首页> 中国专利> 微波源系统、微波炉及在微波源系统中执行的方法

微波源系统、微波炉及在微波源系统中执行的方法

摘要

本发明涉及微波技术领域,公开了一种微波源系统、微波炉及在微波源系统中执行的方法。该系统包括频率综合单元、功率放大单元和控制单元,其中:所述频率综合单元用于产生射频信号;所述功率放大单元与所述频率综合单元连接,用于对所述射频信号执行放大操作;所述控制单元与所述频率综合单元和所述功率放大单元连接,用于控制所述频率综合单元产生多个不同的射频信号,基于所述功率放大单元的与所述多个不同的射频信号对应的输出功率和反射功率确定射频信号的最佳频率和相位,并控制所述频率综合单元产生具有所述最佳频率和相位的射频信号。由此,可以实现对微波炉输出功率的精确控制,从而提高加热效果。

著录项

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2018-03-16

    授权

    授权

  • 2016-04-20

    实质审查的生效 IPC(主分类):F24C7/02 申请日:20160106

    实质审查的生效

  • 2016-03-23

    公开

    公开

说明书

技术领域

本发明涉及微波技术领域,具体地,涉及一种微波源系统、微波炉及在 微波源系统中执行的方法。

背景技术

固态源微波炉(SSMWO)的核心部件固态微波源,其研究已经较为深 入了,通常采用压控振荡器(VCO)作为微波发生器,并通过预推动、推动、 末级等逐级进行放大,最终通过天线将导行波转换空间自由波,馈入微波炉 加热腔体内。

目前固态源微波源系统大多采用采用模拟控制电压控制各自VCO的频 率及功率(也有通过控制直流电压来控制功率的),最后通过天线将微波能 量馈入微波加热腔内。受制于半导体器件,现有的固态微波炉输出功率较小, 功率、频率及相位调整精度差,且温度稳定性差,加热均匀性及效果不够理 想,应用拓展性差。

发明内容

本发明的目的是提供一种微波源系统、微波炉及在微波源系统中执行的 方法,以解决上述现有技术中的问题。

为了实现上述目的,本发明提供一种微波源系统,该系统包括频率综合 单元、功率放大单元和控制单元,其中:所述频率综合单元用于产生射频信 号;所述功率放大单元与所述频率综合单元连接,用于对所述射频信号执行 放大操作;所述控制单元与所述频率综合单元和所述功率放大单元连接,用 于控制所述频率综合单元产生多个不同的射频信号,基于所述功率放大单元 的与所述多个不同的射频信号对应的输出功率和反射功率确定射频信号的 最佳频率和相位,并控制所述频率综合单元产生具有所述最佳频率和相位的 射频信号。

本发明还提供了一种微波炉,该微波炉包括上述的微波源系统。

本发明还提供了在微波源系统中实施的方法,其中,所述微波源系统包 括频率综合单元、功率放大单元和控制单元,该方法包括:利用所述控制单 元控制所述频率综合单元产生多个不同的射频信号,基于所述功率放大单元 的与所述多个不同的射频信号对应的输出功率和反射功率确定射频信号的 最佳频率和相位,其中所述多个不同的射频信号被所述功率放大单元放大; 以及利用所述控制单元控制所述频率综合单元产生具有所述最佳频率和相 位的射频信号。

通过上述技术方案,利用微波源系统的控制单元控制所述频率综合单元 产生多个不同的射频信号,基于所述功率放大单元的与所述多个不同的射频 信号对应的输出功率和反射功率确定射频信号的最佳频率和相位,并控制所 述频率综合单元产生具有所述最佳频率和相位的射频信号。由此,由于频率 综合单元产生的是具有最佳频率和相位的射频信号,所以该射频信号经功率 放大器放大后能够得到最佳的输出功率,可以实现对微波炉输出功率的精确 控制,从而提高加热效果。

本发明的其它特征和优点将在随后的具体实施方式部分予以详细说明。

附图说明

附图是用来提供对本发明的进一步理解,并且构成说明书的一部分,与 下面的具体实施方式一起用于解释本发明,但并不构成对本发明的限制。在 附图中:

图1是根据本发明一种实施方式的微波源系统的方框图;

图2是根据本发明另一种实施方式的微波源系统的方框图;

图3是根据本发明另一种实施方式的微波源系统的方框图;

图4是根据本发明另一种实施方式的微波源系统的方框图;以及

图5是根据本发明一种实施方式的在微波源系统中实施的方法的流程 图。

具体实施方式

以下结合附图对本发明的具体实施方式进行详细说明。应当理解的是, 此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发 明。

图1是根据本发明一种实施方式的微波源系统的方框图。

如图1所示,根据本发明一种实施方式的微波源系统包括频率综合单元 (FSU)10、功率放大单元(PA)20和控制单元(MCU)30,其中:所述 频率综合单元10用于产生射频信号;所述功率放大单元20与所述频率综合 单元10连接,用于对所述射频信号执行放大操作;所述控制单元30与所述 频率综合单元10和所述功率放大单元20连接,用于控制所述频率综合单元 10产生多个不同的射频信号,基于所述功率放大单元20的与所述多个不同 的射频信号对应的输出功率和反射功率确定射频信号的最佳频率和相位,并 控制所述频率综合单元10产生具有所述最佳频率和相位的射频信号。

利用微波源系统的控制单元控制所述频率综合单元产生多个不同的射 频信号,基于所述功率放大单元的与所述多个不同的射频信号对应的输出功 率和反射功率确定射频信号的最佳频率和相位,并控制所述频率综合单元产 生具有所述最佳频率和相位的射频信号。由此,由于频率综合单元产生的是 具有最佳频率和相位的射频信号,所以该射频信号经功率放大器放大后能够 得到最佳的输出功率,可以实现对微波炉输出功率的精确控制,从而提高加 热效果。

其中,当控制单元30控制所述频率综合单元10产生多个不同的射频信 号时,每一个射频信号经功率放大单元20放大后都会输出与该射频信号相 对应的输出功率和反射功率。

根据本发明一种实施方式,该系统还包括天线及波导单元(ANT)40, 与所述功率放大单元20连接,用于将放大后的射频信号转换成电磁波馈送 至微波炉腔体中。

由此,在控制所述频率综合单元10产生具有所述最佳频率和相位的射 频信号之后,所产生的具有最佳频率和相位的射频信号将经过功率放大单元 20放大后由天线及波导单元(ANT)40馈送至微波炉腔体中。

根据本发明一种实施方式,所述控制单元30控制所述频率综合单元10 产生多个不同的射频信号,基于所述功率放大单元20的与所述多个不同的 射频信号对应的输出功率和反射功率确定射频信号的最佳频率和相位包括:

控制所述频率综合单元10产生多个相位相同而频率不同的射频信号;

基于所述功率放大单元20的与所述多个相位相同而频率不同的射频信 号对应的输出功率和反射功率计算微波炉腔体的多个第一驻波值;

将所述多个第一驻波值中最小驻波值对应的射频信号的频率作为最佳 频率;

控制所述频率综合单元10产生多个具有最佳频率而相位不同的射频信 号;

基于所述功率放大单元20的与所述多个具有最佳频率而相位不同的射 频信号对应的输出功率和反射功率计算微波炉腔体的多个第二驻波值;

将所述多个第二驻波值中最小驻波值对应的射频信号的相位作为最佳 相位。

其中,对于第一驻波值和第二驻波值的计算,可以采用现有技术中已有 的方式,本发明不再赘述。

可替换地,在确定最佳频率后,可以不执行确定最佳相位的功能。此时, 不同于确定了最佳频率和最佳相位后所述频率综合单元10始终产生具有所 述最佳频率和相位的射频信号(稳定在最佳频率和相位),可以控制所述频 率综合单元10产生具有最佳频率而相位可变的射频信号。也就是,此时微 波源系统工作在最佳频点,但相位一直处于动态调整状态。

由此,由于在动态相位变化下工作,微波炉的热点会随着相位变化而变 化的,从而可以显著提高微波炉加热均匀性。

此外,控制单元30还可以用于根据功率放大单元20的输出功率调整频 率综合单元10的输出幅度,从而使功率放大单元20的输出功率处在预设功 率等级上。

根据本发明一种实施方式,所述频率综合单元10、所述功率放大器20 和所述天线及波导单元40均为多个且数量相同,或者所述频率综合单元10 为一个而所述功率放大器20和所述天线及波导单元40均为多个且数量相 同,或者所述频率综合单元10为多个而所述功率放大器20和所述天线及波 导单元40分别为一个。

图2是根据本发明另一种实施方式的微波源系统的方框图。

在图2中,所述频率综合单元10、所述功率放大器20和所述天线及波 导单元40均为四个。一个所述频率综合单元10、一个所述功率放大器20 和一个所述天线及波导单元40构成一个微波源通道,由此可以实现多通道 (4通道)微波源。

图3是根据本发明另一种实施方式的微波源系统的方框图。

在图3中,所述频率综合单元10为一个而所述功率放大器20和所述天 线及波导单元40均为四个,由此同样可以实现多通道(4通道)微波源。

图4是根据本发明另一种实施方式的微波源系统的方框图。

在图4中,所述频率综合单元10为四个而所述功率放大器20和所述天 线及波导单元40分别为一个,由此同样可以实现多通道(4通道)微波源。

虽然图2-4中示出了特定数量的组件配置情况,但其仅仅是示例性的, 并非用于限定本发明。

通过在微波源系统中设置多个微波源通道,可以精确进行分区域加热 (即,控制单元30中有多路控制进程,独立控制多个通道加热对应数量的 区域)。并且,相比于半导体功放管的最大输出功率受限,设置多个微波源 通道能够增大微波源系统的输出功率(即增大整机的输出功率)。其中,所 述多个微波源通道可以全部同时工作,也可以进其中部分工作,具体是否全 部工作可以根据实际情况进行设定。

根据本发明一种实施方式,在所述频率综合单元10、所述功率放大器 20和所述天线及波导单元40均为多个且数量相同的情况下,每个包括一个 所述频率综合单元10、一个所述功率放大器20和一个所述天线及波导单元 40的通道以同步模式工作或异步模式工作。

以4通道的情况为例,异步模式是4个通道独立工作,控制单元30的 控制进程为4个,分别控制4路通道,4路通道之间除了共用电源外,互不 相关。同步工作模式是通过测得每个通道的最佳频率频和相位(值)后,对 四个结果进行加权平均,确定加权平均频点及相位,然后控制4个通道一起 工作在加权平均频点及相位。

根据本发明一种实施方式,该系统还包括电源单元(图中未示出),用 于为所述控制器30、所述频率综合单元10、所述功率放大器20和所述天线 及波导单元40供电。即,提供微波源系统所需要的直流电源。

根据本发明一种实施方式,控制单元30可以为单片机或微处理器,例 如型号为LPC433的芯片。除了上述实施方式中描述的功能,控制单元30 还可以对外与整机主控单元对接通信,接收和执行主控单元的控制命令,上 报微波源系统的工作状态。

根据本发明一种实施方式,频率综合单元10可以包括频率综合芯片(例 如,具有对数衰减器的频率综合芯片Volcano)以及参考晶振。起可以产生 微波源所用的射频信号,这个射频信号的频率、相位、幅度等都是可以由控 制单元30来控制。它的射频接口与功率放大单元20连接,它的数据接口与 控制单元30连接,可以采用SPI通信方式。可以换地,频率综合单元10也 可以包括VCO电路、调相电路和调幅电路。

根据本发明一种实施方式,功率放大单元20的射频链路可以由预推动 功放管、推动功放管、末级功放管、隔离(环形)器构成,外围辅助电路可 以包括数字温度传感器电路、电流检测电路、输出功率检测电路、反射功率 检测电路、功放开关电路、栅压控制电路以及定向耦合器组成。

根据本发明一种实施方式,天线及波导单元40由大功率定向天线以及 馈入波导构成,用于将导行波(射频)转换成空间自由波(电磁波)。

本领域技术人员应当理解,上述示例仅仅是示例性的,并非用于限定本 发明。

本发明一种实施方式还提供了一种微波炉,该微波炉包括上述实施方式 中所述的微波源系统。

通过在微波炉中使用上述的微波源系统,由于该微波源系统可以自动确 定最佳频率和相位,使得驻波最好(反射功率最小),所以在相同功率等级 下,包括上述的微波源系统的微波炉的加热效果明显优于普通的磁控管或者 固态微波源。

图5是根据本发明一种实施方式的在微波源系统中实施的方法的流程 图。其中,所述微波源系统包括频率综合单元、功率放大单元和控制单元。

如图5所示,本发明一种实施方式提供的在微波源系统中实施的方法包 括:

S500,利用所述控制单元控制所述频率综合单元产生多个不同的射频信 号,基于所述功率放大单元的与所述多个不同的射频信号对应的输出功率和 反射功率确定射频信号的最佳频率和相位,其中所述多个不同的射频信号被 所述功率放大单元放大;以及

S502,利用所述控制单元控制所述频率综合单元产生具有所述最佳频率 和相位的射频信号。

利用微波源系统的控制单元控制所述频率综合单元产生多个不同的射 频信号,基于所述功率放大单元的与所述多个不同的射频信号对应的输出功 率和反射功率确定射频信号的最佳频率和相位,并控制所述频率综合单元产 生具有所述最佳频率和相位的射频信号。由此,由于频率综合单元产生的是 具有最佳频率和相位的射频信号,所以该射频信号经功率放大器放大后能够 得到最佳的输出功率,可以实现对微波炉输出功率的精确控制,从而提高加 热效果。

由此,在控制所述频率综合单元产生具有所述最佳频率和相位的射频信 号之后,所产生的具有最佳频率和相位的射频信号将经过功率放大单元放大 后由天线及波导单元(ANT)馈送至微波炉腔体中。

在该方法中,S500包括:

S5000,控制所述频率综合单元产生多个相位相同而频率不同的射频信 号;

S5002,基于所述功率放大单元的与所述多个相位相同而频率不同的射 频信号对应的输出功率和反射功率计算微波炉腔体的多个第一驻波值;

S5004,将所述多个第一驻波值中最小驻波值对应的射频信号的频率作 为最佳频率;

S5006,控制所述频率综合单元产生多个具有最佳频率而相位不同的射 频信号;

S5008,基于所述功率放大单元的与所述多个具有最佳频率而相位不同 的射频信号对应的输出功率和反射功率计算微波炉腔体的多个第二驻波值;

S5010,将所述多个第二驻波值中最小驻波值对应的射频信号的相位作 为最佳相位。

可替换地,在确定最佳频率后,可以不执行确定最佳相位的操作。此时, 不同于确定了最佳频率和最佳相位后控制所述频率综合单元始终产生具有 所述最佳频率和相位的射频信号(稳定在最佳频率和相位),可以控制所述 频率综合单元产生具有最佳频率而相位可变的射频信号。也就是,此时微波 源系统工作在最佳频点,但相位一直处于动态调整状态。

由此,由于在动态相位变化下工作,微波炉的热点会随着相位变化而变 化的,从而可以显著提高微波炉加热均匀性。

此外,该方法还包括:根据功率放大单元的输出功率调整频率综合单元 的输出幅度,从而使功率放大单元的输出功率处在预设功率等级上。

根据本发明一种实施方式,控制所述频率综合单元以预定频率间隔产生 多个相位相同而频率不同的射频信号;控制所述频率综合单元以预定相位间 隔产生多个具有最佳频率而相位不同的射频信号。

其中,预定频率间隔可以为1MHz,而预定相位间隔可以为5°。所述频 率综合单元的功控方式采用的可以是对数衰减器,由此使得输出功率该控制 更精确。

下面以预定频率间隔为1MHz,而预定相位间隔为5°为例对本发明上述 的微波源系统进行描述。

本发明上述实施方式中的微波源系统基于主机(主控)命令打开后,控 制单元30会对频率综合单元10进行初始化设置,由此频率综合单元产生的 是初始频率和初始相位的射频信号。

当不需要调整输出功率时,这个射频信号通过功率放大单元后得到放 大,最后可以通过天线及波导单元发射到微波炉腔体内。其中,功率放大单 元可以将其输出功率、反射功率等信息输出到控制单元,控制单元根据输出 功率的大小来调整频综单元的输出幅度,使功放单元输出功率处在主机所设 置的功率等级上。根据输出功率和反射功率来计算腔体的驻波值。

当需要调整输出功率使微波源系统工作在最佳状态时,控制单元30控 制频率综合单元10进行步进为1MHz的频率扫描(即,产生多个相位相同 而频率不同的射频信号,此时相位可以依旧为初始相位),同时功率放大单 元20会产生相应的输出功率和反射功率,同时控制单元30可以计算相应的 驻波值。当在预定频带(工作频带)扫描完毕后,控制单元30可以得到预 定频带内最小驻波值对应的频率,该频率被确定为最佳频率。然后控制单元 30再控制频率综合单元10在最佳频率上进行步进为5°的相位扫描(即, 产生多个具有最佳频率而相位不同的射频信号),同时功率放大单元20会产 生相应的输出功率和反射功率,同时控制单元30可以计算相应的驻波值。 当扫描完360°后,控制单元30可以得到360°相位内的最小驻波值对应的相 位,该相位被确定为最佳相位。由此,最佳频率及相位都得以确定,固态微 波源系统就会停留在最佳频率及相位下工作(所述控制单元30控制所述频 率综合单元10产生具有所述最佳频率和相位的射频信号)。

此外,控制单元30也可以一直控制频率综合单元10进行扫描相位动作, 固态微波源系统就会工作在最佳频率但相位一直处于动态调整状态。

以上结合附图详细描述了本发明的优选实施方式,但是,本发明并不限 于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明 的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。

另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特 征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必 要的重复,本发明对各种可能的组合方式不再另行说明。

此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其 不违背本发明的思想,其同样应当视为本发明所公开的内容。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号