首页> 中国专利> 激光金属成形中熔道材质缺陷的在线检测消除装置及方法

激光金属成形中熔道材质缺陷的在线检测消除装置及方法

摘要

本发明公开了一种激光金属成形中熔道材质缺陷的在线检测消除装置及方法,该装置及方法适用于激光金属沉积成形工艺。该装置包括四台光纤式双色测温仪,其四个测温探头分别固定在成形系统同轴送粉喷嘴的左、右、前、后;四个测温探头的检测瞄准点分别对准成形平面上成形扫描激光光斑的左、右、前、后,且距激光光斑中心一定微距处,四个测温探头与同轴送粉喷嘴及激光束一起移动;在成形中,当同轴送粉喷嘴与激光束沿-X、X、-Y、Y任一个方向进行成形扫描时,由位于同轴送粉喷嘴扫描方向相反一侧的测温探头检测高温熔道上距激光光斑一定微距处的温度,当温度发生异常突变时,则判定该处存在材质缺陷,确定缺陷位置并对该缺陷进行激光靶向重熔。

著录项

  • 公开/公告号CN105618740A

    专利类型发明专利

  • 公开/公告日2016-06-01

    原文格式PDF

  • 申请/专利号CN201610008315.X

  • 发明设计人 解瑞东;李涤尘;张安峰;

    申请日2016-01-07

  • 分类号B22F3/00(20060101);G01N21/95(20060101);G01K11/32(20060101);B33Y10/00(20150101);B33Y30/00(20150101);B33Y50/02(20150101);

  • 代理机构61214 西安弘理专利事务所;

  • 代理人李娜

  • 地址 710048 陕西省西安市金花南路5号

  • 入库时间 2023-12-18 15:38:07

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2017-08-22

    授权

    授权

  • 2016-06-29

    实质审查的生效 IPC(主分类):B22F3/00 申请日:20160107

    实质审查的生效

  • 2016-06-01

    公开

    公开

说明书

技术领域

本发明属于激光金属增材制造技术领域,具体涉及一种激光金属成形中 熔道材质缺陷的在线检测装置,还涉及利用该装置实现激光金属成形中熔道 材质缺陷的在线检测消除方法,该装置和方法适用于激光金属沉积成形工 艺。

背景技术

激光金属沉积成形(LaserMetalDepositionForming,LMDF)俗称激光金属3D 打印。该技术能够在无需任何模具和工装的条件下,根据计算机三维模型, 通过金属材料的激光逐层熔化沉积成形的方式,实现复杂金属零件的直接近 净成形,具有制造周期短、加工余量小、材料利用率高、工艺柔性高的独特 优势,为复杂金属结构件的制造提供了一条新途径。激光金属沉积成形技术 是增材制造领域的研究热点之一,受到世界各国的高度重视。由于激光金属 沉积成形是一个多物理场耦合的过程,成形过程中温度变化剧烈,成形零件 中易出现裂纹、气泡、未熔合、夹渣等微小材质缺陷,材质缺陷的尺寸范围 通常从几十微米至几百微米。金属零件中的材质缺陷一方面将可能影响零件 的使用性能;另一方面,在零件服役初期即使不影响使用性能,但在交变载 荷的长期作用下裂纹等微小缺陷会逐渐扩展,最终有可能引发疲劳断裂事 故。特别是在航空航天领域,一旦发生重要金属部件的疲劳断裂事故,将引 发灾难性的后果。目前国内外金属增材制造缺陷检测与控制技术的研究,仍 主要集中在对熔池物理参数进行在线检测和反馈控制以减少零件的外形尺寸 缺陷上。对于激光金属成形零件内部的微小材质缺陷,目前还没有熔道成形 扫描中的在线检测方法和相应的靶向消除方法。

发明内容

本发明的一个目的是提供一种激光金属成形中熔道材质缺陷的在线检测 装置,通过具有超小检测目标尺寸的高精度光纤式双色测温仪的测温探头检 测熔道上的异常温度波动来在线检测材质缺陷,且无需因检测而暂停成形制 作,不会影响成形效率,解决了现有激光金属成形设备无法进行熔道成形扫 描中的材质缺陷在线检测的问题。

本发明的另一个目的是提供利用上述装置实现激光金属成形中熔道材质 缺陷的在线检测消除方法,且无需因检测而暂停成形制作,不会影响成形效 率,解决现有技术无法对微小材质缺陷进行熔道成形扫描中的在线检测和靶 向消除的问题。

本发明采取的一个技术方案是,一种激光金属成形中熔道材质缺陷的在 线检测装置,与成形系统的控制计算机相连接,包括四台光纤式双色测温仪, 四台光纤式双色测温仪的四个测温探头分别固定在同轴送粉喷嘴的左、右、 前、后;四个测温探头的检测瞄准点的中心分别对准成形平面上成形扫描激 光光斑的左、右、前、后,且位于距离激光光斑中心一定微距处,四个测温 探头与同轴送粉喷嘴及激光束一起移动;在金属成形中,当同轴送粉喷嘴与 激光束沿-X、X、-Y、Y任一个方向扫描时,位于同轴送粉喷嘴扫描方向相 反一侧的测温探头持续检测高温熔道上距激光光斑中心一定微距处的温度, 并将温度传输给控制计算机。

本发明的特点还在于:

优选地,四个测温探头与金属成形表面的距离相等,且均为5~10cm。

优选地,四个测温探头在成形平面上的检测瞄准点的中心距离成形扫描 激光光斑中心的微距相等,且微距的取值范围为1.5~3.5mm。

优选地,双色测温仪的响应时间为2ms,测温探头可承受250℃的高 温,测温范围为350~1300℃,测温光谱为1.52及1.64μm,测温精度为读 数的0.5%+1℃,探头最小检测瞄准直径为0.45mm,允许被检目标小于该直 径。

本发明所采用的另一个技术方案是,利用上述在线检测装置实现激光金 属成形中熔道材质缺陷的在线检测消除方法,按照以下步骤实施:

步骤1,在激光金属成形开始的同时开启光纤式双色测温仪,当同轴送粉 喷嘴与激光束沿-X、X、Y、-Y任一个方向扫描时,由位于同轴送粉喷嘴扫描 方向相反一侧的测温探头持续检测高温熔道上距成形扫描激光光斑中心一定 微距处的温度,并将温度传输给成形系统的控制计算机;

步骤2,当计算机根据双色测温仪传来的温度信号判断出熔道某处的温度 发生异常突变时,则判定该处存在材质缺陷,并计算出缺陷在成形平面的坐 标方位;在该熔道扫描结束后,计算机控制激光束对该熔道上的缺陷依次进 行靶向重熔以消除缺陷,当该熔道上所有缺陷都消除后,继续下一条熔道的 成形扫描及材质缺陷的在线检测消除。

本发明的特点还在于:

步骤2计算缺陷在成形平面的坐标方位及缺陷靶向重熔的具体方法为: 针对材质缺陷尺寸大部分都小于等于激光光斑尺寸,但也不排除会有少量大 于激光光斑尺寸的缺陷的情况,对于小于或等于激光光斑尺寸的缺陷与大于 激光光斑尺寸的缺陷,分别采取不同的靶向重熔策略。即根据异常温度波动 出现时刻的激光光斑坐标值、异常温度波动消失时刻的激光光斑坐标值、相 应测温探头在熔道上的检测瞄准点的中心相对激光光斑中心的微距,计算出 缺陷起点的平面坐标方位(x1,y1)、缺陷中点的平面坐标方位(x0,y0)、 缺陷终点的平面坐标方位(x2,y2)。再根据(x1,y1)点与(x2,y2)点的 距离计算出缺陷沿熔道方向的长度L。如果L小于激光光斑直径d,则将该缺 陷的尺寸标志Flag的值赋0;如果L大于等于d,则将Flag的值赋1。如果 缺陷尺寸标志Flag的值为0,计算机驱动激光束直接对缺陷中点坐标(x0, y0)处进行定点靶向重熔。如果该缺陷尺寸标志Flag的值为1,计算机驱动 激光束从缺陷起点坐标(x1,y1)处沿着熔道移动至缺陷终点坐标(x2,y2) 处,完成对整个缺陷的靶向重熔。

优选地,步骤1中检测高温熔道上距成形扫描激光光斑中心一定微距处 的熔道温度,微距的取值范围为1.5~3.5mm。

优选地,步骤2中某处的熔道温度发生异常突变的判断方法为:在某处 测得的熔道温度与成形中已测得的高温熔道距成形扫描激光光斑中心一定微 距处温度的平均值相比,差值绝对值大于等于3%时,认为该处熔道温度发生 异常突变。

优选地,激光定点靶向重熔的时间是50ms。

优选地,激光束从(x1,y1)点沿熔道移动至(x2,y2)点的速度为激 光金属成形的扫描速度。

本发明的有益效果是:本发明的材质缺陷在线检测装置和检测消除方法 是在激光金属沉积成形系统中增加了四台高精度光纤式双色测温仪,在熔道 成形扫描的同时检测激光束刚扫过的高温熔道上与成形扫描激光光斑一定微 距处的温度,利用了如果高温熔道某处有材质缺陷,则该处的温度会有异常 波动的原理来在线检测材质缺陷。该装置能实现智能在线检测,结构简单; 该方法检测准确、易于实现,解决了现有技术无法对材质缺陷进行熔道成形 扫描中的在线检测和靶向消除的问题,且无需因缺陷检测而暂停成形制作, 不会影响成形效率。利用本发明的装置和方法能够有效消除激光金属成形零 件的内部材质缺陷,对于提高激光金属成形零件的使用性能和服役安全性, 降低疲劳断裂的风险具有重要的意义,在航空航天装备制造、精密制造、汽 车制造等领域具有广阔的应用前景。

附图说明

图1为沿X轴熔道成形扫描中材质缺陷在线检测示意图;

图2为沿Y轴熔道成形扫描中材质缺陷在线检测示意图;

图3为激光金属成形中熔道材质缺陷靶向消除的示意图。

图中,1.计算机,2.双色测温仪,3.光纤,4.材质缺陷,5.测温探头,6. 同轴送粉喷嘴,7.激光束,8.金属零件,9.基板,10.工作台。

具体实施方式

下面结合附图和具体实施方式对本发明做进一步的详细说明。

本发明提供了一种激光金属沉积成形中熔道材质缺陷的在线检测装置, 包括四台具有超小检测目标尺寸的高精度光纤式双色测温仪,这四台双色测 温仪均与成形系统的控制计算机1相连接,具体方法为,对计算机1的串口 进行扩展,使其具有四个串口,每个串口分别连接一台双色测温仪2。如图1 所示,这四台双色测温仪2均通过光纤3连接各自的测温探头5,在成形系统 的同轴送粉喷嘴6的左、右、前、后分别固定一个测温探头5,四个测温探头 5的检测瞄准点分别对准成形平面上成形扫描激光光斑的左、右、前、后距离 激光光斑中心一定微距处,这四个探头5伴随同轴送粉喷嘴6及激光束7一 起移动。在金属成形中,当同轴送粉喷嘴6与激光束7沿-X、X、-Y、Y(即 左、右、前、后)任一个方向扫描时,由位于同轴送粉喷嘴6扫描方向相反 一侧的测温探头5持续检测高温熔道上距激光光斑中心一定微距处的温度, 并将温度传输给计算机1。

优选地,四个测温探头5与金属成形表面的距离相等,且均为5~10cm, 在该距离下光纤式双色测温仪2能准确有效地检测熔道温度。

优选地,四个测温探头在成形平面上的检测瞄准点的中心距离成形扫描 激光光斑中心的的微距相等,且微距的取值范围为1.5~3.5mm。由于微裂纹缺 陷是在熔道降温的过程中形成的,距离过近,微裂纹还未形成,会造成漏检; 距离过远,则高温熔道已冷却,熔道材质缺陷处已经没有明显的温度突变, 也会造成漏检。

优选地,双色测温仪2的响应时间为2ms,测温探头5可承受250℃的高 温,测温范围为350~1300℃,测温光谱为1.52及1.64μm,测温精度为读 数的0.5%+1℃,探头5最小检测瞄准直径为0.45mm,允许被检目标小于该 直径。

本发明还提供了利用上述在线检测装置实现激光金属沉积成形中熔道材 质缺陷的在线检测消除方法,按照以下步骤实施:

步骤1,在激光金属成形开始的同时开启光纤式双色测温仪2,当同轴送 粉喷嘴6与激光束7沿-X、X、-Y、Y(即左、右、前、后)任一个方向扫 描时,由位于同轴送粉喷嘴6扫描方向相反一侧的测温探头5持续检测高温 熔道上距成形扫描激光光斑中心一定微距处的温度,并将温度传输给激光金 属沉积成形系统的控制计算机1。例如,当激光束7沿+X方向扫描时,由位 于激光束7及同轴送粉喷嘴6-X方向(左侧)的测温探头5检测高温熔道上 距激光光斑中心一定微距处的温度;当激光束7沿-X方向扫描时,由位于激 光束7及同轴送粉喷嘴8+X方向(右侧)的测温探头5检测高温熔道上距激 光光斑中心一定微距处的温度,如图1所示;同理,当激光束7分别沿+Y、 -Y方向扫描时,分别由位于激光束7及同轴送粉喷嘴8-Y方向(前侧)、+Y 方向(后侧)的测温探头检测高温熔道上距激光光斑中心一定微距处的温度, 如图2所示。相应双色测温仪2在检测的同时将熔道温度传输给计算机1。

步骤2,当高温熔道上没有材质缺陷时,测试到的熔道温度应为较稳定的 数值,当出现材质缺陷4时,缺陷4处的熔道温度会明显高于无缺陷时的温 度,因此根据温度突变来判断材质是否有缺陷。当计算机1根据双色测温仪 传来的温度数据监测到熔道某处的温度发生异常突变时,则判定该处存在材 质缺陷4,并计算出缺陷4的平面坐标方位,并在该熔道扫描结束后,计算机 1控制激光束7对该熔道上的缺陷4进行靶向重熔以消除缺陷,如图3所示。 如果该熔道上的缺陷数量大于1,则按照检出缺陷的先后顺序依次进行激光靶 向重熔。当该高温熔道上所有缺陷都消除后,继续下一条熔道的成形扫描及 材质缺陷的在线检测消除。

步骤2计算缺陷4的平面坐标方位及缺陷4靶向重熔的具体方法为:针 对大多数材质缺陷4的尺寸都小于等于成形扫描激光光斑尺寸、但也不排除 会有少量大于激光光斑尺寸的缺陷4的情况,对于小于等于激光光斑尺寸的 缺陷4与大于激光光斑尺寸的缺陷4,分别采取不同的靶向重熔策略。即由计 算机1根据成形控制系统反馈的异常温度波动出现时刻的激光光斑在成形平 面的坐标值、异常温度波动消失时刻的激光光斑在成形平面的坐标值、相应 测温探头5在熔道上的瞄准点的中心相对激光光斑中心的微距,计算出缺陷4 起点在成形平面的坐标方位(x1,y1)、缺陷4中点在成形平面的坐标方位(x0, y0)、缺陷4终点在成形平面的坐标方位(x2,y2)。再根据(x1,y1)点与 (x2,y2)点的距离计算出缺陷4沿熔道方向的长度L。如果L小于激光光 斑直径d,则将该缺陷4的尺寸标志Flag的值赋0;如果L大于等于d,则将 Flag的值赋1。如果缺陷4尺寸标志Flag的值为0,计算机驱动激光束直接对 缺陷4中点坐标(x0,y0)处进行定点靶向重熔。如果缺陷4尺寸标志Flag 的值为1,计算机驱动激光束从缺陷4起点坐标(x1,y1)处沿着熔道以成形 扫描速度V移动至缺陷4终点坐标(x2,y2)处,完成对整个缺陷4的靶向 重熔。

优选地,步骤1中检测高温熔道上距成形扫描激光光斑中心一定微距处 的熔道温度,微距的取值范围为1.5~3.5mm。

优选地,步骤2中某处的熔道温度发生异常突变的判断方法为:在某处 测得的熔道温度与成形中已测得的高温熔道距成形扫描激光光斑中心一定微 距处温度的平均值相比,差值绝对值大于等于3%时,认为该处熔道温度发生 异常突变。

实施例

激光沉积成形制作长宽高为150×50×60mm的TA15钛合金长方体零件, 钛合金零件8位于基板9及工作台10上方。零件8左下角在成形平面中的(x, y)坐标方位为(0mm,0mm)。所采用的成形工艺参数为:激光功率300W, 扫描速度V为10mm/s,送粉率4.9g/min,激光光斑直径d为0.5mm,层厚为 0.1mm,搭接率40%,扫描方式为往复式扫描。在制作该零件时,采用本发明 的装置和方法实现激光沉积成形中熔道材质缺陷的在线检测消除。

本实例采用的光纤式双色测温仪2响应时间为2ms,测温探头5可承受 250℃的高温,测温范围为350~1300℃,测温光谱为1.52及1.64μm,测 温精度为读数的0.5%+1℃,测温探头5的最小检测瞄准直径为0.45mm,允 许被检目标小于该直径。测温探头5与金属成形表面的距离为9cm,测温探 头在成形平面上的检测瞄准点中心距成形扫描激光光斑中心的微距为 2.5mm。

当前金属零件9已制作至121层,当激光束7由左向右沿+X方向扫描 时,由左侧测温探头5检测高温熔道上距成形扫描激光光斑中心2.5mm处的 温度;当激光束7由右向左沿-X方向扫描时,由右侧测温探头5检测高温熔 道上距激光光斑中心2.5毫米处的温度。在激光束7沿+X方向扫描某条熔道 时,计算机1监测到左侧测温探头5对应的双色测温仪2传来的温度信号中 出现了两次熔道温度高于成形中已测得的距激光光斑中心2.5mm处高温熔道 温度的平均值,且差距大于3%,即出现了两次异常温度波动,则判定该两处 存在材质缺陷。

成形控制系统实时反馈的上述两次异常温度波动出现时刻的成形扫描激 光光斑在成形平面的坐标分别为(32.37mm,19.80mm)、(93.74mm, 19.80mm),两次异常温度波动终止时刻的激光光斑在成形平面的坐标分别为 (32.49mm,19.80mm)、(94.27mm,19.80mm)。据此计算出前后出现的 两个缺陷4起点在成形平面的坐标分别为(32.37mm–3.00mm,19.80mm) 及(93.74mm–3.00mm,19.80mm),即(29.37mm,19.80mm)及(90.74mm, 19.80mm);两个缺陷4终点在成形平面的坐标分别为(32.49mm–3.00mm, 19.80mm)、(94.27mm–3.00mm,19.80mm),即(29.49mm,19.80mm)、 (91.27mm,19.80mm)。根据两个缺陷4起点和终点在成形平面的坐标计算 出两个缺陷4中点在成形平面的坐标分别为[(29.37mm+29.49mm)/2, 19.80mm]、[(90.74mm+91.27mm)/2,19.80],即(29.43mm,19.80mm)、 (91.01,19.80mm);两处缺陷4沿熔道方向的长度L分别为29.49mm- 29.37mm、91.27mm-90.74mm,即0.12mm、0.53mm。第一处缺陷4的L< d,将其尺寸标志Flag的值赋0;第二处缺陷4的L>d,将其尺寸标志Flag 值赋1。

在该熔道扫描结束后,以300W的激光功率对检测出的两处缺陷4进行 靶向重熔。具体为:第一处缺陷4的尺寸标志Flag的值为0,计算机1驱动 激光束7直接对第一处缺陷4的中点坐标(29.43mm,19.80mm)处进行定点 靶向重熔,激光定点靶向重熔的停留时间是50ms。第二处缺陷4的尺寸标志 Flag的值为1,计算机1驱动激光束7从第二处缺陷4的起点坐标(90.74mm, 19.80mm)处沿着熔道以成形扫描速度V移动至终点坐标(91.27mm, 19.80mm)处,完成对第二处缺陷4的靶向重熔。然后继续下一条熔道的激光 成形扫描和材质缺陷在线检测消除。

该装置能实现智能在线检测,结构简单;该方法检测准确、易于实现, 解决了现有技术无法对材质缺陷进行熔道成形扫描中的在线检测和靶向消除 的问题,且无需因缺陷检测而暂停成形制作,不会影响成形效率。利用本发 明的装置和方法能够有效消除激光金属成形零件的内部材质缺陷,对于提高 激光金属成形零件的使用性能和服役安全性,降低疲劳断裂的风险具有重要 的意义,在航空航天装备制造、精密制造、汽车制造等领域具有广阔的应用 前景。

本发明以上描述只是部分实施例,但是本发明并不局限于上述的具体实施 方式。上述的具体实施方式是示意性的,并不是限制性的。凡是采用本发明 的装置和方法,在不脱离本发明宗旨和权利要求所保护的范围情况下,所有 具体拓展均属本发明的保护范围之内。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号