首页> 中国专利> 硫化氢检测传感器及其制备方法、硫化氢的定量检测方法和细胞内硫化氢的定性检测方法

硫化氢检测传感器及其制备方法、硫化氢的定量检测方法和细胞内硫化氢的定性检测方法

摘要

本发明公开了一种硫化氢检测传感器及其制备方法、硫化氢的定量检测方法和细胞内硫化氢的定性检测方法,该制备方法包括:1)将乙二胺四乙酸二钠盐、可溶性铜盐和水混合形成铜配合物的水溶液;2)将铜配合物的水溶液进行水热反应、过滤、离心、透析取透析袋内的液体以制得铜掺杂的碳量子点的水溶液;3)将铜掺杂的碳量子点的水溶液与缓冲溶液混合以制得硫化氢检测传感器。该方法既能对硫化氢溶液进行定量检测,又能对细胞内的硫化氢进行定性检测。

著录项

  • 公开/公告号CN105928914A

    专利类型发明专利

  • 公开/公告日2016-09-07

    原文格式PDF

  • 申请/专利权人 安徽师范大学;

    申请/专利号CN201610235329.5

  • 申请日2016-04-15

  • 分类号G01N21/64(20060101);

  • 代理机构11283 北京润平知识产权代理有限公司;

  • 代理人张苗;罗攀

  • 地址 241002 安徽省芜湖市弋江区九华南路189号科技服务部

  • 入库时间 2023-06-19 00:28:54

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2019-09-27

    授权

    授权

  • 2016-10-05

    实质审查的生效 IPC(主分类):G01N21/64 申请日:20160415

    实质审查的生效

  • 2016-09-07

    公开

    公开

说明书

技术领域

本发明涉及硫化氢的检测,具体地,涉及硫化氢检测传感器及其制备方法、硫化氢的定量检测方法和细胞内硫化氢的定性检测方法。

背景技术

硫化氢最近被发现可以作为生物体内一种新型的信号发射器,从而引起了人们的广泛关注。除了一氧化氮和一氧化碳这两种气体信号分子之外,它已经被公认为第三重要的气体信号分子。内源性硫化氢主要是酶促反应经过生物学方法合成得到,可以参与到像抗氧化作用、抗炎和细胞凋亡等各种生理学过程。另外,不同浓度的硫化氢对于病理过程的探究也有着密切的联系。为了更精确探究这些生理过程中硫化氢的浓度所引起的变化,实时检测活细胞和有机体内的硫化氢的量显得尤为重要。然而,由于硫化氢的高活性和强分散性,传统的检测技术像气相色谱分析法、比色法和电化学分析法,并不适用于实时检测。他们需要复杂的后处理过程,甚至会破坏组织和活性细胞。值得一提的是,以荧光探针构筑的荧光成像技术已经被发现,并且其荧光探针对于各种生物样品的高选择性、高灵敏性以及良好的生物相容性,使得设计和合成荧光探针对于硫化氢的检测具有重要的意义。

在用于检测硫化氢的众多光学技术中,荧光传感和成像被认为是最通用和最广泛使用的技术在实验室研究和临床实践中,因为它具有高灵敏度、实时监测、低背景干扰和高信噪比等优势。在过去的十年里,各种荧光的方法用于生物体液和活细胞内的硫化氢的检测,大体上可以分为三种类型的化学反应用来荧光检测硫化氢,分别是利用硫化氢将叠氮化物还原成胺、硫化氢涉及的亲核加成以及铜硫化物的沉淀。由于铜离子显著地顺磁性,容易导致荧光团猝灭,更有趣的是铜离子与荧光团所形成的复合物又可以利用铜离子用来检测硫化氢,从而完成荧光传感和成像的过程。但是,目前为止,所用到的荧光探针大多是有机荧光染料和量子点,他们本身具有很大的毒性,且不能抗光漂白,在日光灯的照射下,荧光强度会出现很大程度的降低,并不适用于细胞内的硫化氢检测和荧光成像,并且他们需要铜先对于荧光探针的猝灭,再通过加入硫化氢起到荧光回升从而检测硫化氢的三元体系,其过程繁琐,误差较大。

发明内容

本发明的目的是提供一种硫化氢检测传感器及其制备方法、硫化氢的定量检测方法和细胞内硫化氢的定性检测方法,该方法既能对硫化氢溶液进行定量检测,又能对细胞内的硫化氢进行定性检测。

为了实现上述目的,本发明提供了一种硫化氢检测传感器的制备方法,包括:

1)将乙二胺四乙酸二钠盐、可溶性铜盐和水混合形成铜配合物的水溶液;

2)将铜配合物的水溶液进行水热反应、过滤、离心、透析取透析袋内的液体以制得铜掺杂的碳量子点的水溶液;

3)将铜掺杂的碳量子点的水溶液与缓冲溶液混合以制得硫化氢检测传感器。

本发明也提供了一种硫化氢检测传感器,该硫化氢检测传感器通过上述的方法制备而得。

本发明还提供了一种硫化氢的定量检测方法,包括:

1)将不同浓度的硫化氢标准溶液分别置于上述的硫化氢检测传感器中并加水定容至待测溶液,检测待测溶液的荧光强度;

2)以荧光强度为纵坐标,硫化氢标准溶液的浓度为横坐标,建立荧光光谱曲线的方程;

3)将未知浓度的硫化氢溶液置于硫化氢检测传感器中并加水定容至待测溶液,检测待测溶液的荧光强度,然后根据方程计算未知浓度的硫化氢溶液的浓度。

本发明进一步提供了一种细胞内硫化氢的定性检测方法,其特征在于,包括:

1)将人体癌细胞置于pH为7.2-7.6的缓冲溶液中进行恒温培养;

2)将不同浓度的硫化氢标准溶液加入至人体癌细胞中进行二次培养;

3)将人体癌细胞取出,然后在共聚焦显微镜下取得人体癌细胞在明场和蓝光激发下的荧光成像。

通过上述技术方案,本发明通过原位合成的方式将铜掺杂进入碳量子点中,该碳量子点碳量子点的最佳激发波长为370nm,量子产率高达56%,与单纯的碳量子点(已二铵四乙酸二钠盐为碳源制得的碳点,以硫酸喹啉为参比,得到量子产率为25%,不掺杂铜)相比,高了一倍有余,从而克服了量子产率低的缺陷。同时,该量子点属于碳纳米材料,具有优异的环保特性,进而有效地解决了现有技术中有机染料和量子点毒性强,且抗光漂白性弱等问题。此外,该碳量子点的制备方法与传统的管式炉高温制碳点的合成法相比,具有温度低、制备时间短、操作简单、能耗较低和环境友好的优势。

在上述碳量子点的基础上,本发明通过碳量子点的水溶液与缓冲溶液组成的硫化氢检测传感器对硫化氢溶液进行分光光度检测,进而能够得到线性优异的工作曲线,从而能够有效地对硫化氢溶液的浓度进行定量检测。同时,本发明还利用硫化氢溶液与缓冲溶液对人体癌细胞进行培养,进而对人体癌细胞进行荧光成像,从而有效地对人体细胞的硫化氢进行定性的检测。

本发明的其他特征和优点将在随后的具体实施方式部分予以详细说明。

附图说明

附图是用来提供对本发明的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明,但并不构成对本发明的限制。在附图中:

图1是检测例1中铜掺杂的碳量子点的荧光发射图谱;

图2是检测例3中铜掺杂的碳量子点的荧光检测统计图;

图3是检测例4中铜掺杂的碳量子点的透射电镜图;

图4是图3的结果统计图;

图5是检测例5中铜掺杂的碳量子点的红外光谱图;

图6是检测例6中铜掺杂的碳量子点的XPS谱图;

图7是检测例7中铜掺杂的碳量子点的荧光检测统计图;

图8是应用例1中荧光检测统计图;

图9是应用例2中荧光成像结果图。

具体实施方式

以下对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。

本发明提供了一种硫化氢检测传感器的制备方法,包括:

1)将乙二胺四乙酸二钠盐、可溶性铜盐和水混合形成铜配合物的水溶液;

2)将铜配合物的水溶液进行水热反应、过滤、离心、透析取透析袋内的液体以制得铜掺杂的碳量子点的水溶液;

3)将铜掺杂的碳量子点的水溶液与缓冲溶液混合以制得硫化氢检测传感器。

在本发明的步骤1)中,各物料的用量可以在宽的范围内选择,但是为了提高制得的铜配合物的产率,优选地,在步骤1)中,相对于3.7g的乙二胺四乙酸二钠盐,可溶性铜盐的用量为1.5-2.5g,水的用量为20-40ml;

在本发明的步骤1)中,可溶性铜盐的具体种类可以在宽的范围内选择,但是为了提高制得的铜配合物的产率以及从成本上考虑,优选地,可溶性铜盐选自氯化铜、硫酸铜和硝酸铜中的一种或几种;

在本发明的步骤1)中,混合的条件可以在宽的范围内选择,但是为了提高制得的铜配合物的产率,优选地,混合至少满足以下条件:混合温度为20-30℃,混合时间为5-10min。

在本发明的步骤2)中,水热反应的条件可以在宽的范围内选择,但是为了提高制得的铜掺杂的碳量子点的产率,优选地,在步骤2)中,水热反应至少满足以下条件:反应温度为180-220℃,反应时间为2-6h。

在本发明的步骤3)中,原料的用量可以在宽的范围内选择,但是为了提高硫化氢检测传感器对于硫化氢的灵敏度,优选地,相对于1mL的铜掺杂的碳量子点的水溶液,缓冲溶液的用量为1-3mL;

在本发明的步骤3)中,缓冲溶液的pH可以在宽的范围内选择,但是为了提高硫化氢检测传感器对于硫化氢的灵敏度,优选地,缓冲溶液的pH为7.2-7.6。

在本发明的步骤3)中,缓冲溶液的种类可以在宽的范围内选择,但是为了提高硫化氢检测传感器对于硫化氢的灵敏度,优选地,缓冲溶液选自磷酸盐缓冲溶液和/或碳酸溶液。

在本发明的步骤2)中,透析袋的截留分子量可以在宽的范围内选择,但是为了提高硫化氢检测传感器对于硫化氢的灵敏度,优选地,透析袋的截留分子量为500-1000。

本发明也提供了一种硫化氢检测传感器,该硫化氢检测传感器通过上述的方法制备而得。

本发明还提供了一种硫化氢的定量检测方法,包括:

1)将不同浓度的硫化氢标准溶液分别置于上述的硫化氢检测传感器中并加水定容至待测溶液,检测待测溶液的荧光强度;

2)以荧光强度为纵坐标,硫化氢标准溶液的浓度为横坐标,建立荧光光谱曲线的方程;

3)将未知浓度的硫化氢溶液置于硫化氢检测传感器中并加水定容至待测溶液,检测待测溶液的荧光强度,然后根据方程计算未知浓度的硫化氢溶液的浓度。

在上述的硫化氢的定量检测方法中,为了便于检测硫化氢溶液的浓度,优选地,方程为y=-0.242x+2119.15,其中,y为荧光强度,x为硫化氢标准溶液的浓度。

在本发明中,硫化氢标准溶液可以是自行配置而得,也可以通过购买获得,为了避免杂质对硫化氢溶液的污染,优选地,硫化氢标准溶液为将硫化钠固体溶于水制备而得。

本发明进一步提供了一种细胞内硫化氢的定性检测方法,其特征在于,包括:

1)将人体癌细胞置于pH为7.2-7.6的缓冲溶液中进行恒温培养;

2)将不同浓度的硫化氢标准溶液加入至人体癌细胞中进行二次培养;

3)将人体癌细胞取出,然后在共聚焦显微镜下取得人体癌细胞在明场和蓝光激发下的荧光成像。

在上述的细胞内硫化氢的定性检测方法中,缓冲溶液具体种类可以在宽的范围内选择,但是为了提高荧光成像的效果,优选地,在步骤1)中,缓冲溶液选自磷酸盐缓冲溶液和/或碳酸溶液。

其中,在步骤1)和2)中,细胞培养的具体条件可以在宽的范围内选择,但是为了提高细胞培养的进度,优选地,恒温培养与二次培养各自独立地至少满足以下条件:培养温度为35-38℃,培养时间为25-35min,CO2的含量为4-6体积%。

同时,在步骤3)中,蓝光检测的波长可以在宽的范围内选择,但是为了获得最大的荧光强度,优选地,在步骤3)中,蓝光的波长为365-375mm。

在上述内容的基础上,为了进一步缩短人体癌细胞在步骤1)和2)中的培养时间,优选地,在步骤1)之前,定性检测方法还包括:在35-38℃以及空气中CO2的含量为4-6体积%的条件下,将人体癌细胞置于含8重量%-12重量%胎牛血清的培养皿中培养22-26h。

以下将通过实施例对本发明进行详细描述。以下实施例中,人体癌细胞购买于武汉博士特生物有限公司(武汉,中国);并且人体癌细胞在使用前:在37℃以及空气中CO2的含量为5体积%的条件下,将人体癌细胞置于含10重量%胎牛血清的培养皿中培养24h;硫化氢标准溶液为将硫化钠固体溶于水制备而得。

实施例1

1)在25℃下,将乙二胺四乙酸二钠盐3.7224g、氯化铜1.7048g和水30ml混合8min形成铜配合物的水溶液;

2)将上述铜配合物的水溶液于200℃下进行水热反应4h、过滤、离心、透析76h后,取透析袋内的液体(透析袋的截留分子量为700)以制得铜掺杂的碳量子点的水溶液;

3)将上述铜掺杂的碳量子点的水溶液与pH为7.4的磷酸盐缓冲溶液按照1:2的体积比混合以制得所述硫化氢检测传感器A1。

实施例2

1)在20℃下,将乙二胺四乙酸二钠盐3.7224g、氯化铜1.5g和水20-40ml混合5min形成铜配合物的水溶液;

2)将上述铜配合物的水溶液于180℃下进行水热反应2h、过滤、离心、透析76h后,取透析袋内的液体(透析袋的截留分子量为500)以制得铜掺杂的碳量子点的水溶液;

3)将上述铜掺杂的碳量子点的水溶液与pH为7.2的磷酸盐缓冲溶液按照1:1的体积比混合以制得所述硫化氢检测传感器A2。

实施例3

1)在30℃下,将乙二胺四乙酸二钠盐3.7224g、氯化铜2.5g和水40ml混合10min形成铜配合物的水溶液;

2)将上述铜配合物的水溶液于220℃下进行水热反应6h、过滤、离心、透析76h后,取透析袋内的液体(透析袋的截留分子量为1000)以制得铜掺杂的碳量子点的水溶液;

3)将上述铜掺杂的碳量子点的水溶液与pH为7.6的磷酸盐缓冲溶液按照1:3的体积比混合以制得所述硫化氢检测传感器A3。

检测例1

通过F-4500荧光分光光度计(日立公司,日本)对实施例1中的铜掺杂的碳量子点的水溶液在不同激发波长下进行荧光发射检测,检测结果见图1,由图可知,铜掺杂的碳量子点的最佳激发波长为370nm。

同理,对实施例2和3中的铜掺杂的碳量子点进行检测,结果实施例1中的铜掺杂的碳量子点保持一致。

检测例2

将实施例1中的铜掺杂的碳量子点的水溶液进行稀释,然后通过F-4500荧光分光光度计(日立公司,日本)对不同浓度的铜掺杂的碳量子点的水溶液在370nm的波长下进行荧光发射检测,可以得到铜掺杂碳量子点的最佳浓度为0.5mg/ml。

同理,对实施例2和3中的铜掺杂的碳量子点进行检测,结果实施例1中的铜掺杂的碳量子点保持一致。

检测例3

将实施例2中的最佳浓度为0.5mg/ml的铜掺杂的碳量子点溶液在紫外灯下进行照射,然后F-4500荧光分光光度计(日立公司,日本)检测荧光强度的变化,结果见图2,由图2可知,随着时间的推移,铜掺杂碳量子点的荧光强度基本上不发生改变。说明碳量子点具有很强的抗光漂白性,不需要避光处理,易保存。

检测例4

通过TEM-1200EX透射电子显微镜对实施例1中的铜掺杂的碳量子点进行透射电镜检测,检测结果见图3和图4,由图可知,铜掺杂碳量子点具有良好的分散性,粒径小且分布均匀,平均粒径大小大概在4nm左右。从图4的右上角的高分辨透射图可以看出,碳量子点内部具有清晰的晶格。

同理,对实施例2和3中的铜掺杂的碳量子点进行检测,结果实施例1中的铜掺杂的碳量子点保持一致。

检测例5

通过Spectrum GX傅里叶转换红外光谱仪(美国Perkin Elmer公司)对实施例1中的铜掺杂的碳量子点进行红外光谱检测,检测结果见图5,由图可知,在1634cm-1处有强的吸收峰,说明碳量子点表面有碳碳双键(C=C)的伸缩振动,掺杂碳量子点分别在1343,1187,1090和1020cm-1处都有明显的吸收峰,表明了可能有N-O键的伸缩振动、N-O-H的弯曲振动、C-N的伸缩振动和N-O-H的弯曲振动。从铜掺杂碳量子点900到1100cm-1的红外谱图可以看出在1020cm-1和1050cm-1处,铜掺杂碳量子点具有明显的特征峰,推测铜掺杂碳量子点的表面可能具有N-Cu-N的伸缩振动。这一系列的表征结果显示,原料Na2[Cu(EDTA)]成功转化成金属铜掺杂的碳量子点,且碳量子点表面含有大量的羧基、羟基和氨基以及铜的位点。

同理,对实施例2和3中的铜掺杂的碳量子点进行检测,结果实施例1中的铜掺杂的碳量子点保持一致。

检测例6

通过X射线光电能谱仪(ESCALAB250,热电,美国)对实施例1中的铜掺杂的碳量子点进行XPS检测,检测结果见图6,由图可知,金属铜掺杂的碳量子点含有四种元素,分别是C、N、O、Cu,并且四种元素的所含百分量分别为67.49%,7.76%,21.72%和3.03%。

同理,对实施例2和3中的铜掺杂的碳量子点进行检测,结果实施例1中的铜掺杂的碳量子点保持一致。

检测例7

分别将F-,Cl-,Br-,I-,NO3-,SO42-,CH3COO-,HCO3-,HPO42-和HSO4添加至实施例1中的铜掺杂的碳量子点溶液中,然后通过F-4500荧光分光光度计(日立公司,日本)检测荧光强度,检测结果见图7,由图可知,当加入硫氢根离子的时候,铜碳量子点的荧光强度出现明显的降低,说明硫氢根离子会引起铜碳量子点的荧光猝灭,而当加入其它阴离子的时候,铜碳量子点的荧光强度基本不发生改变,说明在其它阴离子存在的条件下,铜碳量子点对硫化氢具有很好的选择性。

同理,对实施例2和3中的铜掺杂的碳量子点进行检测,结果实施例1中的铜掺杂的碳量子点保持一致。

应用例1

1)将不同浓度的硫化氢标准溶液分别置于上述的硫化氢检测传感器A1中并加水定容至待测溶液,检测待测溶液的荧光强度,具体结果见图8;

2)以荧光强度为纵坐标,硫化氢标准溶液的浓度为横坐标,建立荧光光谱曲线的方程,方程为Y=-0.242X+2119.15;

同理,传感器A2和A3对于硫化氢溶液的检测结果相同。

应用例2

1)将人体癌细胞置于pH为7.4的磷酸盐缓冲溶液中进行恒温培养0.5h;

2)将不同浓度的硫化氢标准溶液(浓度分别为100μM、200μM和500μM)加入至所述人体癌细胞中进行二次培养0.5h;其中,上述的恒温培养与二次培养均满足以下条件:培养温度为37℃,CO2的含量为5体积%;

3)将上人体癌细胞取出,然后在共聚焦显微镜下取得所述人体癌细胞在明场和370mm的蓝光激发下的荧光成像,具体结果见图9,其中,a-d是人体肺癌细胞在明场情况下的成像图,e,i是未加铜碳量子点和硫化氢的条件下,在共聚焦显微镜下,紫外灯激发所观测到的荧光成像,即肺癌细胞的基底颜色(空白对照),基本观测不到荧光。之后,向肺癌细胞中加入适量的铜量子碳点,f,j是在共聚焦显微镜下,紫外灯激发所观测到的荧光成像,可以明显看到强烈的蓝色荧光。再向其中加入浓度为100μM和200μM的硫化氢溶液,从共聚焦显微镜所观察到的成像中发现,荧光强度都出现一定程度的降低,且加入200μM硫化氢溶液的荧光更弱,说明碳量子点能够很好地实现细胞中硫化氢的传感和成像。

以上详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。

另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。

此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号