首页> 中国专利> 热浸镀用Zn-Al-Si-Ni合金镀层及热浸镀方法

热浸镀用Zn-Al-Si-Ni合金镀层及热浸镀方法

摘要

本发明涉及热浸镀锌技术领域,具体涉及一种热浸镀Zn-Al-Si-Ni合金镀层及其热浸镀方法。所述的合金镀层,其特征在于:Al的含量控制在20~30wt.%,Si含量控制在0.1~0.4wt.%,Ni含量控制在0.01~0.1wt.%,其余为Zn。本发明旨在通过Si、Ni协同作用解决Al含量为20~30wt.%的锌铝共析合金镀层综合性能不理想,特别是耐蚀性较差的问题。

著录项

  • 公开/公告号CN105483591A

    专利类型发明专利

  • 公开/公告日2016-04-13

    原文格式PDF

  • 申请/专利权人 常州大学;

    申请/专利号CN201510972847.0

  • 申请日2015-12-23

  • 分类号C23C2/06;C23C2/02;C22C18/04;C22C1/03;

  • 代理机构

  • 代理人

  • 地址 213164 江苏省常州市武进区滆湖路1号

  • 入库时间 2023-12-18 15:16:23

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2018-12-07

    授权

    授权

  • 2016-05-11

    实质审查的生效 IPC(主分类):C23C2/06 申请日:20151223

    实质审查的生效

  • 2016-04-13

    公开

    公开

说明书

技术领域

本发明属于热浸镀锌技术领域,涉及一种钢材热浸镀用Zn-Al-Si-Ni合金镀层及 其热浸镀方法。

背景技术

热浸镀锌铝作为一种具有优良耐腐蚀性能的涂层技术,兼顾了铝的耐久保护性和 锌的阳极保护性,其镀层的综合性能比纯锌镀层的性能更优越,在桥梁、建筑钢结构、汽车、 矿山机械及造船方面得到广泛应用;其中Galvalume合金镀层因其具有优良的耐腐蚀性 能,得到广泛应用,但其因较高的铝含量,浸镀温度较高,导致铁铝之间的放热反应加剧,镀 层变厚,成型能力较差。同时浸镀过程中熔池中产生的底渣严重影响到了产品质量及生产 效率,目前还没有措施能够彻底解决这一难题。

众所周知,铝含量为20~30wt.%的锌铝合金又具有良好的超塑性,但由于室温综合 性能不佳,尤其是耐腐蚀性能较差,共析成分合金的应用受到极大限制;Si在热浸镀锌铝 过程中起着关键作用,它通过改变浸镀合金体系的相平衡关系,形成能与基体紧密结合的 含硅抑制层(Fe2Al5+),阻隔铁基体与熔体的直接接触,控制铁-铝反应速度,使工艺变 得可以控制,Ni能细化镀层组织,提高镀层的耐蚀性能,在热浸镀纯锌镀层中有着广泛的应 用;由于Ni单一作用的效果不显著,往往通过与其他合金元素协同添加在镀锌层和锌铝镀 层中来改善镀层的组织与性能。但是,目前尚未发现在镀锌层和锌铝合金镀层中同时添加 Si、Ni的技术方案。

Ni、Si的协同作用不仅能抑制铁铝之间的放热反应,解决镀层超厚的问题,还能细 化晶粒,提高镀层的耐腐蚀性能;由于铝含量的降低有效降低铁铝之间的放热反应,提高熔 体密度,使浸镀过程中不会形成底渣且产渣量减少;因此,采用本发明的热浸镀Zn-Al-Si- Ni合金镀层实施浸镀具有优异的综合性能,既可以通过现有的连续镀锌生产线获得,也能 采用批量浸镀工艺实现。

发明内容

本发明的目的在于开发出一种新型锌铝合金,解决Al含量为20~30wt.%的锌铝共 析合金室温下综合性能不理想特别是耐蚀性较差的问题,通过Ni、Si协同作用,改变浸镀合 金体系的相平衡关系,形成能与基体紧密结合的含硅抑制层;抑制铁铝之间的放热反应,解 决镀层超厚问题,细化镀层组织,提高镀层的耐蚀性能、成型性能,生产出综合性能优异的 锌铝合金镀层,更好的应用于要求较高的热浸镀产品。

一种热浸镀用Zn-Al-Si-Ni合金镀层,其特征在于:其成份按照质量百分比计算, Al的含量控制在20~30wt.%,Si含量控制在0.1~0.4wt.%,Ni含量控制在0.01~0.1wt.%,其余 为Zn。

众所周知,铝含量为20~30wt.%的锌铝合金又具有良好的超塑性,但由于室温综合 性能不佳,尤其是耐腐蚀性能较差,共析成分合金的应用受到极大限制。

通过向Zn-Al熔池中添加0.1~0.4wt.%Si,可以获得厚度较薄、耐蚀性能较好的锌 铝硅镀层,Si在热浸镀锌铝过程中起着关键作用,它通过改变浸镀合金体系的相平衡关系, 形成能与基体紧密结合的含硅抑制层(Fe2Al5+),阻隔铁基体与熔体的直接接触,控制 铁-铝反应速度,使工艺变得可以控制。

Si含量低于0.1wt.%时,由于达不到相稳定存在的热力学条件,抑制铁铝反映 速度不明显,镀层较厚;而Si含量过高时,锌池流动性变差,产生较多的锌渣,严重影响了镀 层的整体性能,镀层中靠近基体的一侧的中间合金层与基体结合的不够紧密,有微小裂纹 产生,表现出一定的脆性,成型性能较差,特别是耐蚀性能较差。

实验研究表明,钢基进入Zn-Al-Si熔池,其表面首先形成的是相,熔池中Ni的 加入使Si在钢基体表面进一步富集,相形成的热力学环境更加稳定,形核、长大快速,镀 层更加连续、致密,随后,Fe2Al5相开始形核、长大,Fe2Al5相中原子空位高达30%,Si原子可 以有效填补Fe2Al5中的原子空位;Si、Ni的原子半径相近,Fe2Al5中可以溶入微量的Ni,致使 其结构更加稳定,致密的相层与原子空位被Si(Ni)原子占据后的Fe2Al5相结合,有效阻 断了Al原子和Zn原子向钢基体以及Fe原子向液相的扩散,并在镀层中形成了稳定的扩散通 道:凝固自由层//Fe2Al5/α-Fe,控制合金层的生长,镀层厚度进一步减薄(如图1-3 所示);Ni、Si的协同作用没有改变热浸镀层的相结构,但镀层厚度更薄,镀层组织更加连 续、致密,表层凝固组织晶粒细化,使得合金镀层的耐蚀性能、成型性能提高(如图4-6所 示)。

热力学计算的结果表明,熔池中含有0.1%Fe、0.3%Si时,FeAl3的稳定存在温度在 580℃以上,随着熔池中Si含量的提高,其温度存在温度也随之提高,本发明所述成分合金 镀层的热浸镀温度范围较宽,可以通过相应的工艺控制获得+Fe2Al5+凝固层或+ FeAl3+Fe2Al5+凝固层的镀层组织,530℃~580℃浸镀时,镀层结构为Fe2Al5+α-AlFeSi;590℃ ~600℃浸镀时,镀层结构为Fe2Al5+FeAl3+α-AlFeSi。

为了进一步提高镀层质量,本发明在传统的热浸镀方法基础之上在钢铁材料的预 处理步骤中,增加了工业酒精去除有机物和丙酮去除有机物两步骤,可以有效解决部分常 见有机物不溶于NaOH溶液的现象,有效净化钢铁材料表面,明显提升了助镀效果;此外,本 发明所用的助镀剂为每100ml助镀剂中含有100gZnCl2、15gAlCl3、5gLiCl、20gNH4Cl,传 统助镀剂为每100mL溶液中加入8.7gZnCl2、10.2gNH4Cl、10gSnCl2,有效解决使用传统助 镀剂浸镀后,盐类保护膜不均匀以及浸入锌池中起烟量大的问题,有利于获得表面质量优 异的镀层。

图1是纯铁片在Zn-24%Al熔池中浸镀120s后获得的合金镀层的显微组织照片。可 以看出,热浸镀层的合金层主要由Fe2Al5和FeAl3组成,其中靠近钢铁材料基体的Fe2Al5层过 厚且致密性不好,外侧的FeAl3层呈现剥离状态分布在液相中。

为了控制铁铝反应速度,减小热浸镀Zn-Al合金镀层的厚度,改善其致密性,加入 了0.3wt.%Si,浸镀120s,得到了Zn-24%Al-0.3%Si合金镀层,如图2所示。Si的加入改变了浸 镀合金体系的相平衡关系,形成了与基体紧密结合的含硅抑制层(Fe2Al5+),但是从图2 中可以发现热浸镀Zn-Al-Si合金镀层局部位置与钢铁材料基体结合不够紧密有微小裂纹 产生。

为了进一步优化镀层组织,本发明中又加入了0.05wt.%Ni,浸镀120s,得到Zn-24% Al-0.3%Si-0.05%Ni合金镀层,如图3所示;从图中可以看出,Ni、Si的协同作用没有改变镀 层相结构,但镀层厚度更薄,致密性更高。

图4是Zn-24%Al合金镀层、Zn-24%Al-0.3%Si合金镀层、Galvalume合金镀层以及 Zn-24%Al-0.3%Si-0.05%Ni合金镀层在10%NaCl溶液中浸泡168h的失重腐蚀速率的对比照 片;从图中可以看出腐蚀速率大小顺序是:Zn-Al-Si-Ni合金镀层?Galvalume合金镀层?Zn- Al-Si合金镀层?Zn-Al合金镀层,即Zn-Al-Si-Ni合金镀层的耐蚀性最好且优于Galvalume 合金镀层,Zn-Al合金镀层的耐蚀性最差。

图5是Zn-24%Al合金镀层、Zn-24%Al-0.3%Si合金镀层、Galvalume合金镀层以及 Zn-24%Al-0.3%Si-0.05%Ni合金镀层在10%NaCl溶液中浸泡相同时间的动电位极化曲线;从 图中可以看出,Zn-Al-Si-Ni合金镀层的自腐蚀电位更正,Galvalume合金镀层的自腐蚀电 位次之,Zn-Al合金镀层的自腐蚀电位最负;由Corrtest系统中电化学参数拟合系统拟合得 到Zn-Al合金镀层、Zn-Al-Si合金镀层、Galvalume合金镀层以及Zn-Al-Si-Ni合金镀层的自 腐蚀电流大小分别为:67.99μAcm-2、43.37μAcm-2、25.50μAcm-2、11.86μAcm-2,所以本发明中 的Zn-Al-Si-Ni合金镀层的耐蚀性要明显优于其他合金镀层。

图6是Zn-24%Al合金镀层、Zn-24%Al-0.3%Si合金镀层以及Zn-24%Al-0.3%Si-0.1% Ni合金镀层折弯120度的宏观照片。从图中可以看出,Zn-Al合金镀层折弯120度后的折痕少 数地方出现裂纹,Zn-Al-Si合金镀层次之,而Zn-Al-Si-Ni合金镀层折弯120度后没有出现 裂纹;这是由于Ni、Si的加入使镀层厚度减薄,晶粒细化的缘故,同时也说明,Ni、Si的协同 作用不仅提高了合金镀层的耐蚀性能而且进一步优化了镀层力学性能。

本发明具有如下特点:

(1)由于Ni的加入,热浸镀Zn-Al-Si-Ni合金镀层比一般的高铝锌铝合金镀层光亮度提 高。

(2)Ni、Si的协同作用大大提高了合金镀层的耐腐蚀性能。

(3)浸镀温度选择范围较大(530℃~600℃),工艺控制较方便。

(4)热浸镀Zn-Al-Si-Ni合金镀层结构可控,530℃~580℃浸镀时,镀层结构为 Fe2Al5+α-AlFeSi;590℃~600℃浸镀时,镀层结构为Fe2Al5+FeAl3+α-AlFeSi,且镀层薄,成 型好。

(5)熔体密度大于锌渣密度,浸镀过程中不需停线捞渣,进行连续镀无需对生产线 进行改造;既能应用于对耐腐蚀性、外观质量要求比较高的产品的连续镀,也适合螺栓、螺 帽等的批量镀。

附图说明

图1为纯铁片在Zn-24%Al熔池中浸镀120s后获得的合金镀层的显微组织照片。

图2为纯铁片在Zn-24%Al-0.3%Si熔池中浸镀120s后获得的合金镀层的显微组织 照片。

图3为纯铁片在Zn-24%Al-0.3%Si-0.05%Ni熔池中浸镀120s后获得的合金镀层的 显微组织照片。

图4为Zn-24%Al合金镀层、Zn-24%Al-0.3%Si合金镀层、Galvalume合金镀层以及 Zn-24%Al-0.3%Si-0.05%Ni合金镀层在10%NaCl溶液中浸泡168h的失重腐蚀速率的对比照 片。

图5为Zn-24%Al合金镀层、Zn-24%Al-0.3%Si合金镀层、Galvalume合金镀层以及 Zn-24%Al-0.3%Si-0.05%Ni合金镀层在10%NaCl溶液中浸泡相同时间的动电位极化曲线。

图6为Zn-24%Al合金镀层、Zn-24%Al-0.3%Si合金镀层以及Zn-24%Al-0.3%Si- 0.05%Ni合金镀层折弯120度的宏观照片。

具体实施方式

本发明的具体实施方案:

(1)配制Zn-Al-Si-Ni合金熔池:

按照Al的含量控制在20~30wt.%,Si含量控制在0.1~0.4wt.%,Ni含量控制在0.01~ 0.1wt.%,其余为Zn;准确称量锌锭、铝块、Al-10Si中间合金和Al-10Ni中间合金,先将锌锭 置于中频感应炉中,待锌锭熔化后加入铝锭,升温至700℃,熔融后搅拌均匀生成合金液,在 合金液表面加盐类覆盖剂(50wt.%NaCl+25wt.%KCl+25wt.%Na3AlF6),再将Al-10Si中间合 金和Al-10Ni中间合金压入合金液中,熔炼,搅拌使其混合均匀生成熔融合金液,保温 30min,最后将中频感应炉温度降至530℃~600℃。

(2)浸镀前钢铁材料预处理:

预磨机预磨→工业酒精去除有机物,室温,5min→水洗→丙酮去除有机物,室温,5min →水洗→15%NaOH溶液碱洗除油,70℃~80℃,3min→水洗→10%HCl酸洗除锈,室温,3min→ 水洗→助镀(助镀剂为每100ml助镀剂中含有100gZnCl2、15gAlCl3、5gLiCl、20gNH4Cl, 助镀温度为70℃~80℃,助镀时间为3~5min)→风干。

(3)热浸镀

稳定熔池温度在530℃~600℃,扒开熔池表面覆盖剂和渣,将预处理好的钢铁材料浸入 熔池,浸镀10s~180s后,扒开熔池表面的覆盖剂和渣然后以3cm/s的速度将钢铁材料从熔池 中取出,放入水中冷却。

实施例1

Zn-24wt.%Al-0.3wt.%Si-0.05wt.%Ni合金镀层的制备

(1)配制Zn-24wt.%Al-0.3wt.%Si-0.05wt.%Ni合金熔池:

按照Al的含量控制在24wt.%,Si含量控制在0.3wt.%,Ni含量控制在0.05wt.%,其余为 Zn;准确称量锌锭、铝块、Al-10Si中间合金和Al-10Ni中间合金,先将锌锭置于中频感应炉 中,待锌锭熔化后加入铝锭,升温至700℃,熔融后搅拌均匀生成合金液,在合金液表面加盐 类覆盖剂(50wt.%NaCl+25wt.%KCl+25wt.%Na3AlF6),再将Al-10Si中间合金和Al-10Ni中间 合金压入合金液中,熔炼,搅拌使其混合均匀生成熔融合金液,保温30min,最后将中频感应 炉温度降至550℃。

(2)浸镀前钢铁材料预处理:

预磨机预磨→工业酒精去除有机物,室温,5min→水洗→丙酮去除有机物,室温,5min →水洗→15%NaOH溶液碱洗除油,70℃~80℃,3min→水洗→10%HCl酸洗除锈,室温,3min→ 水洗→助镀(助镀剂为每100ml助镀剂中含有100gZnCl2、15gAlCl3、5gLiCl、20gNH4Cl, 助镀温度为70℃~80℃,助镀时间为3~5min)→风干。

(3)热浸镀

稳定熔池温度在550℃,扒开熔池表面覆盖剂和渣,将预处理好的钢铁材料浸入熔池, 浸镀10s~180s后,扒开熔池表面的覆盖剂和渣然后以3cm/s的速度将钢铁材料从熔池中取 出,放入水中冷却,得到图3中的Zn-Al-Si-Ni合金镀层。

实施例2

Zn-20wt.%Al-0.2wt.%Si-0.1wt.%Ni合金镀层的制备

(1)配制Zn-20wt.%Al-0.2wt.%Si-0.1wt.%Ni合金熔池:

按照Al的含量控制在20wt.%,Si含量控制在0.2wt.%,Ni含量控制在0.1wt.%,其余为 Zn;准确称量锌锭、铝块、Al-10Si中间合金和Al-10Ni中间合金,先将锌锭置于中频感应炉 中,待锌锭熔化后加入铝锭,升温至700℃,熔融后搅拌均匀生成合金液,在合金液表面加盐 类覆盖剂(50wt.%NaCl+25wt.%KCl+25wt.%Na3AlF6),再将Al-10Si中间合金和Al-10Ni中间 合金压入合金液中,熔炼,搅拌使其混合均匀生成熔融合金液,保温30min,最后将中频感应 炉温度降至530℃。

(2)浸镀前钢铁材料预处理:

预磨机预磨→工业酒精去除有机物,室温,5min→水洗→丙酮去除有机物,室温,5min →水洗→15%NaOH溶液碱洗除油,70℃~80℃,3min→水洗→10%HCl酸洗除锈,室温,3min→ 水洗→助镀(助镀剂为每100ml助镀剂中含有100gZnCl2、15gAlCl3、5gLiCl、20gNH4Cl, 助镀温度为70℃~80℃,助镀时间为3~5min)→风干。

(3)热浸镀

稳定熔池温度在530℃,扒开熔池表面覆盖剂和渣,将预处理好的钢铁材料浸入熔池, 浸镀10s~180s后,扒开熔池表面的覆盖剂和渣然后以3cm/s的速度将钢铁材料从熔池中取 出,放入水中冷却,Zn-Al-Si-Ni合金镀层的显微照片与实施例1类似。

实施例3

Zn-24wt.%Al-0.25wt.%Si-0.1wt.%Ni合金镀层的制备

(1)配制Zn-24wt.%Al-0.25wt.%Si-0.05wt.%Ni合金熔池:

按照Al的含量控制在24wt.%,Si含量控制在0.25wt.%,Ni含量控制在0.1wt.%,其余为 Zn;准确称量锌锭、铝块、Al-10Si中间合金和Al-10Ni中间合金,先将锌锭置于中频感应炉 中,待锌锭熔化后加入铝锭,升温至700℃,熔融后搅拌均匀生成合金液,在合金液表面加盐 类覆盖剂(50wt.%NaCl+25wt.%KCl+25wt.%Na3AlF6),再将Al-10Si中间合金和Al-10Ni中间 合金压入合金液中,熔炼,搅拌使其混合均匀生成熔融合金液,保温30min,最后将中频感应 炉温度降至600℃。

(2)浸镀前钢铁材料预处理:

预磨机预磨→工业酒精去除有机物,室温,5min→水洗→丙酮去除有机物,室温,5min →水洗→15%NaOH溶液碱洗除油,70℃~80℃,3min→水洗→10%HCl酸洗除锈,室温,3min→ 水洗→助镀(助镀剂为每100ml助镀剂中含有100gZnCl2、15gAlCl3、5gLiCl、20gNH4Cl, 助镀温度为70℃~80℃,助镀时间为3~5min)→风干。

(3)热浸镀

稳定熔池温度在600℃,扒开熔池表面覆盖剂和渣,将预处理好的钢铁材料浸入熔池, 浸镀10s~180s后,扒开熔池表面的覆盖剂和渣然后以3cm/s的速度将钢铁材料从熔池中取 出,放入水中冷却,Zn-Al-Si-Ni合金镀层的显微照片与实施例1类似。

实施例4

Zn-24wt.%Al-0.3wt.%Si-0.01wt.%Ni合金镀层的制备

(1)配制Zn-24wt.%Al-0.3wt.%Si-0.01wt.%Ni合金熔池:

按照Al的含量控制在24wt.%,Si含量控制在0.3wt.%,Ni含量控制在0.01wt.%,其余为 Zn;准确称量锌锭、铝块、Al-10Si中间合金和Al-10Ni中间合金,先将锌锭置于中频感应炉 中,待锌锭熔化后加入铝锭,升温至700℃,熔融后搅拌均匀生成合金液,在合金液表面加盐 类覆盖剂(50wt.%NaCl+25wt.%KCl+25wt.%Na3AlF6),再将Al-10Si中间合金和Al-10Ni中间 合金压入合金液中,熔炼,搅拌使其混合均匀生成熔融合金液,保温30min,最后将中频感应 炉温度降至550℃。

(2)浸镀前钢铁材料预处理:

预磨机预磨→工业酒精去除有机物,室温,5min→水洗→丙酮去除有机物,室温,5min →水洗→15%NaOH溶液碱洗除油,70℃~80℃,3min→水洗→10%HCl酸洗除锈,室温,3min→ 水洗→助镀(助镀剂为每100ml助镀剂中含有100gZnCl2、15gAlCl3、5gLiCl、20gNH4Cl, 助镀温度为70℃~80℃,助镀时间为3~5min)→风干。

(3)热浸镀

稳定熔池温度在550℃,扒开熔池表面覆盖剂和渣,将预处理好的钢铁材料浸入熔池, 浸镀10s~180s后,扒开熔池表面的覆盖剂和渣然后以3cm/s的速度将钢铁材料从熔池中取 出,放入水中冷却,Zn-Al-Si-Ni合金镀层的显微照片与实施例1类似。

实施例5

Zn-28wt.%Al-0.3wt.%Si-0.05wt.%Ni合金镀层制备方法

(1)配制Zn-28wt.%Al-0.3wt.%Si-0.05wt.%Ni合金熔池:

按照Al的含量控制在28wt.%,Si含量控制在0.3wt.%,Ni含量控制在0.05wt.%,其余为 Zn;准确称量锌锭、铝块、Al-10Si中间合金和Al-10Ni中间合金,先将锌锭置于中频感应炉 中,待锌锭熔化后加入铝锭,升温至700℃,熔融后搅拌均匀生成合金液,在合金液表面加盐 类覆盖剂(50wt.%NaCl+25wt.%KCl+25wt.%Na3AlF6),再将Al-10Si中间合金和Al-10Ni中间 合金压入合金液中,熔炼,搅拌使其混合均匀生成熔融合金液,保温30min,最后将中频感应 炉温度降至550℃。

(2)浸镀前钢铁材料预处理:

预磨机预磨→工业酒精去除有机物,室温,5min→水洗→丙酮去除有机物,室温,5min →水洗→15%NaOH溶液碱洗除油,70℃~80℃,3min→水洗→10%HCl酸洗除锈,室温,3min→ 水洗→助镀(助镀剂为每100ml助镀剂中含有100gZnCl2、15gAlCl3、5gLiCl、20gNH4Cl, 助镀温度为70℃~80℃,助镀时间为3~5min)→风干。

(3)热浸镀

稳定熔池温度在550℃,扒开熔池表面覆盖剂和渣,将预处理好的钢铁材料浸入熔池, 浸镀10s~180s后,扒开熔池表面的覆盖剂和渣然后以3cm/s的速度将钢铁材料从熔池中取 出,放入水中冷却,Zn-Al-Si-Ni合金镀层的显微照片与实施例1类似。

实施例(对比组1)

Zn-24wt.%Al合金镀层制备方法

(1)配制Zn-24wt.%Al合金熔池:

按照Al的含量控制在24wt.%,其余为Zn;准确称量锌锭、铝块,先将锌锭置于中频感应 炉中,待锌锭熔化后加入铝锭,升温至700℃,熔融后搅拌均匀生成合金液,在合金液表面加 盐类覆盖剂(50wt.%NaCl+25wt.%KCl+25wt.%Na3AlF6),保温30min,最后将中频感应炉温度 降至550℃。

(2)浸镀前钢铁材料预处理:

预磨机预磨→工业酒精去除有机物,室温,5min→水洗→丙酮去除有机物,室温,5min →水洗→15%NaOH溶液碱洗除油,70℃~80℃,3min→水洗→10%HCl酸洗除锈,室温,3min→ 水洗→助镀(助镀剂为每100ml助镀剂中含有100gZnCl2、15gAlCl3、5gLiCl、20gNH4Cl, 助镀温度为70℃~80℃,助镀时间为3~5min)→风干。

(3)热浸镀

稳定熔池温度在550℃,扒开熔池表面覆盖剂和渣,将预处理好的钢铁材料浸入熔池, 浸镀10s~180s后,扒开熔池表面的覆盖剂和渣然后以3cm/s的速度将钢铁材料从熔池中取 出,放入水中冷却,得到图1中的Zn-Al合金镀层。

实施例(对比组2)

Zn-24wt.%Al-0.3wt.%Si合金镀层制备方法

(1)配制Zn-24wt.%Al-0.3wt.%Si合金熔池:

按照Al的含量控制在24wt.%,Si含量控制在0.3wt.%,其余为Zn;准确称量锌锭、铝块、 Al-10Si中间合金,先将锌锭置于中频感应炉中,待锌锭熔化后加入铝锭,升温至700℃,熔 融后搅拌均匀生成合金液,在合金液表面加盐类覆盖剂(50wt.%NaCl+25wt.%KCl+25wt.% Na3AlF6),再将Al-10Si中间合金压入合金液中,熔炼,搅拌使其混合均匀生成熔融合金液, 保温30min,最后将中频感应炉温度降至550℃。

(2)浸镀前钢铁材料预处理:

预磨机预磨→工业酒精去除有机物,室温,5min→水洗→丙酮去除有机物,室温,5min →水洗→15%NaOH溶液碱洗除油,70℃~80℃,3min→水洗→10%HCl酸洗除锈,室温,3min→ 水洗→助镀(助镀剂为每100ml助镀剂中含有100gZnCl2、15gAlCl3、5gLiCl、20gNH4Cl, 助镀温度为70℃~80℃,助镀时间为3~5min)→风干。

(3)热浸镀

稳定熔池温度在550℃,扒开熔池表面覆盖剂和渣,将预处理好的钢铁材料浸入熔池, 浸镀10s~180s后,扒开熔池表面的覆盖剂和渣然后以3cm/s的速度将钢铁材料从熔池中取 出,放入水中冷却,得到图2中的Zn-Al-Si合金镀层。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号