首页> 中国专利> 一种铁催化羰基化合成二芳甲酮的方法

一种铁催化羰基化合成二芳甲酮的方法

摘要

本发明公开了一种铁催化羰基化合成二芳甲酮类化合物的方法,属于催化合成技术领域。本发明在溶剂醇或醇的水溶液中,在碱、酸和碘化物的作用下,加入铁催化剂,催化芳基卤代物、芳硼类化合物与卤仿或四卤化碳羰基源直接交叉偶联反应制备二芳甲酮类化合物。本发明的偶联反应制备二芳甲酮类化合物的方法,具有羰基源安全、廉价和易于处理;催化剂来源广泛、廉价和毒性小;反应无需配体且活性好;反应条件温和且选择性高;底物来源广泛且稳定;底物官能团相容性好且底物的适用范围广;反应介质绿色且可以循环回收。在优化的反应条件之下,目标产品分离收率高达94%。

著录项

  • 公开/公告号CN106116999A

    专利类型发明专利

  • 公开/公告日2016-11-16

    原文格式PDF

  • 申请/专利权人 南京师范大学;

    申请/专利号CN201610446740.7

  • 发明设计人 韩维;杜宏艳;

    申请日2016-06-21

  • 分类号C07B41/06(20060101);C07C45/45(20060101);C07C49/813(20060101);C07C49/792(20060101);C07C49/84(20060101);C07C201/12(20060101);C07C205/45(20060101);C07C221/00(20060101);C07C225/22(20060101);C07D207/06(20060101);C07C319/20(20060101);C07C323/22(20060101);C07D213/50(20060101);C07D333/22(20060101);C07D213/643(20060101);C07D213/55(20060101);C07C315/04(20060101);C07C317/24(20060101);C07D209/12(20060101);C07D407/06(20060101);C07D207/333(20060101);C07D263/32(20060101);C07D417/06(20060101);C07D403/06(20060101);C07D409/06(20060101);

  • 代理机构32207 南京知识律师事务所;

  • 代理人蒋海军

  • 地址 210023 江苏省南京市栖霞区文苑路1号

  • 入库时间 2023-06-19 00:50:48

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2019-02-01

    授权

    授权

  • 2016-12-14

    实质审查的生效 IPC(主分类):C07B41/06 申请日:20160621

    实质审查的生效

  • 2016-11-16

    公开

    公开

说明书

技术领域

本发明属于催化合成技术领域,更具体地说,涉及一种铁催化羰基化合成二芳甲酮的方法,是一种直接利用芳硼类化合物、芳基卤代物与卤仿或四卤化碳羰基源交叉偶联来制备二芳甲酮的方法。

背景技术

二芳甲酮的骨架结构广泛存在于天然产品、医药、光敏剂和有机材料中,其合成方法已经引起了广泛的关注。羰基化的Suzuki反应具有反应选择性好、产率高、底物来源广泛和稳定性好、底物适用范围广和官能团相容性好的优点,能用于合成各类二芳甲酮的结构,因此引起了广泛的关注。目前,催化羰基化的Suzuki反应的催化体系一般都要用到昂贵的钯催化剂和膦配体,然而膦配体有毒、对空气和水不稳定,且价格昂贵。虽然稳定的氮卡宾配体和氮配体也用于此反应,但是配体的引入给反应的后处理造成困难,而且也增加了生产成本。

此外,羰基化的Suzuki反应一般需要较大一氧化碳的压力下才能顺利进行,限制了该反应的广泛应用(X.-F.Wu,M.Beller,Transition Metal Catalyzed Carbonylation Reactions-Carbonylative Activation of C–X Bonds,Springer-Verlag Berlin,Heidelberg,2013)。最近报道了相对廉价的铁、铜或镍催化的羰基化Suzuki反应,并取得了理想的催化效果,克服了钯催化的诸多不足,例如,中国专利申请号为201410201223.4,申请公布日为2014年7月30日的专利申请文件公开了一种常压下镍催化合成二芳甲酮的方法,在溶剂聚乙二醇或聚乙二醇的水溶液中,在碱和酸的共同作用下,常压下镍催化剂催化芳基碘代物、芳基硼酸与一氧化碳直接交叉偶联反应制备二芳甲酮类化合物。中国专利申请号为201410201156.6,申请公布日为2014年7月30日的专利申请文件公开了一种常压下铜催化合成二芳甲酮的方法,在溶剂醇或醇的水溶液中,在碱和酸的作用下,加入铜催化剂,常压下芳基碘代物、芳基硼酸与一氧化碳直接交叉偶联反应制备二芳甲酮类化合物。然而,上述反应用到的羰基源为一氧化碳,一氧化碳有毒、易燃和难于处理,存在严重的安全问题。因此,开发更加安全和有效的羰基源具有重要的研究意义和应用价值。

发明内容

1.要解决的问题

针对现有的二芳甲酮合成方法存在羰基源有毒、易燃、难于处理,存在严重的安全隐患等问题,本发明提供一种铁催化羰基化合成二芳甲酮类化合物的方法,在铁催化剂作用下,芳基硼类化合物、芳卤类化合物与卤仿或四卤化碳羰基源直接偶联合成二芳甲酮,该方法具有羰基源安全、廉价和易于处理;催化剂来源广泛、廉价和毒性小;反应无需配体且活性好;反应条件温和且选择性高;底物来源广泛且稳定;底物官能团相容性好且底物的适用范围广;反应介质绿色且可以循环回收的优势。

2.技术方案

为了解决上述问题,本发明所采用的技术方案如下:

一种铁催化羰基化合成二芳甲酮的方法,以醇或醇的水溶液为溶剂,在碱、酸和碘化物的作用下,加入铁催化剂,芳硼类化合物、芳基卤代物与卤仿或四卤化碳羰基源直接交叉偶联反应,制得二芳甲酮,偶联反应温度为50~200℃,反应时间为0.5~72小时,反应通式表示如下:

式中:X=I,Br,F或Cl;

Ar-B表示芳基或杂芳基的硼酸、硼酸酯或氟硼酸盐;Ar’-X表示芳基或杂芳基的卤代物;

本发明的方法所合成的二芳甲酮类化合物的结构通式为:

式中,Ar表示的芳基为苯基、联苯基、萘基、蒽基、菲基或芘基,Ar表示的杂芳基为含N、O或S的五至十三元环的杂芳基;Ar’表示的芳基为苯基、联苯基、萘基、蒽基、菲基或芘基,Ar’表示的杂芳基为含N、O或S的五至十三元环的杂芳基。

进一步地,Ar-B或Ar’-X中的杂芳基为呋喃基、噻吩基、吡咯基、吲哚基、咔唑基、吡唑基、噻唑基、恶唑基、咪唑基或吡啶基。

进一步地,以R表示Ar上的取代基,R单取代或多取代芳环上的氢;以R’表示Ar’上的取代基,R’单取代或多取代芳环上的氢;其中

R任意选自氢,C1~C12的烷基、烯基或炔基,C1~C12的烷氧基,C1~C12的卤取代烷基,C3~C12的环烷基,芳基、芳氧基或芳胺基,杂芳基、杂芳氧基或杂芳胺基,C1~C12烷基取代的氨基,C1~C12的巯基,氟、氯或溴,羟基,C1~C12烷基羰基,羧基,C1~C12烷氧基羰基,C1~C12烷胺基羰基,芳基羰基,C1~C12烷磺酰基、磺酸基、氰基或硝基;

R’任意选自氢,C1~C12烷基、烯基或炔基,C1~C12烷氧基、C1~C12的卤取代烷基、C3~C12的环烷基,芳基、芳氧基或芳胺基,杂芳基、杂芳氧基或杂芳胺基,C1~C12烷基取代的氨基,C1~C12的巯基,氟、氯或溴,羟基,C1~C12烷基羰基,羧基,C1~C12烷氧基羰基,C1~C12烷胺基羰基,芳基羰基,C1~C12烷磺酰基,磺酸基,氰基或硝基。

进一步地,当Ar或Ar’表示杂芳基吡咯基、吲哚基、咔唑基、吡唑基和咪唑基时,其氮原子上的取代基任意选自氢、C1~C12的烷基、C1~C12卤取代烷基、C3~C12的环烷基、芳基、杂芳基、C1~C12烷磺酰基、対甲苯磺酰基、苄基、C1~C12烷基羰基、叔丁氧酰基或芳酰基。

所述的芳硼类化合物为苯类、联苯类、萘类、蒽类、芘类、呋喃类、噻吩类、吡咯类、吲哚类、咔唑类、吡唑类、噻唑类、恶唑类、咪唑类或吡啶类的硼酸、硼酸酯或氟硼酸盐。

所述的芳基卤代物为苯类、联苯类、萘类、蒽类、芘类、呋喃类、噻吩类、吡咯类、吲哚类、咔唑类、吡唑类、噻唑类、恶唑类、咪唑类或吡啶类的芳碘、芳溴、芳氟或芳氯,最优选的芳卤为芳基碘代物。

进一步地,所述的铁催化剂包括但不限于铁粉、三氟甲磺酸亚铁、三氟甲磺酸铁、氯化亚铁、乙酰丙酮铁、铁氰化亚铁、铁氰化铁、醋酸亚铁、硫酸亚铁、硫酸亚铁铵、草酸亚铁、草酸铁、氟化亚铁、氟化铁、溴化亚铁、溴化铁、碘化亚铁、碘化铁、三氯化铁、氧化铁或四氧化三铁中的一种或几种。

进一步地,所述的羰基源包括但不限于氟仿、氯仿、溴仿、碘仿、四氟化碳、四氯化羰、四溴化碳或四碘化碳。

进一步地,所述的碱包括但不限于磷酸钾、磷酸氢钾、磷酸氢二钾、磷酸钠、磷酸氢钠、磷酸氢二钠、氟化钠、氟化钾、氟化铯、碳酸锂、碳酸钠、碳酸氢钠、碳酸钾、碳酸氢钾、碳酸铯、醋酸钠、醋酸钾、醋酸铯、特戊酸钠、特戊酸钾、特戊酸铯、甲醇钠、乙醇钠,乙醇钾、叔丁醇锂、叔丁醇钠、叔丁醇钾、氢氧化锂、氢氧化钠、氢氧化钾、氢氧化铯、四丁基氟化铵、四丁基氢氧化铵、三乙胺、二异丙基乙胺或吡啶中的一种或几种。

进一步地,所述的酸包括但不限于甲酸、乙酸、丙酸、异丙酸、特戊酸、三氟乙酸、苯甲酸、2-硝基苯甲酸、三氟甲磺酸、对甲苯磺酸或樟脑磺酸。

进一步地,所述的碘化物包括但不限于碘化氢、碘化锂、碘化钠、碘化钾、碘化铵、碘化亚铜、碘化铜、碘化锌、四甲基碘化铵、四乙基碘化铵、四丙基碘化铵、四丁基碘化铵、四正庚基碘化铵、三甲基碘化锍、三甲基碘化亚砜、甲基三苯基碘化鏻或乙基三苯基碘化鏻。

进一步地,所述的醇包括但不限于甲醇,乙醇,异丙醇,正丁醇,叔丁醇,乙二醇,甘油,葡萄糖或平均分子量为100~10000的聚乙二醇;醇的水溶液中醇与水的体积比为1:(0~1000);最优选的溶剂为聚乙二醇-400。

进一步地,所述的芳基卤代物、芳硼类化合物、羰基源、碱、酸、碘化物、铁催化剂的摩尔比为1:(0.5~10):(1~20):(1~50):(0~20):(0~20):(0.001~5),最优选的摩尔比为1:1.5:3:7:1.5:0.5:0.1。

进一步地,所述的芳基卤代物与溶剂的重量比为1:(5~1000)。

3.有益效果

相比于现有技术,本发明的有益效果为:

(1)本发明提供了一种在醇或醇的水溶液中铁催化的芳硼类化合物、芳基卤代物与卤仿或四卤化碳羰基源的直接交叉偶联反应来制备二芳甲酮化合物的新方法,该方法具有催化剂来源广泛、廉价和毒性小;反应无需配体且活性好;羰基源廉价、安全和易于处理;底物来源广泛且稳定;底物官能团相容性好且底物的适用范围广;反应介质绿色且可以循环回收的优势;

(2)本发明提供的二芳甲酮类化合物的合成方法简单易行,一步法直接得到二芳甲酮类化合物,在优化的反应条件之下,目标产品分离后收率高达94%,是一种高效、经济、环境友好的合成二芳甲酮的方法;

(3)本发明方法制备的二芳甲酮可用来制备具有独特的生物、药理活性和功能的杂环化合物,在药物中间体、生物活性分子和荧光材料等方面有着广泛的用途。

具体实施方式

下面结合具体实施例对本发明进一步进行描述。

为更进一步阐述本发明为达成预定发明目的所采取的技术手段及功效,对依据本发明提出的技术方案具体实施方式、特征及其功效,详细说明如后。

实施例1

化合物1:25mL反应瓶中依次加入氯化亚铁(0.05mmol),4-碘苯乙炔(0.5mmol),4-氟苯硼酸(0.75mmol),碳酸钠(1.0mmol),一水合氢氧化铯(2.5mmol),碘化钠(0.25mmol),特戊酸(0.75mmol),氯仿(1.5mmol)和聚乙二醇-400(2.0g),并在120℃下反应6h。冷却到室温,萃取,减压蒸除溶剂后柱层析分离得到产率87%。

实施例2

化合物2:25mL反应瓶中依次加入氯化亚铁(0.05mmol),4-环丙基碘苯(0.5mmol),2-甲基苯硼酸(0.75mmol),叔丁醇钠(1.0mmol),碳酸钠(1.0mmol),一水合氢氧化铯(2.5mmol),碘化钠(0.25mmol),特戊酸(0.75mmol),氯仿(1.5mmol)和聚乙二醇-1000(2.0g),并在120℃下反应16h。冷却到室温,萃取,减压蒸除溶剂后柱层析分离得到产率79%。

实施例3

化合物3:25mL反应瓶中依次加入氯化亚铁(0.05mmol),4-硝基碘苯(0.5mmol),2-环己基苯硼酸(0.75mmol),碳酸钠(1.0mmol),一水合氢氧化铯(2.5mmol),碘化钠(0.25mmol),特戊酸(0.75mmol),氟仿(1.5mmol)和聚乙二醇-400(2.0g),并在120℃下反应15h。冷却到室温,萃取,减压蒸除溶剂后柱层析分离得到产率81%。

实施例4

化合物4:25mL反应瓶中依次加入氯化亚铁(0.05mmol),4-苯氧基碘苯(0.5mmol),3-乙氧基苯硼酸(0.75mmol),碳酸钠(1.0mmol),一水合氢氧化铯(2.5mmol),碘化钠(0.25mmol),特戊酸(0.75mmol),氯仿(1.5mmol)和聚乙二醇-400(2.0g),并在120℃下反应16h。冷却到室温,萃取,减压蒸除溶剂后柱层析分离得到产率91%。

实施例5

化合物5:25mL反应瓶中依次加入氯化亚铁(0.05mmol),1-碘萘(0.5mmol),2-氟-4-丁酰基苯硼酸(0.75mmol),氟化钠(1.0mmol),碳酸钠(1.0mmol),一水合氢氧化铯(2.5mmol),碘化钠(0.25mmol),特戊酸(0.75mmol),氯仿(1.5mmol)和聚乙二醇-400(2.0g),并在120℃下反应24h。冷却到室温,萃取,减压蒸除溶剂后柱层析分离得到产率95%。

实施例6

化合物5:25mL反应瓶中依次加入铁粉(0.05mmol),1-碘萘(0.5mmol),2-氟-4-丁酰基苯硼酸(0.5mmol),碳酸钠(1.0mmol),一水合氢氧化铯(2.0mmol),碘化钠(0.05mmol),特戊酸(0.05mmol),四碘化碳(1.5mmol)和聚乙二醇-400(2.0g),并在120℃下反应24h。冷却到室温,萃取,减压蒸除溶剂后柱层析分离得到产率69%。

实施例7

化合物6:25mL反应瓶中依次加入氯化亚铁(0.05mmol),9-碘蒽(0.5mmol),4-N,N-二乙基苯硼酸(0.75mmol),碳酸钠(1.0mmol),一水合氢氧化铯(2.5mmol),碘化钠(0.25mmol),特戊酸(0.75mmol),氯仿(1.5mmol)和聚乙二醇-400(2.0g),并在120℃下反应24h。冷却到室温,萃取,减压蒸除溶剂后柱层析分离得到产率90%。

实施例8

化合物6:25mL反应瓶中依次加入氯化亚铁(0.005mmol),9-碘蒽(0.5mmol),4-N,N-二乙基苯硼酸(0.75mmol),碳酸钠(0.6mmol),一水合氢氧化铯(1.1mmol),碘化钠(0.25mmol),特戊酸(0.75mmol),氯仿(0.55mmol)和聚乙二醇-400(2.0g),并在120℃下反应24h。冷却到室温,萃取,减压蒸除溶剂后柱层析分离得到产率70%。

实施例9

化合物7:25mL反应瓶中依次加入氯化亚铁(0.05mmol),4-碘联苯(0.5mmol),4-吡咯烷酰基苯硼酸嚬呐醇酯(0.75mmol),碳酸钠(1.0mmol),一水合氢氧化铯(2.5mmol),碘化钠(0.25mmol),特戊酸(0.75mmol),氯仿(1.5mmol)和聚乙二醇-400(2.0g),并在120℃下反应18h。冷却到室温,萃取,减压蒸除溶剂后柱层析分离得到产率87%。

实施例10

化合物8:25mL反应瓶中依次加入氯化亚铁(0.05mmol),4-碘苯乙烯(0.5mmol),3-苯氧基苯硼酸(0.75mmol),碳酸钠(1.0mmol),一水合氢氧化铯(2.5mmol),碘化钠(0.25mmol),特戊酸(0.75mmol),氯仿(1.5mmol)和聚乙二醇-400(2.0g),并在120℃下反应15h。冷却到室温,萃取,减压蒸除溶剂后柱层析分离得到产率90%。

实施例11

化合物8:25mL反应瓶中依次加入三氯化铁(1.0mmol),4-碘苯乙烯(0.5mmol),3-苯氧基苯硼酸(3.0mmol),碳酸钠(1.0mmol),一水合氢氧化铯(12mmol),碘化钠(2.0mmol),特戊酸(5mmol),氯仿(5mmol),聚乙二醇-400(5.0g)和水(2.0g),并在120℃下反应15h。冷却到室温,萃取,减压蒸除溶剂后柱层析分离得到产率97%。

实施例12

化合物9:25mL反应瓶中依次加入氯化亚铁(0.05mmol),3,5-二甲基碘苯(0.5mmol),3-氟-5-乙巯基苯硼酸(0.75mmol),磷酸氢二钾(1.5mmol),碳酸钠(1.0mmol),一水合氢氧化铯(2.5mmol),碘化钠(0.25mmol),特戊酸(0.75mmol),氯仿(1.5mmol)和聚乙二醇-400(2.0g),并在120℃下反应10h。冷却到室温,萃取,减压蒸除溶剂后柱层析分离得到产率91%。

实施例13

化合物10:25mL反应瓶中依次加入氯化亚铁(0.05mmol),2-碘吡啶(0.5mmol),3-全氟乙基基苯硼酸(0.75mmol),碳酸钠(1.0mmol),一水合氢氧化铯(2.5mmol),碘化钠(0.25mmol),特戊酸(0.75mmol),氯仿(1.5mmol)和聚乙二醇-400(2.0g),并在120℃下反应15h。冷却到室温,萃取,减压蒸除溶剂后柱层析分离得到产率95%。

实施例14

化合物11:25mL反应瓶中依次加入氯化亚铁(0.05mmol),4-碘噻吩(0.5mmol),4-乙氧酰基苯硼酸(0.75mmol),碳酸钠(1.0mmol),一水合氢氧化铯(2.5mmol),碘化钠(0.25mmol),特戊酸(0.75mmol),氯仿(1.5mmol)和聚乙二醇-400(2.0g),并在120℃下反应12h。冷却到室温,萃取,减压蒸除溶剂后柱层析分离得到产率88%。

实施例15

化合物12:25mL反应瓶中依次加入氯化亚铁(0.05mmol),4-氯碘苯(0.5mmol),2-氯苯硼酸(0.75mmol),碳酸钠(1.0mmol),四丁基氢氧化铵(2.5mmol),碘化钠(0.25mmol),特戊酸(0.75mmol),氯仿(1.5mmol)和聚乙二醇-400(2.0g),并在120℃下反应24h。冷却到室温,萃取,减压蒸除溶剂后柱层析分离得到产率90%。

实施例16

化合物13:25mL反应瓶中依次加入氯化亚铁(0.05mmol),4-(2’-吡啶氧基)碘苯(0.5mmol),4-氰基苯硼酸(0.75mmol),碳酸钠(1.0mmol),一水合氢氧化铯(2.5mmol),碘化钠(0.25mmol),特戊酸(0.75mmol),氯仿(1.5mmol)和聚乙二醇-400(2.0g),并在120℃下反应16h。冷却到室温,萃取,减压蒸除溶剂后柱层析分离得到产率91%。

实施例17

化合物14:25mL反应瓶中依次加入氯化亚铁(0.05mmol),4-碘苯酚(0.5mmol),3-乙磺酰基苯硼酸(0.75mmol),二异丙基乙胺(1.0mmol),碳酸钠(1.0mmol),一水合氢氧化铯(2.5mmol),碘化钠(0.25mmol),特戊酸(0.75mmol),氯仿(1.5mmol)和聚乙二醇-400(2.0g),并在120℃下反应16h。冷却到室温,萃取,减压蒸除溶剂后柱层析分离得到产率90%。

实施例18

化合物15:25mL反应瓶中依次加入氯化亚铁(0.05mmol),4-碘苯甲酸(0.5mmol),2-甲基苯硼酸(0.75mmol),醋酸钾(1.5mmol),一水合氢氧化铯(2.5mmol),碘化钠(0.25mmol),特戊酸(0.75mmol),氯仿(1.5mmol)和聚乙二醇-400(2.0g),并在120℃下反应15h。冷却到室温,萃取,减压蒸除溶剂后柱层析分离得到产率90%。

实施例19

化合物16:25mL反应瓶中依次加入四氧化三铁(0.05mmol),4-(2-炔丙氧基)碘苯(0.5mmol),1-丙基吲哚-7-硼酸(0.75mmol),碳酸钠(1.0mmol),一水合氢氧化铯(2.5mmol),乙基三苯基碘化鏻(0.25mmol),特戊酸(0.75mmol),氯仿(1.5mmol)和聚乙二醇-2000(2.0g),并在120℃下反应16h。冷却到室温,萃取,减压蒸除溶剂后柱层析分离得到产率71%。

实施例20

化合物17:25mL反应瓶中依次加入氯化亚铁(0.05mmol),2-碘呋喃(0.5mmol),苯并呋喃-3-硼酸(0.75mmol),碳酸钠(1.0mmol),一水合氢氧化铯(2.5mmol),碘化钠(0.25mmol),特戊酸(0.75mmol),碘仿(1.5mmol)和聚乙二醇-400(2.0g),并在120℃下反应12h。冷却到室温,萃取,减压蒸除溶剂后柱层析分离得到产率89%。

实施例21

化合物18:25mL反应瓶中依次加入氯化亚铁(0.05mmol),1-甲基-2-碘吡咯(0.5mmol),1-萘氟硼酸钾(0.75mmol),碳酸钠(1.0mmol),一水合氢氧化铯(2.5mmol),碘化钠(0.25mmol),特戊酸(0.75mmol),氯仿(1.5mmol)和聚乙二醇-400(2.0g),并在120℃下反应24h。冷却到室温,萃取,减压蒸除溶剂后柱层析分离得到产率92%。

实施例22

化合物19:25mL反应瓶中依次加入氯化亚铁(0.05mmol),2-碘恶唑(0.5mmol),4-三氟甲基苯硼酸(0.75mmol),碳酸钠(1.0mmol),一水合氢氧化铯(2.5mmol),四丁基碘化铵(0.25mmol),特戊酸(0.75mmol),氯仿(1.5mmol)和聚乙二醇-400(2.0g),并在120℃下反应12h。冷却到室温,萃取,减压蒸除溶剂后柱层析分离得到产率97%。

实施例23

化合物20:25mL反应瓶中依次加入氯化亚铁(0.05mmol),五氟碘苯(0.5mmol),4-联苯硼酸(0.75mmol),碳酸钠(1.0mmol),一水合氢氧化铯(2.5mmol),碘化钠(0.25mmol),特戊酸(0.75mmol),氯仿(1.5mmol)和聚乙二醇-400(2.0g),并在120℃下反应12h。冷却到室温,萃取,减压蒸除溶剂后柱层析分离得到产率89%。

实施例24

化合物21:25mL反应瓶中依次加入氯化亚铁(0.05mmol),2-碘噻唑(0.5mmol),1-苄吲哚-3-硼酸(0.75mmol),碳酸钠(1.0mmol),一水合氢氧化铯(2.5mmol),碘化钠(0.25mmol),特戊酸(0.75mmol),溴仿(1.5mmol)和聚乙二醇-400(2.0g),并在120℃下反应16h。冷却到室温,萃取,减压蒸除溶剂后柱层析分离得到产率91%。

实施例25

化合物22:25mL反应瓶中依次加入氯化亚铁(0.05mmol),1-苯基-2-碘咪唑(0.5mmol),1-乙酰基吲哚-3-硼酸(0.75mmol),碳酸钠(1.0mmol),一水合氢氧化铯(2.5mmol),碘化钠(0.25mmol),特戊酸(0.75mmol),四氯化羰(1.5mmol)和聚乙二醇-200(2.0g),并在120℃下反应12h。冷却到室温,萃取,减压蒸除溶剂后柱层析分离得到产率84%。

实施例26

化合物23:25mL反应瓶中依次加入氯化亚铁(0.05mmol),4-碘二苯甲酮(0.5mmol),1-对甲苯磺酰基吲哚-3-硼酸(0.75mmol),碳酸钠(1.0mmol),一水合氢氧化铯(2.5mmol),碘化钠(0.25mmol),特戊酸(0.75mmol),氯仿(1.5mmol)和聚乙二醇-400(2.0g),并在120℃下反应12h。冷却到室温,萃取,减压蒸除溶剂后柱层析分离得到产率84%。

实施例27

化合物24:25mL反应瓶中依次加入氯化亚铁(0.05mmol),1-叔丁氧羰基-4-碘吡唑(0.5mmol),1-环丙基吲哚-3-硼酸(0.75mmol),碳酸钠(1.0mmol),一水合氢氧化铯(2.5mmol),碘化钠(0.25mmol),特戊酸(0.75mmol),氯仿(1.5mmol)和聚乙二醇-400(2.0g),并在120℃下反应12h。冷却到室温,萃取,减压蒸除溶剂后柱层析分离得到产率90%。

实施例28

化合物25:25mL反应瓶中依次加入氯化亚铁(0.05mmol),3-乙巯基碘苯(0.5mmol),1-苯甲酰基吲哚-3-硼酸(0.75mmol),碳酸钠(1.0mmol),一水合氢氧化铯(2.5mmol),碘化钠(0.25mmol),特戊酸(0.75mmol),氯仿(1.5mmol)和聚乙二醇-400(2.0g),并在120℃下反应24h。冷却到室温,萃取,减压蒸除溶剂后柱层析分离得到产率88%。

实施例29

化合物26:25mL反应瓶中依次加入三氟甲磺酸亚铁(0.1mmol),1-乙磺酰基-4-碘咔唑(0.5mmol),3-噻吩苯硼酸(0.75mmol),碳酸钠(1.0mmol),一水合氢氧化铯(2.5mmol),碘化钠(0.25mmol),特戊酸(0.75mmol),氯仿(1.5mmol),聚乙二醇-8000(2.0g)和水(10g),并在120℃下反应12h。冷却到室温,萃取,减压蒸除溶剂后柱层析分离得到产率71%。

实施例30

化合物26:25mL反应瓶中依次加入氯化亚铁(0.05mmol),1-乙磺酰基-4-碘咔唑(0.5mmol),3-噻吩苯硼酸(0.75mmol),碳酸钠(1.0mmol),一水合氢氧化铯(2.5mmol),碘化钠(0.25mmol),特戊酸(0.75mmol),碘仿(1.5mmol),聚乙二醇-400(2.0g),并在120℃下反应24h。冷却到室温,萃取,减压蒸除溶剂后柱层析分离得到产率81%。

实施例31

化合物26:25mL反应瓶中依次加入氯化亚铁(0.05mmol),1-乙磺酰基-4-碘咔唑(0.5mmol),3-噻吩苯硼酸(0.75mmol),碳酸钠(1.0mmol),一水合氢氧化铯(2.5mmol),碘化钠(0.25mmol),特戊酸(0.75mmol),氯仿(1.5mmol),异丙醇(2.0g)和水(0.1g),并在120℃下反应24h。冷却到室温,萃取,减压蒸除溶剂后柱层析分离得到产率49%。

实施例1~31二芳甲酮的合成方法对应的实验结果列于表1:

表1 铁催化的二芳甲酮的合成反应[a]

[a]反应条件见实施例;[b]柱分离收率。

以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明,本发明中的铁催化剂在反应中有利于活化芳基卤代物和芳硼试剂,实现单电子转移过程,本发明中选定的各种价态的铁都应能取得类似的作用;酸在本发明中起减少非羰基化的副反应之作用,利用的是其酸性,本发明给出的各种酸,都应能取得实施例中的效果;碱是发生芳卤代物羰基化偶联反应所必须的促进剂,利用的是其碱性,因此本发明给出的各种碱,都应能取得类似之效果;碘化物是羰基化化反应常见的促进剂,利用的是碘阴离子的作用,本发明提供的能电离出碘阴离子的碘化物,都应能取得类似之效果;芳基卤代物发生反应的化学键是碳-卤键,而其芳环上的取代基影响的是芳环的电子云密度大小以及反应时的空间位阻大小,即取代基的修饰只是一定程度上影响反应,不对反应的发生起决定作用;芳硼试剂发生反应的化学键是碳-硼键,而其芳环上的取代基影响的是芳环的电子云密度大小以及反应时的空间位阻大小,即取代基的修饰只是一定程度上影响反应,不对反应的发生起决定作用。任何熟悉本专业的技术人员不难理解,在不脱离本发明技术方案范围内,当可进行替换、变动或修饰得到相应的实施例,例如对于所述的取代基可在本发明范围内进行替换、改变或修饰,均可以实现本发明方法。但凡是未脱离本发明技术方案的宗旨,依据本发明的对以上实施例所作的任何修改、修饰或等同与等效的变化,均仍属于本发明技术方案的范围内。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号