首页> 中国专利> 用于可食性胶原肠衣的端部封闭部以及获得该端部封闭部的方法

用于可食性胶原肠衣的端部封闭部以及获得该端部封闭部的方法

摘要

本发明涉及一种可食性管状胶原膜,其端部中的每个端部均为封闭的。该封闭部通过将肠衣的端部部分收紧并且密封该端部部分的出口的可食性固体环状元件形成,以便在灌肠过程开始时止挡填料,因此在这个过程中,该可食性固体环状元件能够保住初始填充的香肠以便于其进一步的加工,然后该环消失。该可食性封闭元件的特征在于其为可食性的并且是优选地基于胶原或明胶的热塑性组合物。该固体组合物具有低熔融温度并且在液态下变为具能够粘附至包含一定水平的水分的胶原膜的表面上的粘合剂。所述组合物的材料在液态下的强大的粘结力以及在其熔融温度和固化温度之间的非常小的差距使得所述材料的熔接部能非常快速的凝结。该封闭部能够在将胶原肠衣抽褶之前或之后完成,并且本发明还提供通过将封闭元件熔接在肠衣材料上来执行这种封闭的工艺。

著录项

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2019-03-22

    授权

    授权

  • 2017-04-26

    实质审查的生效 IPC(主分类):A22C11/12 申请日:20150330

    实质审查的生效

  • 2016-11-23

    公开

    公开

说明书

技术领域

本发明应用于肉类肠衣行业中,并且特别是应用在抽褶肠衣的封闭的领域中,其意在使抽褶肠衣的封闭能够以更简单的方式完成而不浪费太多的肠衣材料,本发明能够确保经得住在肉糜在灌装过程中的强有力的冲击,其不侵入肠衣管的内部介质并且能够赋予成品令人满意的特性,该特性为能够允许每个批次的最先充填的香肠连同所生产的其余香肠的回收,并且同时,特别是在可食性胶原肠衣市场中,其在可食性方面与由天然原料制成的肠衣是一致的。本发明还应当是封闭部,该封闭部的制造是易于自动化完成的,甚至能够在使肠衣抽褶的相同机器上在线执行。这就是为什么该材料还需要低熔融温度以防止肠衣的损坏以及需要用于快速熔接的高粘结力以获得高应用效率的原因。

背景技术

食物肠衣的一个末端的预先封闭是在进一步的灌装过程中成功充填所需的必要步骤。多种多样的端部封闭方案被应用于食物肠衣行业的项目中以完成对几乎所有的在实践中可直接灌装的食物肠衣的制造。该完成阶段包括宽泛的处理操作的语境,通常称为“改造”,其中,处于展平的形式的肠衣由其原来的盘绕状态松开,并且然后被抽褶或者替代性地被分段、被涂覆、以绳索悬吊环系住、以弹性收紧网包住、或者缝合接缝从而产生纵向包边或最终密封等,以便最后在一个末端处封闭。

为清晰起见做出如下定义:

肠衣是由天然的或人造的膜形成的平滑且柔韧的中空管,其具有起始端和最末端。

一截肠衣(length)为肠衣的一部分,即,一段(stretch)肠衣。

一串肠衣(string)为一截、一部分或一段扭转的肠衣。

末端(terminal)对应于肠衣的最末端。

股部分(strand)是棒(stick)或形成圆形中空管的抽褶的并且紧实的肠衣。

孔是诸如股部分或棒的中空管的内腔。

根据肠衣的类型和目的应用不同的改造操作,但是这些改造操作中的大部分是通过密封肠衣的端部来完成的,该端部为香肠的最先形成的部分并且其将会遭受通过灌装机的填充角(filling horn)以某一速度进入的肉糜的最早的冲击。因此,该密封必须能经受住由进入质量(entering mass)传递的动能而不会打开或破损。

大多数的封闭方案都意在通过肠衣材料本身形成密封,而不向其中引入其他外来元件。那些密封工艺看起来仿佛是容易的工作;但是用于实现该工艺的机械事实上是相当复杂的。上,从工程和构造的角度来看,对于人手来说很简单的操作当打算被转移至机器时会变成艰巨的任务。

通过肠衣材料本身构成的端部封闭部通常使用来自一股抽褶肠衣的末端的一截消褶的肠衣,其通过某种方式被夹紧,然后绕其自身的轴线将其机械地扭转从而形成一串肠衣,该一串肠衣被系成结(手动的或自动地)和/或替代性地压缩成一团缠结的肠衣并且随即通过正中央的推杆向后定位至肠衣棒的孔内。参照该现有技术,其中,涉及将位于抽褶肠衣的最末端处的结作为最末端封闭部以及实现末端封闭的方法,值得一提的是,通过参考文献No.EP-0294180-A1,其中对用于实现简单的结的机器的描述反映了该工具的复杂性并且让人们了解到这一开发的成本以及用于将改造成的抽褶的股部分转变为打结状态的操作成本的增加,由于在脱机状态下的操作同样需要大量的这种类型的机械、额外的人力、大量的工作区域、专业人员、机械的维护,因此显然,该操作会遭受偶然的机器损坏的风险,从而导致操作停止以及效率降低。打结的积极的一面在于具有如下的优点:与其他方法所产生的情况不同,其具有的令人满意的方面在于其能够作为最先充填的香肠的一部分而被接受。

另一类的封闭操作包括应用相对于天然肠衣材料而言的某些外来元件,这些元件通过收紧肠衣的末端部分来执行紧固作用,其中,已经通过压缩和/或扭转所述末端部使该肠衣预先皱缩。这些元件中的某些元件例如可以是由天然纤维或塑料纤维制成的纤维绳、塑料束带以及金属或塑料夹子。

众所周知,在灌装过程中,金属夹子被应用于对已包好的香肠的一个或两个端部的封闭(参见文献No.GB-719317-A)。该系统基于由环状开口的线材施加的收紧力,其中,该环状开口的线材被强力地以螺旋的方式封口以用于夹紧,以此绞紧一段肠衣。该线材的韧性防止了其自行打开,从而使该封闭部一直被强力地紧固。另一方面,金属夹子、铆钉或线材的使用仅延伸至那些无意进行抽褶的肠衣,而不涉及那些将要应用在灌肉的特殊形式中的肠衣。这种类型的封闭元件的主题是具有比可食性胶原的膜结构更强的膜结构并且其在被线环夹紧时不会受损的那些食物肠衣,例如由增强纤维素、非可食性胶原和/或塑料等制成的那些肠衣,其通常具有比打算用于诸如维也纳香肠、德国小香肠等的由可食性胶原制成的肠衣的口径(calibre)更大。在文献No.GB-1062010-A中能够发现一个示例,其中的封闭部通过如下方式实现:形成多个纵向延伸的褶,压缩起褶的部分,在所述起褶的部分形成孔(孔眼),以及插入并且形成铆接装置并且将肠衣挂钩邻近所述孔定位,除其他以外,文献No.GB-1180067-A和DE-10305580-A1也涉及金属夹子。

考虑到通常实施的用于由纤维素、胶原或塑料中的任一者制成的抽褶肠衣的那些改造过程的质量控制的通用控制协议,其中,除其他以外,成箱的已完成的抽褶肠衣的股部分或棒受到全面的控制,如果每个棒携带有包含在其中的金属夹子或线材,则其将面临严重的弊端。由于包含在这种金属封闭部中的水分以及由此导致的肠衣棒的腐败,因此该金属封闭部还会使坏箱子的内部裂化。

一些作者提出了将塑料夹子作为紧固元件,其能够克服这一明显的缺点(例如参见文献No.WO-9505320-A1)。在这一特定情况下,塑料夹子由通过膜铰链连接的两个元件构造,其能够被插入成一者锁定在另一者的与铰链相反的末端的内部,从而牢固的夹紧处于中间的抽褶肠衣的被扭转的一个最末端部分。这样的夹子或紧固元件的一部分 具有带有沿一个方向倾斜的三角形齿的臂状联接部段,而另一部分具有当臂插入时骑在这些齿的斜面上的柔韧的爪的沟槽,在这个意义上,其以与束带类似的方式执行。爪熔接这些齿的背侧以使臂的移动停止,以这种方式使得一但封闭该夹子仍然被锁定。然而该元件的尺寸、硬度和不规则的形状在通过灌肉压力从孔内向外排出时会是相冲突的,因为其可能摩擦肠衣的内部褶皱并且使其破损,并且同样的,其可能会沿非正中心的方向被抛出而绊住灌装角的制动环,从而使肠衣破损,使肉糜溢出,并且导致在运转中的批次的腐败。

这种类型的紧固元件在熔融状态下粘附至肠衣表面的能力可以因此成为在该封闭部的一些实施方式中正常运作的另一个重要优点,以防止收紧元件在所包围的表面上的偶然的滑动,这种偶然的滑动会导致在灌装期间肠衣受到肉糜的推压时该封闭部被打开。

无论如何,在香肠中存在的不寻常的元件不能被顾客和卫生部门很好地看到,因为该物体存在被吞噬或者将不理想的或有害的化学分子或物质——例如塑化剂——转移至香肠中的风险。因此同样有趣的是,由塑料制成的紧固元件同时还是能溶于水的,以便于例如在香肠进入市场之前消失。

不幸地,不存在具备以下条件的可用的人造材料,所述条件是既是塑料同时又能够满足可食性、能溶于水或当该塑料处于熔融状态时能够粘附到水合表面上。胶原肠的胶原基质在抽褶操作中处于水合状态,并且其水分含量的范围能够从12%一直变化至30%,一旦其水分稳定化,即使平均范围在17%与24%之间,由于水分含量低于17%时胶原膜趋向于更脆并且用其来打结时容易破损,因此另一方面,水分含量高于24%能够使膜结构不稳定化。

已经讨论了人造热塑性材料的缺点。如果我们寻找天然的热塑性聚合物,就能够发现许多来自天然聚合物——主要为蛋白质和多糖或它们的混合物——的聚合物质的树脂的组合物能够通过热塑过程模制。然而,我们发现将这些材料应用于我们的肠衣封闭部中存在若干困难或不可行性;其中,热塑性材料是基于蛋白质的,因此它们也需要高熔融温度和高压力以被加工(热塑性塑料挤出机)或者其不能够粘附到水合表面上(有时是由于其高含水量)。在将胶原蛋白或例如植物源(大豆,面筋等)的其他蛋白质应用于以其他塑化剂代替水(例 如甘油)的组合物中的情况下,尽管结果会具有出色的机械性能,但是获得的却是组合物的热固性行为(参看US-8153176),因此其不能用作热熔塑料。在例如文献No.US-6846502-B1中能够找到基于多糖、塑化剂和增强剂的主张食品级热熔材料的某些其他示例(可食性热熔组合物);以及在文献No.JP-57158276中也公开了一种由可食性的乙烯乙酸乙烯酯、增粘树脂和石蜡制成的热熔胶组合物。所有那些在粘合至水合表面方面都是无效的。

可用的树脂组合物中的其它示例是那些用于制造打算用于药剂封装壳的胶囊。这些胶囊含有干的或液体的药物成分,一旦被吞噬,会溶解在消化道然后释放活性剂。

制造那些胶囊的蛋白质的成分主要是基于变性胶原或如明胶的其水解衍生物。

明胶是从胶原的酸性或碱性水解获得的蛋白质产品,其失去了其原有的天然的三重螺旋结构,从而导致多肽主链——也称为氨基酸的α链——的较短链段的随机分布,并且其平均分子重量小于500千道尔顿。因此,明胶不构成真正溶液;而是形成了胶体溶液或溶胶。在冷却时,该溶胶转化成凝胶,并且在加温时,其恢复为溶胶。在凝胶过程中,明胶分子形成固体三维结构。水分保持在所述分子之间,在某一温度以下的那些分子通过各种物理键——主要是创建三维聚合网络的氢键——相互连接。然而,该水能够流通并且例如能够蒸发。无限可逆性凝胶化过程是明胶的迄今最重要的技术性能。胶凝力的分析度量被称为布卢姆值。高布卢姆明胶的特征在于在最终产品中具有高熔点和胶凝点以及较短的胶凝时间。商业明胶类型的布卢姆值在50-300布卢姆的范围内。50至100克的范围被指定为低布卢姆,100至200克的范围为中等布卢姆,以及200至300克的范围为高布卢姆。

明胶的分子量分布通过所使用的水解方法的类型和强度来确定。在碱性条件下的高布卢姆明胶(称为B型)的情况下,分子质量分数的主要部分是在100000g/mol的区域中,对应于所述的α链,而酸性条件下的明胶具有宽的多的分布。在100000g/mol的区域中的分子级分对凝胶强度有较高的影响,而粘度主要是那些在200000g/mol至400000g/mol以上的分子量范围内的分子分数的功劳。

以举例的方式,值得一提的是在专利文献号US-4576284-A(-284A)和US-4591475-A(-475A)中所公开的组合物,其中所述组合物基于低级明胶。在284A中公开了一种基于具有5%至30%的含水量(其充当塑化剂)的150布卢姆的B型明胶的胶状材料。需提及的是,如果需要较软的产品,那么可以在该过程中将一些诸如甘油、山梨糖醇、丙二醇等可食性塑化剂掺入到组合物中,其中该可食性塑化剂掺入的量以重量为标准占聚合物重量的范围为0.5%至40%。

除塑化剂之外,文献(-475A)中还公开了加入润滑剂、着色剂和用于明胶扩展的其他聚合物质(称为增量剂),如其他蛋白质或多糖树胶。还包括一些交联剂。文献US-4655840涉及用于注塑成型的组合物,其通常是亲水性的,虽然优选地由不同等级的明胶制成,但是其能够通过加入其它天然的亲水性聚合物——主要由植物提取——而被改良。

不幸的是,基于例如含水凝胶体系的明胶的树脂缺乏对如胶原蛋白的水合表面的足够的粘附力,以及在熔融状态下还缺乏足够的粘结力,从而不能在像本发明中所描述的那种快速和有效的操作中正确地实施。没有就这种树脂材料的机械性能做出的描述,也没有就其在固体状态以及熔融状态中作为粘合剂的性能做出的描述。

同样用于胶囊的多糖组合物是基于作为主要来源的纤维素和淀粉的热塑性衍生物,但是也来源于其它天然多糖和它们的合成衍生物。这两种聚合物通常都是亲水性的。在US-4738817和MX-2010013731-A中分别举例描述了期望用于胶囊的注射成型的、完全基于诸如HPMC或HPC的多糖的热塑性组合物。

在另一方面,所述的用于宠物玩具的制造的蛋白质热塑性塑料由于其过度的刚性,因此其弹性模量远远偏离本发明的需求,如在文献No.US-6379725中所述的情况,其中,来源于植物和动物的蛋白质连同塑化剂和添加剂的混合物被挤出从而得到胶质体,该胶质体一但被冷却则具有介于900MPa与4000MPa之间的模量以及介于20MPa与40MPa之间的拉伸强度。同样必须强调的是这种组合物不溶于水。那些能够用于制造动物消费品的基于胶原和水的另一蛋白质热塑性组合物在国际申请No.WO-2007104322-A1中进行了阐述,然而在这种情况下,该聚合物是部分变性的胶原,其具有在60℃下至少25%溶于水的 溶解度,并且其挤出产品具有200%的伸长率和大约20MPa的拉伸强度。

所有描述过的天然聚合物的组合物的最严重的缺点在于很难找到能够实现兼有所需的物理性能、或者机械、热、粘合剂、甚至是流变性能的单独一种树脂以便在封闭应用时以及往后作为封闭部的有效收紧元件时都能被正确地执行,并且同时具有可食性以及水溶性。通常基于天然聚合物的树脂获得了提高的熔融温度,其在湿表面——诸如含水量多于15%的胶原膜——上罕有或者没有粘附能力,(即可食用且抽褶胶原肠衣的情况)也没有用于实现其本身的快速熔接的足够的粘结力。

通过参照粘性特性,在此提及国际申请号WO-2009045824-A2。关于该文献的一些混合物包括明胶和甘油或果糖,其在固体状态下被浸湿时达到一定程度的粘性。这已被建议例如用于外科加强材料的产品中以与外科缝合器接合起来发挥作用,其中指出了所使用的例如明胶的多肽物质的干重相对于例如甘油的多羟基材料的比例在30:70至70:30的范围内。当该材料在固体状态下被润湿时变为例如在ECM(外胶原基质材料)上的粘合剂。然而,这种特性没有能够应用在本发明的封闭部中的实际作用,因为无论胶原肠衣本身具有什么样的含水量

(至少在本发明的所关注的水合范围内),都不对当前封闭元件有润湿作用,从而使本发明材料在固态下不发粘。

发明内容

本发明的第一方面涉及满足上文所展示的所有需求的封闭部,这将从关于其主要特征以及下文所示示例的如下描述中变得明显。这样的封闭部是通过使用基于热塑性及可食性材料的非侵入性收紧元件来实现的,该元件紧固和/或粘附到通过快门式装置预先皱缩并且/或者随后被扭转的很短的一部分肠衣上,其中,所述元件优选地具有与肠衣材料本身相同的特性并且甚至可以食用以及能够在温水中溶解,以便在被吞噬时甚至是在处理或烹饪该香肠之后消失的情况下被认为是安全的。

就该元件的形状和尺寸而言,其应当优选为很小以便在其一旦形 成封闭部的一部分时被包含,以及通过施加温和的力而在抽褶肠衣的棒的孔的内侧配合于正中央的位置中;该元件还应当具有径向横截面的对称面以便有利于其在遭受肉的冲击时在孔外的排气而没有擦碰棒的内部褶皱的风险,并且还避免了撞击灌装机器的制动环。

在这种能够被转化成自动化系统的尽可能简单的步骤的顺序中,这样的元件也会具有某些有效地促进其在一段被扭转过的肠衣上的应用。在这些特征之中有一些适当的物理性能和机械性能,例如低熔融温度、在液体状态下的升高的粘结力以及快速的熔接性能。

本发明的封闭部的紧固元件的性能能够由两个互补形式的动作来产生:

a)通过仅收紧已皱缩的肠衣的部段,其要求关于柔性和韧性的特殊的物理性能(高模量),其中,该系统基于由封闭的并且被熔接以夹紧的环状元件施加的收紧力,从而强力地绞紧一段肠衣并且由此避免由于压力导致的环的滑脱。

b)通过粘附至该部段的表面,从而避免环元件的可能的滑脱。

因此,这种类型的紧固元件在熔融状态下粘附至肠衣表面的能力对于在该封闭部的一些实施方式中正确地发挥作用而言是另一个重要的优点,因为紧固元件在其所包围的表面上的偶然的滑动将会导致在灌装时肠衣受到肉糜的推压时该封闭部被打开。然而,必须强调的是粘合能力和紧固能力在本发明的封闭部中起到互补的效果,尽管其各自的重要性根据肠衣的种类和其口径而变化。可能会出现的情况为,小口径能够通过本发明的环状元件的收紧而保持牢固的封闭,该环状元件在水合表面上的粘合水平较弱但是其模量足够高,以便将强收紧压力施加至被扭转的肠衣的被包围的股部分上从而避免进一步的滑动。

我们已惊奇地发现,能够满足上述所有要求的封闭元件可以是环状收紧元件,其作为热塑性材料执行并且基本上由干明胶和无水甘油制成,只要水占的组合物的总重量分数不超过15%。这种热塑性材料可以在低温下熔接并且具有介于粘弹性和塑性行为之间的机械性能,该机械性能使得其能够施加足够的收紧作用,以忍耐香肠填充过程并且在同时它具有可食性和水溶性。

Yannas和Tobolsky在整个浓度范围内对包含稀释剂甘油的明胶在无水和略微水合的状态下的粘弹行为和玻璃化转变进行了研究(Yannas IV,Tobolsky AV.Stress relaxation of anhydrous gelatin rubbers.J Appl Polymer Sci 1968;12(1):1-8),然而没有关于这种组合物在熔融状态下的粘合性能的系统性研究的数据的报道。

令人惊奇的是,干明胶和无水甘油的混合物产生的充当热熔材料的热塑性固体的特征在于具有非常低的Tg(玻璃化转变温度)和相对低的Tm(熔融温度),该特征对于本发明的封闭部所需的工作条件而言是非常受欢迎的,并且其中,由固相到液相的转换划分了粘附状态和非粘附状态之间的转变的界限,并且其中,所述液相具有高粘结力和粘度,并且其中由于低Tm,其向固相的转变快速地执行,这允许所述材料的熔接足够快地发生。然而,固体树脂在环境温度下没有粘着力。

该特定的热塑性组合物是由在90℃和120℃之间的加热条件下直接溶解于无水甘油中的商业干明胶构成的,并且能够作为具有所需的热性能、机械性能和粘合性能的热塑性且可食性的材料来执行,条件是各成分的比例w/w优选处于2:1和1:3之间并且总含水量不超过组合物总重量的15%。这种材料也是水溶性的,但如果需要的话,可通过令其与交联剂进行反应来使其不溶解。

至于以杨氏模量概括的所需和所期望的机械性能能够通过组合物中的明胶和甘油的比例来调整;以这样的方式,能够在熔融温度(Tm)和粘结力的很窄的变化范围内获得从较不柔韧或较不坚硬到更柔韧或更坚硬的大范围的塑性行为,从封闭过程的效率的角度来看,这样是非常有利的。

机械性能:其高度依赖于聚合物的分子量和聚合物/甘油的比例。

该环状元件的机械性能是非常重要的,因为在其封闭操作中,为了允许以不损坏的方式进行封闭,其不仅必须具有足够的柔韧性,而且还必须有适当的弹性(杨氏模量),以能够承受在灌装过程中由来自肠衣内部的空气或肉的压力而促使的膨胀,并且牢固地维持所包围的肠衣段的收紧。如果环像弹性橡胶一样屈服于该膨胀应力,则肉面就能够自行打开路径穿过该封闭部并且溢出。模量越高,则材料的弹性 越小,相反,模量越低则越有弹性。

固态树脂具有类似塑料的行为,其性能在聚合物的分子量、布卢姆值和该聚合物在树脂组合物中的比例的影响下发生变化。分子量和布卢姆值(>150布卢姆)越高,则粘度以及因此粘结力就会最大。

我们已发现,为了具有正确的性能并且防止所有提及的那些缺点,则环材料必须合宜地具有至少0.5MPa并且优选不大于50MPa的模量。在这个意义上,与具有高布卢姆、合宜地高于150布卢姆、优选高于200布卢姆的明胶相组合能够获得最佳的结果,因为该等级的聚合物在室温条件的温度下赋予热塑性组合物以最佳的粘结力。

熔点:

一旦热密封封闭被转移至机器,则该环的材料的熔点以及该材料能够与其本身产生熔接的速度对于该封闭的有效执行而言都是至关重要的;还期望具有低熔点以在与熔融材料接触时不会影响肠衣的完整性。参与这一过程的温度越低,使用系统更安全也更容易。

Yannas和Tobolsky将略水合明胶的熔融温度设定在175℃±10℃。众所周知的是,在例如明胶和甘油的二元组合物中的固体成分溶解在其它成分中,该组合物的固化点通过如下方式被降低,即,通过增大具有较低固化温度的成分的浓度,这样将会降低混合物的固化温度。

该树脂组合物的熔融温度随聚合物的比例(明胶/甘油比)而变化,并且该聚合物比例增大使该熔融温度更高。然而,应当在塑料特性之间达到折中,熔融温度、树脂在该熔融状态下的粘接性、以及提高的粘结力对应地与该材料的熔接的快速凝结时间相关联。随着该比例的增大,材料在熔融状态下的粘性也增大,但是组合物的总水含量越低,该材料粘附到胶原薄膜的湿润表面的能力明显地增加。

我们发现,用于实施环封闭部的过程的最佳的温度范围为40℃至90℃,因为这样的温度不影响胶原肠衣的完整性。我们发现,当聚合物/多元醇的比例为大约1:1时、并且在越接近1:2或甚至更高时允许熔接部的快速形成,因为在该比例范围内,机械性能获得了很大的变化而熔化温度没有大幅升高,同时熔体的粘结力高,从而允许在两个表面之间的接触瞬间快速地形成熔接部,要温度稍有下降,该熔接部就能产生。关于这一点,我们还发现,明胶必须优选地具有升高的 聚合度意味着必须有升高的布卢姆,尤其高于150布卢姆,并且更优选从大约200布卢姆至大约300布卢姆。

粘结力:

熔接部的凝结越快,则封闭步骤更快,且封闭系统更有效。

如本文所用的术语“粘结力”是指通过流体材料提供的与自身相分离所面临的阻力,并且在无定形聚合物的聚合物分散体的情况下,其直接取决于聚合物分子的分子大小以及取决于在该聚合物基质中的这些分子之间的临时的键——主要是氢键。

锁定环的水溶性:

在本发明的封闭部的锁定环的基体树脂中的另一重要因素是其水溶性,因为在带有本发明的封闭部的可食性胶原肠衣中的香肠制品会在包装之前经历烹饪过程。在正常处理周期中温度升至70℃以上,并且可能适当地,在该循环期间环消失或者保留在其中——例如,如果环被用作某种标志物。因此,在表1中也反映了在正常的加工条件下的每个组合物的树脂材料的溶解度:

压环可溶于热水并能够历时35分钟而完全溶解在81.5℃的水中。如果需要该环保持更长时间的话,可以通过如在国际申请No.WO-207104322-A1中使用的部分变性的胶原取代明胶,或者也可以使用能够通过产生共价键而使聚合物不溶解的某种交联剂,如本领域中公知的。这种交联剂优选为那些像醛一样的非常精确的数量的食品级交联剂。

参数测量:

塑料的拉伸性能:

拉伸试验是根据ISO 527-2:2012/5A/50而在配备有编码为MO 0217-2的接触式引伸计(至少为根据ISO 9513的1型)和自紧钳的编码为ZWICK MO02/17的万能拉伸机(至少为根据ISO 7500-1和ISO 9513的1型)中以50mm/min的测试速度进行的。我们使用了50mm的握距。通过冲制获得了5A型样本。在测试之前,样本在23±2℃和50±10%RH的条件下适应了16小时,实验室中的条件为23±2℃和 50±10%RH。

熔融指数:

用于测量熔融的热塑性塑料的粘度;此参数被选择用于根据温度来评价热塑性组合物的粘结力的变化。该测试利用如在UNE EN ISO 1133-1:2012中示出的编码为MO 02/16的流量计来执行。我们使用的喷嘴的长度为0.025±8.000mm,其直径为2.095±0.005mm。活塞的行进距离为30mm。预熔时间为5分钟。试验条件为:a)温度120、100和80;b)对样本1:2加载1.2、5.0和21.6。未使用切割时间。

通过差示扫描量热法(DSC)的测定热转变:

该测定根据ISO 11357:1997在Perkin-Elmer公司生产的编码为Pyris Diamond MO 01/21的热量计上通过使用5至10mg的代表性样品而在铝坩埚中并在氮气流下执行。针对标准模式使用了铟和锌。结果取两次测定的平均值。确定的值被用于第二次扫描。测试参数为:a)初始温度=-60;b)最终温度=150℃;c)加热速度=20/min;d)冷却速率=20/min。

粘合性:

该粘合性在多片展平的肠衣上进行测试,该肠衣在气候室中以85%RH进行平衡,直至肠衣取得12%、21%和35%的水分含量为止。将各种树脂在钢板内熔融并且将其铸塑在延伸肠衣片上,该肠衣片将其上的预制的处于熔融状态的膜扩展为每个大约宽3cm并且长10cm。这些树脂被允许冷却5分钟,然后用测力计在90℃的条件下测量剥离强度。

在室温下的粘性通过粘合剂对人的手指的粘着性来判断。

残余水分:

在该组合物的制备中的表观含水量是在烘箱中以大气压、105℃的条件对明胶粉末干燥24小时之后测试确定的。所得到的数据为计算在由商业明胶和甘油形成的二元组合物中的残留水含量的提供基础。然而,当涉及到在所述残留量在组合物中的变化(减少)时,在烘箱中以10-3mm汞柱的真空压力、25至105℃的温度执行干燥处理。该计算是通过采取接受测试样本的重量来执行的。

附图说明

为了对所做出的说明进行补充并且为了有利于更好地理解根据本发明的优选实用的示例实施方式的本发明的特征的目的,附上作为所述说明的不可分割的部分的一组附图,下面的附图以阐述性的和非限制性的特性示出:

图1示出了通过注射成型模制的带有纵向V形开口的多个中空的蜗杆状杆。

图2示出了带有具有到达轴向孔的V形截面的纵向槽的蜗杆状件如何被模制而成,从而使从该蜗杆状件横向切下的任一部段均具有以“c”的形式的环状开口。图2示出了收紧元件,该收紧元件为由可食性且能溶于水的热塑性组合物制成的固体环状元件,其具有平滑弯曲的V形入口间隙,该入口间隙通向中央的中空部分(hollow),而图2b示出了另一实施方式,其中,环状元件是由成比例的明胶/甘油构成,成比例的明胶/甘油允许该环将强力的收紧效果施加到肠衣的扭转部分上,而相同的组合物材料具有充足的弹性行为以便允许环被打开而不会在维持该一串扭转的肠衣的配合的短暂的时间内破损。

图3示出了三个示图,其中:图3a示出了抽褶肠衣股部分的被一个位于杆的端部处的钳子捕捉的端部,该杆的轴线与该股部分的轴线重合。该杆回缩并且将股部分拉动成使肠衣的未抽褶的一截不超过5cm。在快门件与打褶部分的连接部(大约肠衣的10mm处)与握紧钳子的点之间的一点处,快门件(电动可变光圈)迅速地闭合其叶片并且使未抽褶的肠衣皱缩,如图3b所示。此外,在关闭快门件的同时,钳子杆在其轴线上旋转并且使剩余的肠衣部段扭转,从而产生沿该股抽褶肠衣的轴线方向的大约3cm长的串(串),如图3c所示。

图4示出了通过移动式夹钳闭合以产生环状形式的热塑性材料的开口环。

图5示出了图3a的详细示图。

图6-9示出了本发明的工艺的按顺序的立体图。

图10示出了最终获得的肠衣的棒。

具体实施方式

封闭部的优选实施方式。

在优选且最简单的实施方式中,本发明的封闭部由很短的一截已被扭转的肠衣构成并且由收紧元件夹紧。收紧元件为由可食用且能溶于水热塑性组合物制成的固体环状元件,其具有平滑弯曲的V形入口间隙,该入口间隙通向中央的中空部分(见图2a),其中,肠衣的预先被束紧和/或扭转的部分将通过用楔形件对其进行推动而定位。

该环能够通过塑料成型领域中的任一已知方法来制造,并且其能够与通过股部分或杆中的薄弱的缝相互连接的多个重复的元件(环)相熔接(如图1所示)——如订书机的订书钉一样——以促进环单元的进给过程的机械加工性,并且以这种方式,所有的环均在单独使用前敞开。

热塑性组合物

当前的热塑性组合物包括干明胶、无水甘油和水。含水量不对应于在将商业明胶(其初始含水量通常在10%与13%之间变化)干燥之后保留的残余水量,并且其实际上是不可用的而只是为了避免明胶的交联。组合物的含水量将少于15%,优选为1%至10%,并且最优选为在2%与3%之间。

根据上文所暴露的全部内容,最合适的明胶是高于150布卢姆、优选在200与300布卢姆之间的食品级明胶中的一者;由于该等级的明胶的分子量分布对应较大的分子,因此为所得的树脂提供更高的粘结力。具有相关特征的商业明胶的一个示例为来自德国Gelita AG(f.e.Gelita Hardgel、G.RXL、G.Advanced、G.PA等)的A型或B型中的一者,其中,该商业明胶的特征包括:8-30目、200-300布卢姆、粘度25-55、以及含水量8.5-12.0%;另一者为在相同特征范围内且水含量为10.5%的Juncá Gelatine(Mikel Juncá Gelatines,班约莱斯,赫罗纳),其用于下文的示例中。组合物中的水含量的降低将通过在烘箱中进一步干燥来实现。

连接的环的杆的制备

该组合物可以通过众所周知的方法在如Rheomex 302的单螺杆挤出机或诸如Krupp Werner&Pfleiderer ZSK25的同向双螺杆挤出机内均化,在同向双螺杆挤出机的内部的压力增大并且当混合物行进经过内部时作用的该混合物上的剪切力增大,同时温度大幅升高至凝胶状组合物的熔融温度以上。如本领域的技术人员所周知的,该过程适用于通过受控的挤出机套筒的冷却来调节温度的升高。内部温度能够在80与120℃之间变化。在塑化过程中,挤出机内部的压力相对于下一步的注射成型中的压力而言通常较低。在质量塑化过程中的压力通常在20bar与75bar之间,这取决于组合物中的聚合物/多元醇的比例。塑化后的树脂能够直接地或优选地在下一步骤中通过传统工艺进入模具的一个或多个型腔中被注射成型。一旦塑化步骤已经完成,则该物质将通过配有规则的圆孔的口模而挤出成为无端的股部分,这些股部分各自具有2mm至4mm的直径。然后,将股部分冷却并且在传统造粒机中造粒。颗粒被传递至下一个注射成型的操作中,其中,在挤出机内部的压力一直增大至70bar至120bar,并且最后,从这里获得带有呈杆状或蜗杆状的连接的环的固体本体,在冷却完成后,该固体本体可以在模具被打开时从模具中吐出。

毋庸置疑,该注射成型操作不仅能够用于制造蜗杆状的连续的环,还能够用于制造单个环,然而,该选择应当取决于封闭机器为了达到其最佳性能而被如何的设计。

为了改变(降低)模制的固体本体的残余水分含量,该过程将在烘箱中以10-3mm汞柱的真空压力、25至105℃的温度的条件发生。水合水平的计算通过采取样本在干燥过程前后的重量来执行,并且假设初始含水量来源于对原材料的官方的规格说明。

根据抽褶肠衣的股部分的孔的直径,该蜗杆状件可以具有几厘米的长度并且其外部直径为6至8毫米。蜗杆状件的纵向孔(轴向孔)的直径在1至4mm的范围内,这也取决于待被包围的扭转的肠衣的绳的厚度。蜗杆状件被模制成带有截面呈V形的纵向槽,该纵向槽到达轴向孔,从而使从蜗杆状件横向切下的任一段具有以“c”的形式的环形开口,如图2所示。开口(1)(间隙)为通过其将扭转的绳索的皱缩的段配合至紧固件的环的中空部分中的路径。

本发明的一种收紧元件或环能够由模制的蜗杆状预成型品(图1)切割而成,而非被单个地制造,通过横截式的切割该蜗杆状预成型品将能够获得多个环。通过以均匀的顺序排列的缩口部促使上述蜗杆状预成型品具有分段的外观,从而赋予其环状的外形。

由基于明胶的可食性树脂的热塑性组合物构成的环一旦被放置成包围皱缩的肠衣段则能够显示如下基本特征:

a)在熔融状态下充分地粘附至接触表面(甚至处于湿润状态),以确保该元件在肠衣材料商的紧固并且从而防止该元件远离材料滑动,

b)具有足够的弹性模量(即使没有太多的韧性)以便将足够的径向收紧张力施加至其所紧固的肠衣的扭转的/束紧的部分,以及

c)安全且具有可食性和水溶性。

在优选实施方式中,该环形元件由成比例的明胶/甘油构成,成比例的明胶/甘油给与组合物的模量高于10MPa并且更优选地高于20MPa,该模量被充分地提高以允许该环将强力的收紧作用施加至肠衣的扭转部分,同时相同的组合物材料具有充足的弹性行为以允许环被打开而不会在维持一串肠衣的配合的短暂的时间内破损(见图2b)。

在另一优选实施方式中,收紧元件是类似于上述收紧元件的固体环形元件,其在围绕肠衣的预先束紧的部分放置之前是敞开的(见图2a),然后闭合并且被热密封以便保持在肠衣材料上的牢固的收紧。这些全部都是能够实现的,因为制造该环的热塑性组合物能够通过低温加热以及通过具有快速熔接固化的特性而与其自身相熔接。

该c形环的开口(1)是一条路径,经由该路径能够使环配合在肠衣的皱缩的和/或扭转的段上,换言之,肠衣段经由该位置朝向环的中央进入环。一旦该段肠衣配合在环的中央中空部分上,则开口(1)被机械地关闭。该关闭操作本身包括将c形的当前连接的末端进行热密封,以及将位于肠衣的被包围的一段上的环熔接。

由于热塑性材料制成的开口环通过移动式夹钳(图4)闭合来创建环状形式,该开口的两个相对的部分通过与以适当温度加热的金属楔形元件相接触而预先被熔融,以便在至少一个接触表面处熔化;然后将两个表面靠近直到两者接触为止,此时,重要的是,除由迫使闭合 的夹钳施加的压力以外,起始接触温度的略微降低也促进了待凝固的材料的这种熔接的粘结力的快速增大,在完全固化之前,该粘结力已经大到足以防止环张开(熔接设置)并且避免了一旦夹钳释放刚刚形成的环会发生夹紧的过早松动。

封闭操作的程序

该封闭操作是如下进行的循环:

a)该抽褶肠衣股部分的一个端部被位于杆的端部处的钳子(图3a,未示出)捕捉,该杆的轴线与该股部分的轴线重合。该杆回缩并且将股部分拉动成使肠衣的未抽褶的一截不超过5cm。在快门件与打褶部分的连接部(大约肠衣的10mm处)与握紧钳子的点之间的一点处,快门件(电动可变光圈)迅速地闭合其叶片并且使未抽褶的肠衣(图3b)皱缩。

b)在关闭快门件的同时,钳子杆在其轴线上旋转并且使剩余的肠衣部段扭转,从而产生沿抽褶肠衣的股部分(图3c)的轴线方向的大约3cm长的串(串)。

c)打开的c形锁定环向上移动到新形成的一串肠衣的下方。该环在钳型装置的张开的口的内侧通过开口收紧型夹具被夹紧,该开口收紧型夹具的作用是环的闭合同时切割串。环向上移动以将一串肠衣配合在其轴向中空部分的内部,其中,环的开口呈面向上的“V”的形式。夹子停止升高恰好发生在当环的轴线与串的轴线重合的时候。

d)在锁定环升高的同时,推杆下降以推动在环的中空部分内一串肠衣(图7)。杆的端部由钢制成,其端部上具有平坦的楔部和直的边缘并且保持预热至足以将树脂环熔融的温度。杆的轴线与环升高的方向和轴线都重合。在绳索配合至环的轴向孔中的同时,推杆至少通过一侧、但优选通过两侧接触和熔融一层待接合的相对的表面,从而密封该环;

e)在推杆再次移走的同时,携带该环的夹钳(图8)闭合,从而一方面导致接触表面在扭转的肠衣绳索上熔合在一起,同时,另一方面,将该肠衣的多余的端部切断。夹子以预定的时间在环上施加中等和连续的力,该时间可以从2至5秒进行变化。在该熔接时间之后,夹钳打开并且下降至其静止位置,在该静止位置处其被装入下一个夹 紧环。

f)快门件迅速打开。环是闭合的并且该熔接同样在嵌入其中的本体(gut)部段上以及在进一步的可选步骤中起作用。

g)该封闭部被推到肠衣的抽褶的棒的内部(孔)。

本发明的其他变体

设想同样在本发明中,在执行完封闭操作之后肠衣可以外翻,或者将封闭部引入棒的内腔中,使得该环形封闭部位于棒的内孔中(如EP-2266410的图13所示,环应当环绕标记为14的点)。在灌装之后,本发明的封闭部能够保留在香肠的外表面中或者在接触香肠的表面中。在这种情况下,某些封闭部能够在烹饪之后仍然存在,而作为可食用的封闭部这应该不会造成问题。

本发明的环可以具有如六边形等的其他形式,而不一定是圆形。并且,该环不一定必须是可食性的(能够应用于其他肠衣)也不一定是水溶性的。

示例:

示例I:不同的组合物样本的制备。

针对该组合物的实施方式,使用了Juncá M.(赫罗纳,西班牙)的240至260布卢姆的食品级明胶干粉,平均粒径(0.3至0.8mm相当于20-50目,在此情况下特别地为35目),具有13%的表观含水量。为获得具有在2:1与1:2.5之间的增大的凝胶/甘氨酸比例的组合物,在每种情况下采取100份残余水分含量为13%的商业明胶并且与适当份数的无水甘油相组合,得到具有不同的表观含水量的组合物,如下表所示:

以获得的组合物具有增加的比的凝胶/甘油之间2:1和1:2.5在每种情况下采取的100份商业明胶与13%的残余水含量,结合的无水甘油中的适当部分,得到的组合物与各种内容在表观湿气所示下表:

该多元醇是来自Sigma-Aldrich的食品级无水甘油。该组合物是通过在80至120℃之间变化的温度下剧烈搅拌而将在明胶直接溶解在商业甘油中制成的。在表X中表达的所得比例是指无水的纯产品的重量比。

表I:

示例II:熔融温度的确定:

从在示例I中以不同组成比例制成的样品中,通过差示扫描量热法(DSC)的技术来确定热转变。平均结果列于下表:

表II:

Tg=玻璃化转变温度;Tm=熔融温度。

示例III:流变系数的确定。

表III:

MVR意为熔融体积比。

清楚地看到由于明胶和甘油两者的比例的变化而导致的流动性的急剧下降(从而粘度升高并且因此粘结力增大),从而降低适用的温度。这给出了一种如下构思:本发明的紧固件环状封闭部在执行的时候,即对于以相对低的环境温度执行时的最佳熔接性能以及熔接部的快速固定而言怎样的组合最适当。

示例IV:弹性模量的确定

来自示例I的各种样本的拉伸性能是基于用于该狗骨形样本的ISO527-1的一般原则,通过明确说明了用于确定模制和挤出的塑料的拉伸性能的测试条件的ASTM方法D638-10(相当于ISO527-2)计算得出。使用狗骨状样品进行测试。结果列于表IV。

表IV:

在表中能够观察到在1至2的比例的转变之间弹性模量急剧增加。示例V:确定粘合性

针对根据示例I的全部样本制成的各种样本测试了粘合性。除此之外,组合物的内容物聚合物/稀释剂(明胶/甘油)的量对应于2:1的比例,并且残余水分含量为9%的组合物在烘箱中以60℃和Hg10-3mm汞柱的真空压力的条件进行干燥,直到达到各不相同的6%、3%、1.5%和0.5%的含水量(分别对应于样本A7至A10)为止。

表V:具有不同组合物和水含量的树脂在胶原肠衣上的粘合性,该肠衣的湿度为12%、21%和35%(基于肠衣的总重量)。

同样指出的是具有非常低的含水量的组合物一旦被熔融其固有的粘合性提高,特别地,树脂中的聚合物的量更高。

不可剥离意味着当试图从本体表面剥离的一片树脂膜时,该树脂膜一旦冷却和固化则能够拉裂及拖住来自本体的材料而不与其分离,其中树脂膜通过熔融而铸塑至该本体表面。

示例VI:通过注射成型制备由明胶和甘油制成的密封/紧固环的棒。

如附图的图1中所描述的,多个具有纵向V形开口的中空蜗杆状杆通过注射成型模制而成。挤出的树脂材料的起始组合物由200布卢姆的明胶(Juncá)、甘油(购自Sigma-Aldrich的食品级甘油)以及残留量的水形成,并且在混合物中的各组分的最终比例分别对应于样品A4和A8。用于每个组合物的这些元件的尺寸一方面具有20cm的长度、8mm的直径,其中,中央中空部分直径为2mm;另一方面具有12mm的直径,其中,中央中空部分直径为4mm。

该材料通过在塑料加工行业中广泛使用的单螺杆挤出机塑化和挤出,工艺条件为87℃至104℃的范围内的温度、大约50-100bar的压力范围。塑化后的材料通过带有六个直径各为2mm的孔的圆形截面的口模挤出。然后冷却下来的无端股部分在传统造粒机中造粒。颗粒被用于在传统的注射成型机上制造蜗杆状杆。物料在1000-1200bar的压 力范围内被注射到不锈钢模具中,然后从模具中取出模制件。棒被放置在支架上并且直到其含水量为2%至3%时被设定为是干燥的。最终获得的棒是柔韧而牢固的。

通过用切割工具以横剖的方式将该棒切断而获得了多个8mm的短段。每个段的横截面均具有开口环的形状或C形环。这种C形环的开口是将皱缩的和/或扭转的肠衣段嵌入该环中所经由的路径。

示例VII:封闭部的实施方式;被封闭的肠衣的灌装测试以及所得到的香肠连同其封闭部的烹饪的测试。

为了测试封闭部的性能,选择了两种尺寸的可食性胶原肠衣;即,口径21,其中应用了名为A2、A4和A8的组合物制成的小环(直径8mm);以及口径28,其中应用了由相同组合物制成的直径为12mmd环。

在打褶的棒被手动密封的每种情况中,如下:使一个棒前进以使大约两英寸的肠衣消褶,然后使用手动快门件使展开的肠衣在相对于抽褶棒的开头一英寸的范围内皱缩。肠衣的剩余部分一旦由快门叶片夹持,则被扭转以针对管径为21的肠衣形成直径大约为两毫米的串以及针对管径为28的肠衣形成直径大约为四毫米的串。

表VI:封闭部对灌装过程的抵抗结果

通过按照所指示的来选择尺寸,直接应用各个组合物制成的环形封闭部。通过使用用于镀锡的梯形头的加热器加热至85℃,使得每种组合物以及每种直径的环的一半以如记忆(memory)中所描述的方式进行密封。该加热器最先用于将肠衣串推入环的中心孔中;一旦配合后,加热器的侧面与环的接触面相接触,从而导致表面层的迅速熔化;然后接着移除加热器,该过程与环的闭合同时发生。一旦使环的熔化的面相互接触,则在2秒以内移除闭合压力就能够形成具有足够粘结力的熔接。在将该环上的压力移除之后,环仍然为闭合的,从而形成收紧环。环的另一半不熔接而只是在将肠衣配合至其中心孔中之后被按压。

通过使用充填机器的制动控制而在RobbyVemag2型机器上以80份/分钟的速度用香肠的肉馅对该抽褶且密封的肠衣棒进行灌装。

灌装过程的结果在表VI中列出。如在所述结果中所反映的,由组合物A2制成且未密封的那些环相对能够经受住该灌装过程,根据其直径,使得较大环对开口具有更大的抵抗力,根据其所应用于的相应的管径。在由组合物A2制成的小环的情况下,其较小的壁厚被添加至较低的弹性模量同样有利于其中的一些在灌装过程中打开,因此在这些情况下建议使用其热密封。

随后,香肠被挂在挂钩上以便在90℃的条件下在一个简单的循环内烘焙四小时。在所有情况下,第一个香肠——即环的载体——维持其完好的整体进入烹饪周期的起点。在这个周期时间内,肉馅凝结并且香肠维持其形状一直到该循环结束为止。在该时间内,每个第一个香肠的密封环均逐渐地溶解,以在循环结束之前消失。最终的结果是令人满意的,不仅是出于优良的封闭性能,而且还由于使用香肠来携带该封闭部比以相同方式使用其他部分更具有真实的可能性。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号