首页> 中国专利> 基于金纳米粒构建的比色生物传感器用于乳腺癌细胞中三磷酸腺苷的含量检测方法

基于金纳米粒构建的比色生物传感器用于乳腺癌细胞中三磷酸腺苷的含量检测方法

摘要

本发明公开了一种基于金纳米粒构建的比色生物传感器用于乳腺癌细胞中三磷酸腺苷的含量检测方法,该方法包括以下步骤:吸取AuNPs至离心管中,加入用PKS缓冲液稀释40?60倍ATP乳腺癌细胞提取液,孵化3?7min得到混合物,加入4?巯基苯硼酸至混合物中,再加入PKS缓冲液反应10?15min,观察颜色变化,采用紫外分光光度计,以A

著录项

  • 公开/公告号CN105717103A

    专利类型发明专利

  • 公开/公告日2016-06-29

    原文格式PDF

  • 申请/专利权人 南京医科大学;

    申请/专利号CN201610055701.4

  • 申请日2016-01-27

  • 分类号G01N21/78;G01N33/574;

  • 代理机构南京天华专利代理有限责任公司;

  • 代理人徐冬涛

  • 地址 211166 江苏省南京市江宁区天元东路818号

  • 入库时间 2023-12-18 15:45:39

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2020-01-17

    未缴年费专利权终止 IPC(主分类):G01N21/78 授权公告日:20181026 终止日期:20190127 申请日:20160127

    专利权的终止

  • 2018-10-26

    授权

    授权

  • 2016-07-27

    实质审查的生效 IPC(主分类):G01N21/78 申请日:20160127

    实质审查的生效

  • 2016-06-29

    公开

    公开

说明书

技术领域

本发明属于分析检测技术领域,具体涉及一种基于AuNPs构建的比色传感器用于简便、迅速、灵敏性检测乳腺癌细胞中肿瘤标志物三磷酸腺苷的含量检测新方法。

背景技术

三磷酸腺苷(Adenosine triphosphate,ATP)是一种核苷酸[1],又称腺嘌呤核苷三磷酸。ATP是体内组织细胞一切生命活动所需能量的直接来源,储存和传递化学能,参与蛋白质、脂肪、糖和核苷酸的合成代谢,可促使机体各种细胞的修复和再生,增强细胞代谢活性,对治疗各种疾病均有较强的针对性。并且细胞中ATP的含量还和许多疾病如贫血、低血糖、心血管疾病以及癌症等有着密切的关系,因此发展一种高效灵敏的方法去检测ATP分子有着非常重要的意义。

传统的ATP检测方法有电泳法[2]、高效液相色谱法[3]和同位素示踪法[4]等。这些方法存在着操作过程复杂、试剂费用昂贵、不能定点实时迅速检测的问题,因此,构建一种准确、灵敏、简便价廉的ATP检测方法尤为必要。

比色法操作非常简单,而且结果可以用肉眼很容易观察到,大多数情况也不需要用到精密的仪器。AuNPs由于具有较高的吸光系数、小尺寸效应[5]等光性质可作为比色传感器的传感元件,表现为分散良好的AuNPs水溶液呈现酒红色,由于表面等离子体吸收波长变长,聚集的AuNPs呈现蓝色或紫色。

4-巯基苯硼酸(4-Mercaptophenylboronic acid,MPBA)含有一个巯基和一个连在对位的硼酸基团。MPBA与双醇基特征反应表现为硼酸基团及其衍生物在pH值为6-10范围内可以与1,2-或1,3-戊二醇进行可逆的反应形成稳定的5元或6元环硼酸酯[6-7]。ATP结构中具有1,2-双醇基,因此,硼酸与双醇的特征反应是一个可供选择的检测ATP的方法。

发明内容

本发明提供一种基于金纳米粒构建的比色生物传感器用于乳腺癌细胞中三磷酸腺苷的灵敏检测的方法,该方法简便、迅速、灵敏性高。

该方法利用4-巯基苯硼酸(MPBA)的巯基与AuNPs通过Au-S键共价结合,在未加ATP时,硼酸基团作为交联剂发生自身三分子脱水缩合引起AuNPs团聚显蓝色;加入ATP,时,ATP分子中顺式邻二醇结构与硼酸基团发生特异酯化反应使AuNPs分散而显红色。

AuNPs的吸收峰在520nm,聚合物吸收峰在波长为683nm,以A520/A683吸收比值与ATP浓度进行线性拟合,其线性范围为8.0-100μM,检测限为0.12μM。

我们基于AuNPs抗聚集特性首次建立了一种简便、快速、高选择性的ATP的比色传感新方法,并实现了T47D乳腺癌细胞中ATP灵敏快速含量检测,在临床肿瘤诊疗方面有着潜在的应用价值。

本发明的目的是通过以下方式实现的:

一种基于金纳米粒(AuNPs)构建的比色传感器用于简便、迅速、灵敏性检测乳腺癌细胞中肿瘤标志物三磷酸腺苷的含量检测方法,该方法包括以下步骤:

吸取AuNPs至离心管中,加入用PKS缓冲液稀释40-60倍ATP乳腺癌细胞提取液,孵化3-7min得到混合物,加入4-巯基苯硼酸至混合物中,再加入PKS缓冲液反应10-15min,观察颜色变化,采用紫外分光光度计,以A520/A683吸收比值与ATP浓度进行线性拟合,外标法绘制标准曲线,再进行样品浓度的测定。

AuNPs由柠檬酸还原法制备得到。AuNPs的具体制备步骤如下:取25mM氯金酸5mL,加入120mL双蒸水,120℃搅拌加热至沸腾,然后快速倾入12.5mL柠檬酸钠(38.8mM,1%),继续搅拌反应30min,得到的酒红色AuNPs,冷却至室温。AuNPs浓度可以为2.7nM,即吸取1.35mL 3nM AuNPs溶液,反应总体积为1.5mL。3nM为AuNPs母液稀释4倍。

MPBA作为AuNPs交联剂,MPBA的浓度为3-7μM,即吸取6μL 1mM MPBA溶液,反应总体积为1.5mL。

本发明中,MPBA硼酸基团识别ATP顺式双醇,反应生成硼酸酯结构,ATP发挥AuNPs抗聚集特性。加入MPBA之后,反应10分钟观察颜色变化并进行紫外检测。MPBA的作用为ATP识别分子

比色反应体系为KH2PO4-NaOH(PKS)缓冲盐;PKS缓冲液离子强度范围为75-125mM,PKS缓冲体系pH范围为6.5-7.5;反应温度范围为0-25℃。

ATP浓度可以为100μM,即吸取100μL 1.5mM ATP溶液,反应总体积为1.5mL。未 加入MPBA之前,ATP孵化时间为5分钟。

ATP乳腺癌细胞提取液的制备步骤如下:T47D细胞经过细胞计数板计数,每3mL的T47D细胞样品中含细胞数8.3×106个,取3mL含细胞的培养液,在3000转/分钟的转速下离心7分钟,用磷酸盐缓冲溶液洗涤离心所得细胞,并将其重新分散于200μL的PKS缓冲溶液中,然后,将细胞放在0℃的冰水混合物中超声20min,以使细胞破碎,然后再在4℃,18000rpm条件下超滤离心20min,移去细胞碎片匀浆,取清液,并重新悬浮在200μL>

使用Amicon Ultra-0.5超滤离心管进行离心。为了避免细胞中蛋白质的干扰,Amicon Ultra-0.5超滤离心管被用于ATP提取液的离心以去除蛋白质。

T47D乳腺癌细胞培养步骤如下:T47D乳腺癌细胞培养中细胞培养在含有10%的胎牛血清(FBS)和100IU/mL的青霉素-链霉素的DMEM培养液,孵化器条件为5%CO2,37℃。

本发明癌细胞提取液中ATP浓度检测步骤可以具体如下:吸取1.35mL稀释4倍的AuNPs至2mL离心管中,加入稀释50倍ATP细胞提取液100μL孵化5min。之后加入6μL MPBA(1mM)至混合物中,再加入44μLPKS缓冲液(100mM,pH 7.5)至1.5mL,反应10min。

上述步骤中,在ATP不存在的情况下,MPBA的巯基与AuNPs通过Au-S键共价结合,并且三分子的硼酸基团自身缩合脱去三分子水形成硼氧六圆环,PKS缓冲介质中AuNPs发生明显的聚集而显蓝色,确定MPBA团聚饱和浓度;

首先加入ATP,ATP结构中的磷酸盐骨架携带负电荷,增加了AuNPs悬浮液中的静电斥力,并不使AuNPs发生聚集;随后加入已确定浓度的MPBA,通过硼酸基团与双醇的反应优先与顺式-2,3-核糖ATP反应生成硼酸酯,保护AuNPs不通过自身脱水缩合发生聚集。

AuNPs比色生物传感表征中UV-Vis表征利用Shimadzu UV-2450型紫外分光光度计(日本岛津公司)测定,光谱扫描范围400nm-800nm,步长0.1nm;TEM表征将三种样品分别滴在包覆碳膜的铜网上,在空气中自然晾干。用FEI透射电镜(Tecnai G12 Spirit Bio TWIN)测定,加速电压200V;DLS表征将三种样品分别用Zetasizer Nano ZS粒度测量仪(英国Malvern公司)测定颗粒水合平均粒径,设定温度为25℃。

AuNPs抗聚集比色传感器用于ATP标准曲线与检测限检测步骤如下:在1.35mL AuNPs中加入100μL不同浓度为0.01μM、0.1μM、1μM、10μM、100μM、1mM的ATP溶液孵化 5min,再加入6μL MPBA(1mM)并用PKS缓冲溶液(100mM,pH7.5)定容到1.5mL,反应10min。肉眼可见随着ATP浓度的增加体系溶液的颜色从紫色逐渐变成红色。根据A520/A683吸收比值与ATP的浓度建立标准曲线,线性范围为8μM-100μM,检测限为0.12μM。

上述方法中ATP的含量为51.30±1.2μM(n=3),加样回收率在99.5%~102.3%之间,RSD小于4.2%。

与现有技术比较本发明的有益效果:

1)首次利用ATP双羟基与MPBA硼酸基成酯的特异反应阻碍MPBA自缩合,发挥ATP的AuNPs抗聚集特性,以AuNPs作为比色探针实现了ATP的肉眼可见的快速分析,操作简单,成本低廉,便于定点实时检测。

2)本方法成功用于乳腺癌T47D细胞中ATP的灵敏快速检测,回收率高,实验误差小。

3)基于AuNPs构建的比色生物传感器检测ATP为生物分子的分析研究提供了新思路,在临床疾病诊疗方面有着潜在的应用价值。

附图说明

图1为AuNPs抗聚集检测ATP原理示意图

图2为实施例1中比色传感检测原理的UV-Vis表征(a.AuNPs b.AuNPs/MPBA c.AuNPs/ATP/MPBA)。溶液中处于良好分散状态的AuNPs呈酒红色,在520nm处有较强的吸收峰(曲线a)。当AuNPs中未加入ATP时,溶液的颜色从红色变成蓝色,可见520nm处的吸收强度降低,在683nm处出现新的聚合物的吸收峰(曲线b),表明MPBA使AuNPs发生了聚集。当加入ATP之后,溶液颜色从红色变为紫红色,可见聚合物的吸收峰消失(曲线c),证明ATP具有抗聚集作用。

图3为实施例1中比色传感检测原理的透射电镜和动态光扫描表征(a,d.AuNPs b,e.AuNPs/MPBA c,f.AuNPs/ATP/MPBA)。图a透射电镜可见AuNPs粒径均匀并且处于较好分散状态,图d动态光散射证明平均粒径为25nm,证明AuNPs已经生成。未加ATP时,图b可见AuNPs发生明显团聚成块,图e动态光散射显示平均粒径增加到255nm,证明MPBA使AuNPs团聚。加入ATP时,图c可见AuNPs较少聚集,图f证明平均粒径减少为40nm。透射电镜与动态光扫描结果一致,结合紫外图谱(图2)证明ATP起到了抗聚集的作用。

图4为实施例1中比色传感检测原理的拉曼光谱表征(a.AuNPs b.AuNPs/MPBA c.AuNPs/ATP/MPBA)。分散的AuNPs几乎无拉曼信号,AuNPs作为衬底对含有巯基的化合物具有很强的表面光增强拉曼效应(SERS),因此结合了MPBA引起AuNPs团聚之后则可以看到很强的拉曼吸收峰,这是由于表面等离子激元耦合形成拉曼热点,极大的增强拉曼散射强度。其中MPBA固体中1335cm-1、2555cm-1、3045cm-1处的B-O键、S-H键、-OH的拉曼吸收峰消失(曲线a),在457cm-1和1473cm-1附近出现氧桥B-O-B的拉曼吸收特征峰(曲线b),表明MPBA成功组装到AuNPs表面并发生了脱水缩合形成B-O-B的六圆环结构。加入了目标物ATP之后(曲线c),溶液呈分散状态,拉曼信号极大减弱,进一步说明了ATP的抗聚集作用。

图5为实施例2中构建的比色生物传感器对ATP检测的标准曲线图,从左到右,ATP浓度分别为8,10,12,20,40,60,80,100μM,横坐标为ATP浓度,纵坐标为吸光度比值。吸收比(A683/A520)随ATP浓度的增加而逐渐增强。在8μM-100μM内,AuNPs的吸收比值与ATP的浓度呈线性关系,线性回归方程为y=0.1232x+2.9024,R=0.9902。用3σ法可计算出ATP的检测限为0.12μM。

图6为实施例3中构建的比色生物传感器对T47D乳腺癌细胞样品中ATP的检测与加样回收率考察。实际样品T47D乳腺癌细胞(~107个,稀释50倍)中ATP的含量为51.30±1.2μM(n=3),加样回收率在99.5%~102.3%之间,RSD小于4.2%。

具体实施方式

以下通过实施例对本发明做进一步解释说明:

药品和试剂:ATP(Adenosine 5’-triphosphate,上海生工生物工程有限公司)、4-巯基苯硼酸(C6H7BO2S,萨恩化学技术(上海)有限公司)、氯金酸(HAuCl4,国药集团化学试剂有限公司)、二水合柠檬酸三钠(C6H5NaO7·H2O,广东华光化学厂有限公司)、三(羟甲基)氨基甲烷(C4H11NO3,国药集团化学试剂有限公司)、磷酸二氢钠(NaH2PO4,分析纯,南京化学试剂有限公司)、磷酸氢二钠(Na2HPO4,分析纯,上海凌峰化学有限公司)、磷酸二氢钾(KH2PO4,广东汕头市西陇化工厂)、磷酸氢二钾(K2HPO4,广东汕头市西陇化工厂)、氢氧化钠(NaOH,南京化学试剂有限公司)、盐酸(HCl,溧阳东方化学试剂有限公司)、实验用水均为超纯水。

仪器:精密万分之一电子天平:Shimadzu AUW220D,日本岛津公司;精密十万分之 一电子天平:Shimadzu AUW220D,日本岛津公司;紫外-可见光谱仪:Shimadzu UV-2450,日本岛津公司;PHS-3C精密PH计:上海日岛科学仪器有限公司;纳米粒度仪:ZS90,英国Malvern公司;透射电子显微镜:FEI(Tecnai G12 Spirit Bio TWIN);拉曼光谱仪:DXR Smart,美国赛默飞世尔科技公司。

实施例1

AuNPs的制备方法如下:所有试验用到的的玻璃容器全部用新制备的HN03-HCl(1:3,V/V)溶液浸泡过夜,再用二次水润洗,在空气中干燥备用。取25mM氯金酸(HAuCl4)5mL于250mL圆底烧瓶中,加入120mL双蒸水,通过水浴恒温磁力搅拌器120℃加热至沸腾,然后快速倾入12.5mL柠檬酸钠(38.8mM,1%),继续搅拌反应30min,得到的酒红色AuNPs自然冷却至室温后放入冰箱(4℃)中保存。制备的AuNPs的粒径为13nm,在520nm处有最大吸收峰,紫外测定的浓度为12nM。AuNPs呈较好的单分散状态是由于表面的柠檬酸根的静电排斥力作用反抗AuNPs间的范德华力,使得表面等离子体共振吸收峰在520nm处而显酒红色。

在ATP不存在的情况下,MPBA(4μM)的巯基与AuNPs通过Au-S键共价结合,并且三分子的硼酸基团自身缩合脱去三分子水形成硼氧六圆环,使AuNPs发生明显的聚集显蓝色。当ATP(100μM)存在时,ATP结构中的磷酸盐骨架携带负电荷,增加了AuNPs悬浮液中的静电斥力。通过硼酸基团与双醇的反应优先与顺式-2,3-核糖ATP反应生成硼酸酯,保护AuNPs不通过自身脱水缩合发生聚集,使AuNPs分散显红色。

实施例2

ATP的标准曲线:吸取1.35mL AuNPs至2mL离心管中,加入不同浓度的体积为100μL ATP(提取液)孵化5min。之后加入6μL MPBA(1mM)至混合物中,再加入44μLPKS缓冲液(100mM,pH 7.5),反应10min观察颜色变化并进行紫外分光光度计测定。

ATP的选择性:吸取1.35mL AuNPs至2mL离心管中,加入100μM GTP,100μM UTP,100μM CTP,三种ATP类似物与100μM ATP孵化5min,之后加入6μL MPBA(1mM)至混合物中,再加入44μLPKS缓冲液(100mM,pH 7.5),反应10min观察颜色变化并进行紫外分光光度计测定。

通过以下方法对本发明AuNPs比色生物传感器进行检测:

颜色变化:反应10min后利用Nikon D3100相机拍摄观察。

紫外可见分光光度仪:检测光谱扫描范围400nm-800nm,步长0.1nm。

实施例2中构建的比色生物传感器对ATP的选择性:考察100μM GTP,100μM UTP, 100μM CTP,三种ATP类似物与100μM ATP对MPBA-AuNPs的抗聚集效应,加入三种类似物后AuNPs溶液迅速变蓝,出现聚合物的吸收峰,表明三种类似物不具有抗聚集作用。而加入相同浓度的ATP后,AuNPs溶液呈分散状态显红色,且A520/A683吸收比值显著高于三种类似物,结果表明该方法对ATP的检测具有较高的特异性。

实施例3

细胞培养:T47D乳腺癌肿瘤细胞细胞株是由美国模式培养物集存库提供,然后放入细胞培养瓶中培养,细胞在含有10%的胎牛血清(FBS)和100IU/mL的青霉素-链霉素的DMEM培养液中培养,孵化器条件为5%CO2,37℃。

癌细胞中三磷酸腺苷ATP的提取:T47D细胞经过细胞计数板计数后(每3mL的T47D细胞样品中含细胞数大约8.3×106个),取一定体积的含细胞的培养液,在3000转每分的转速下离心7分钟,用磷酸盐缓冲溶液洗涤离心所得细胞,并将其重新分散于一定体积的PKS缓冲溶液中。然后,将细胞放在冰水混合物(0℃中超声20min,以使细胞破碎。然后再离心(18000rpm,20min,4℃)以移去细胞碎片匀浆,留下清液,并重新悬浮在200μL>

超滤离心后的ATP提取液用PKS缓冲液稀释50倍。

ATP的样品检测:吸取1.35mL AuNPs至2mL离心管中,加入上述用PKS缓冲液稀释50倍的ATP提取液100μL,孵化5min得到混合物,之后加入6μL MPBA(1mM)至混合物中,再加入44μLPKS缓冲液(100mM,pH 7.5),反应10min,观察颜色变化并进行紫外分光光度计测定,以A520/A683吸收比值与ATP浓度进行线性拟合,外标法绘制标准曲线,再进行样品浓度的测定。

参考文献

[1]Wang W.Isothermal amplified detection of ATP using Au nanocages capped with a DNA molecular gate and its application in cell lysates[J].Analyst,2015,140(5):1672-1677.

[2]Ke Chen,Dacheng Wang,Lukasz Kurgan.Systematic investigation of sequence and structural motifs that recognize ATP[J].Computational Biology and Chemistry,2015,56:131-141.

[3]Vadziuk OB.ATP-sensitive K(+)-channels in muscle cells:features and physiological role[J].Ukr Biochem J,2014,86(3):5-22.

[4]郭申生,任衍钢.同位素示踪法与生命科学发展[J].生物学通报.2006,41(9):22-23。

[5]Shen Q.A simple"clickable"biosensor for colorimetric detection of copper(II)ions based on unmodified gold nanoparticles[J].Biosens Bioelectron,2013,41:663-668.

[6]Liu L.Highly sensitive and label-free electrochemical detection of microRNAs based on triple signal amplification of multifunctional gold nanoparticles,enzymes and redox-cycling reaction[J].Biosens Bioelectron,2014,53:399-405.

[7]Xia N.Label-free and sensitive strategy for microRNAs detection based on the formation of boronate ester bonds and the dual-amplification of gold nanoparticles[J].Biosens Bioelectron,2013,47:461-466。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号