650℃,并停留1h。然后以12℃/min的升温速率,将温度升高至700℃,同时通入水蒸气和氮气的混合气体,流量350ml/min,水蒸气体积百分数为80%,活化时间2h,在隔绝空气(即氮气气氛)条件下冷却至室温20摄氏度。采用盐酸溶液洗涤,蒸馏水漂洗至中性,即得到所述活性炭产品。

实施例3

将污泥粉末浸入复配活化剂溶液,固体质量与溶液体积比为1:2,20摄氏度下浸渍12h;复配活化剂包括ZnCl2、磷酸、K2S和NaCl,其中ZnCl2浓度为1mol/L,磷酸浓度为5mol/L,K2S加入量为干污泥质量的8%,NaCl加入量为干污泥质量的0.5%。将混合物干燥至含水率6%,加入煤焦油,混合物与煤焦油的质量比为1:0.2;造粒为直径8mm,长度15mm的圆柱。在氮气流量350ml/min条件下,将成型原料40g自室温20摄氏度以8℃/min的升温速率,升温至450℃,并停留2.5h。然后以20℃/min的升温速率,将温度升高至850℃,同时通入水蒸气和氮气的混合气体,流量350ml/min,水蒸气体积百分数为30%,活化时间1h,在隔绝空气(即氮气气氛)条件下冷却至室温20摄氏度。采用盐酸溶液洗涤,蒸馏水漂洗至中性,即得到所述活性炭产品。

实施例4

将污泥粉末浸入复配活化剂溶液,固体质量与溶液体积比为1:1,25摄氏度下浸渍8h;复配活化剂包括ZnCl2、磷酸、K2S和NaCl,其中ZnCl2浓度为1.5mol/L,磷酸浓度为4mol/L,K2S加入量为干污泥质量的12%,NaCl加入量为干污泥质量的1.5%。将混合物干燥至含水率10%,加入煤焦油,混合物与煤焦油的质量比为1:0.25;造粒为直径8mm,长度15mm的圆柱。在氮气流量350ml/min条件下,将成型原料45g自室温20摄氏度以12℃/min的升温速率,升温至600℃,并停留2h。然后以15℃/min的升温速率,将温度升高至750℃,同时通入水蒸气和氮气的混合气体,流量350ml/min,水蒸气体积百分数为60%,活化时间0.5h,在隔绝空气(即氮气气氛)条件下冷却至室温25摄氏度。采用盐酸溶液洗涤,蒸馏水漂洗至中性,即得到所述活性炭产品。

实施例5

将污泥粉末浸入复配活化剂溶液,固体质量与溶液体积比为1:1,25摄氏度下浸渍10h;复配活化剂包括ZnCl2、磷酸、K2S和NaCl,其中ZnCl2浓度为2.5mol/L,磷酸浓度为3.5mol/L,K2S加入量为干污泥质量的8%,NaCl加入量为干污泥质量的0.8%。将混合物干燥至含水率6%,加入煤焦油,混合物与煤焦油的质量比为1:0.3;造粒为直径8mm,长度15mm的圆柱。在氮气流量350ml/min条件下,将成型原料50g自室温25摄氏度以10℃/min的升温速率,升温至500℃,并停留2.5h。然后以18℃/min的升温速率,将温度升高至850℃,同时通入水蒸气和氮气的混合气体,流量350ml/min,水蒸气体积百分数为40%,活化时间2h,在隔绝空气(即氮气气氛)条件下冷却至室温25摄氏度。采用盐酸溶液洗涤,蒸馏水漂洗至中性,即得到所述活性炭产品。

实施例6

将污泥粉末浸入复配活化剂溶液,固体质量与溶液体积比为1:2.5,25摄氏度下浸渍12h;复配活化剂包括ZnCl2、磷酸、K2S和NaCl,其中ZnCl2浓度为2mol/L,磷酸浓度为4.5mol/L,K2S加入量为干污泥质量的12%,NaCl加入量为干污泥质量的1.5%。将混合物干燥至含水率8%,加入煤焦油,混合物与煤焦油的质量比为1:0.35;造粒为直径8mm,长度15mm的圆柱。在氮气流量350ml/min条件下,将成型原料35g自室温25摄氏度以10℃/min的升温速率,升温至550℃,并停留1.5h。然后以15℃/min的升温速率,将温度升高至700℃,同时通入水蒸气和氮气的混合气体,流量350ml/min,水蒸气体积百分数为50%,活化时间2h,在隔绝空气(即氮气气氛)条件下冷却至室温25摄氏度。采用盐酸溶液洗涤,蒸馏水漂洗至中性,即得到所述活性炭产品。

采用Micromeritics公司ASAP2020表面积及孔结构分析仪,对污泥活性炭的比表面积、孔容及孔径分布进行分析。以高纯N2为吸附质,在液氮温度(77.3K)下,测定相对压力(P/P0)10-7~1范围内吸附、脱附等温线。采用BET模型计算总比表面积,由t-plot法测定微孔孔容,由BJH吸附曲线测定中孔孔容,采用密度泛函理论(NLDFT)得到微孔及中孔孔径分布。

依据具体实施方式,如附图4所示,当磷酸浓度从2mol/L增加到5mol/L,第一阶段活化形成的中孔孔容持续增大,但增大趋势逐渐变缓。综合考虑制备成本及对设备的腐蚀,磷酸浓度更宜取3-4mol/L。

碘吸附值是分析活性炭孔结构性能的指标之一,其大小代表微孔结构的发达程度,碘吸附值越大,微孔结构越多(高尚愚,周建斌,左宋林,胡成文,刘启明,安部郁夫.碘值、亚甲基蓝及焦糖脱色力与活性炭孔隙结构的关系[J].南京林业大学学报,1998,22(4):23-27)。碘吸附值的测定根据我国国家标准GB/T7702.7-2008《煤质颗粒活性炭试验方法--碘吸附值的测定》。

依据具体实施方式,如附图3所示,当水蒸气活化时间从0.5h增加到2h,污泥活性炭的碘吸附值先增加后降低,在1.5h时达到最大值。说明当活化时间较短时,微孔发展不充分,而活化时间过长,会扩宽微孔或造成孔壁烧穿,降低微孔结构。

经测试,本发明制备的污泥活性炭BET比表面积平均可达400—450m2/g,且孔径0.5-50nm连续分布。对比分阶段组合活化法与单一水蒸气活化法制备污泥活性炭(即采用本发明的污泥处理基本工艺,直接使用单一水蒸汽对污泥进行活化,没有进行分阶段活化)的得炭率和孔容积。本发明制备的污泥活性炭微孔孔容平均为0.12—0.15cm3/g,碘吸附值平均为480—520mg/g,中孔孔容平均为0.17—0.20cm3/g,得炭率为55%—56%;单一水蒸气活化制备污泥活性炭,当得炭率为55%时,微孔孔容为0.04—0.06cm3/g,中孔孔容为0.09-0.10cm3/g。由此可得,当得炭率基本相等时,本发明制备方法所得活性炭的孔结构明显高于水蒸气活化法。也可证明本发明活化过程主要烧失了内部碳结构,从而创造了孔隙,降低了表面碳损失。

得炭率计算公式如下:

式中:Y——得炭率(%)

m0——活化前原料质量(g)

m——污泥活性炭质量(g)

利用本发明制备的活性炭为吸附剂,针对被我国列为第一类污染物的重金属铅进行吸附。以Pb2+为吸附目标,将购买的分析纯级Pb(NO3)2与去离子水配置Pb2+浓度为40mg/L的溶液,考察制备的污泥活性炭对Pb2+的吸附性能,并与相同制备条件下未添加K2S和NaCl的污泥活性炭作对比(即采用本发明的制备工艺,在复配活化剂中不添加K2S和NaCl)。

取2份100mL Pb2+浓度为40mg/L的溶液分别置于250mL锥形瓶中,加入1.0000g污泥活性炭,其中一种添加K2S和NaCl,另一种不添加这两种化学试剂。25℃条件下在恒温水浴振荡器中振荡1h,静置后取上清液,经0.45μm滤膜过滤。移取1mL滤液于比色管中,稀释至10mL,加入1~2滴硝酸,采用日本岛津公司ICPE-9800型ICP-AES分析仪测定Pb2+剩余浓度,结果如附图1所示。

式中:q——Pb2+吸附量(mg/g)

C0——Pb2+初始浓度(mg/L)

C——Pb2+剩余浓度(mg/L)

V——含铅废水的体积(L)

m——污泥活性炭投加量(g)

在吸附时间1h内,制备过程添加少量K2S和NaCl试剂的污泥活性炭对Pb2+的吸附量更多,约为未添加的1.3倍。

本发明制备的污泥活性炭可用于生活污水或工业废水的处理,其比表面积、微孔容积、中孔容积及孔径分布等孔结构特性是决定活性炭吸附能力的基础性指标,特别是活性炭的孔径分布特征,可判断其对小分子型或大分子型污染物的吸附性能。生活污水或工业废水中含有重金属离子、有机污染物等有毒有害物质,其中重金属离子属小分子型污染物,微孔结构(<2nm)及其表面特性直接影响对重金属离子的吸附性能;有机物一般属大分子型污染物,中孔结构(2~50nm)对其吸附更为有效(李文红.污泥活性炭的制备及其对染料吸附性能的研究[D].济南:山东大学,2012)。

本发明得到具有连续孔径分布特征的污泥活性炭,可用于水中主要污染物重金属离子和有机物的同时吸附,活性炭表面K+、Na+含量较高,进一步增强对重金属离子的吸附性能;采用复配活化剂、气体活化剂分阶段组合活化,可减轻化学活化法成本高、腐蚀性强、污染性高等问题,亦可解决气体活化法的表面碳损失问题。

以上对本发明做了示例性的描述,应该说明的是,在不脱离本发明的核心的情况下,任何简单的变形、修改或者其他本领域技术人员能够不花费创造性劳动的等同替换均落入本发明的保护范围。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号