首页> 中国专利> 一种确定TSR对碳酸盐岩油气藏蚀变程度的方法和装置

一种确定TSR对碳酸盐岩油气藏蚀变程度的方法和装置

摘要

本申请实施例提供一种确定TSR对碳酸盐岩油气藏蚀变程度的方法和装置。该方法包括:根据获取的储层分布信息、储层构造信息、以及储层中硫酸盐分布信息确定TSR反应发生的预判油气藏;根据所述预判油气藏的热演化史信息和埋藏史信息从所述预判油气藏中选出符合预设筛选条件的TSR反应发生油气藏;在所述TSR反应发生油气藏进行储层岩石、原油、天然气的检测,根据检测结果确定出TSR对碳酸盐岩油气藏蚀变程度。利用本申请实施例提供的技术方案可以有效识别TSR对碳酸盐岩油气藏蚀变程度,从而可以准确确定出硫化氢的含量,有效保障碳酸盐岩油气藏的安全勘探。

著录项

  • 公开/公告号CN105403929A

    专利类型发明专利

  • 公开/公告日2016-03-16

    原文格式PDF

  • 申请/专利权人 中国石油天然气股份有限公司;

    申请/专利号CN201510896173.0

  • 发明设计人 朱光有;

    申请日2015-12-08

  • 分类号G01V9/00;

  • 代理机构北京三友知识产权代理有限公司;

  • 代理人党晓林

  • 地址 100007 北京市东城区东直门北大街9号

  • 入库时间 2023-12-18 14:50:10

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2017-12-05

    授权

    授权

  • 2016-04-13

    实质审查的生效 IPC(主分类):G01V9/00 申请日:20151208

    实质审查的生效

  • 2016-03-16

    公开

    公开

说明书

技术领域

本发明涉及油气勘探技术领域,尤其涉及一种确定TSR对碳酸盐岩油气藏蚀变程度的方 法和装置。

背景技术

TSR是指烃类与硫酸盐(石膏类含硫化合物)在高温(大于140℃)条件下发生硫酸盐热 化学还原反应,生成硫化氢、二氧化碳等,反应式为:烃类+CaSO4─→ CaCO3+H2S+CO2+S+H2O,这个反应会导致烃类被氧化,硫酸盐被还原,造成对油气藏的破 坏(油气藏发生裂解成气)并带来重大安全隐患(硫化氢为有毒气体)。H2S化学活性极大, 在油气勘探过程中对钻具、井筒、集输管线等都具有极强的腐蚀作用,易导致重大安全事故。 目前普遍认为TSR(ThermochemicalSulfateReduction,硫酸盐热化学还原反应)是导致天然 气中硫化氢含量高的主要原因。

TSR对碳酸盐岩油气藏蚀变程度决定硫化氢的含量,但现有技术中并没有相关确定TSR 对碳酸盐岩油气藏蚀变程度的方法,现有技术中通过硫化氢与石膏分布的密切关系,判断硫 化氢在膏盐发育的碳酸盐储集层中含量较高。但膏盐的存在只是发生TSR形成硫化氢的一个 基本条件,在许多膏盐发育的碳酸盐储集层中就没有硫化氢的生成。现有技术中通过石膏分 布的方式并没有考虑到储层孔隙的发育情况、地层水中硫酸根离子的含量、储层经历的温度 条件、油气-水界面的存在、烃类组成、储层岩石组合等引发TSR发生的条件,无法准确确 定出硫化氢的含量。

因此,现有技术亟需一种确定TSR对碳酸盐岩油气藏蚀变程度的方法,从而可以准确确 定出硫化氢的含量,有效保障碳酸盐岩油气藏的安全勘探。

发明内容

本申请的目的是提供一种确定TSR对碳酸盐岩油气藏蚀变程度的方法和装置,可以有效 识别TSR对碳酸盐岩油气藏蚀变程度,从而可以准确确定出硫化氢的含量,有效保障碳酸盐 岩油气藏的安全勘探。

本申请提供的确定TSR对碳酸盐岩油气藏蚀变程度的方法和装置是这样实现的:

一种确定TSR对碳酸盐岩油气藏蚀变程度的方法,所述方法包括:

根据获取的储层分布信息、储层构造信息、以及储层中硫酸盐分布信息确定TSR反应发 生的预判油气藏;

根据埋藏史和热演化史确定所述TSR反应发生的预判油气藏中符合预设地质条件的预 判油气藏,将所述符合预设地质条件的预判油气藏作为TSR反应发生油气藏;

在所述TSR反应发生油气藏进行储层岩石、原油、天然气的检测,根据检测结果确定出 TSR对碳酸盐岩油气藏蚀变程度。

在一个优选的实施例中,所述根据获取的储层分布信息、储层构造信息、以及储层中硫 酸盐分布信息确定TSR反应发生的预判油气藏包括:

根据所述储层分布信息确定优质储集层分布区域;

根据所述储层构造信息确定油气藏的边底水区域;

根据所述储层中硫酸盐地层分布信息确定发育硫酸盐的沉积区域;

将所述优质储集层分布区域中油气藏的边底水区域且发育硫酸盐的沉积区域作为所述 TSR反应发生的预判油气藏。

在一个优选的实施例中,所述根据所述预判油气藏的热演化史信息和埋藏史信息从所述 预判油气藏中选出符合预设筛选条件的TSR反应发生油气藏包括::

根据所述预判油气藏的热演化史信息确定所述预判油气藏的储层中第一次达到140℃以 上的高温的地质年代;

根据所述预判油气藏的埋藏史信息确定所述预判油气藏中从所述地质年代开始持续140 ℃以上的高温的时间超过5百万年的预判油气藏;

将所述时间超过5百万年的预判油气藏作为TSR反应发生油气藏。

在一个优选的实施例中,所述根据检测结果确定出TSR对碳酸盐岩油气藏蚀变程度包 括:

当所述检测结果为所述天然气的成分包括甲烷、硫化氢和二氧化碳,且所述甲烷、硫化 氢和二氧化碳在天然气中所占比例均大于第一预设比例,且所述储层岩石溶蚀出干沥青时, 确定TSR对碳酸盐岩油气藏蚀变程度为油气藏蚀变四级;

当所述检测结果为所述天然气的成分包括甲烷、硫化氢和二氧化碳,且所述甲烷在天然 气中所占比例大于第二预设比例,且所述甲烷在天然气中所占比例大于所述硫化氢和二氧化 碳在天然气中所占比例,且所述储层岩石溶蚀出干沥青,且所述原油中包括凝析油时,确定 TSR对碳酸盐岩油气藏蚀变程度为油气藏蚀变三级;

当所述检测结果为所述天然气的成分包括原油伴生气和湿气,且所述原油伴生气和湿气 在天然气中所占比例大于第三预设比例,且所述储层岩石溶蚀出干沥青,且所述原油中包括 凝析油时,确定TSR对碳酸盐岩油气藏蚀变程度为油气藏蚀变二级;

当所述检测结果为所述天然气的成分包括原油伴生气,且所述原油伴生气在天然气中所 占比例大于第四预设比例且所述原油相态不变时,确定TSR对碳酸盐岩油气藏蚀变程度为油 气藏蚀变一级。

在一个优选的实施例中,所述方法还包括:

根据所述TSR对碳酸盐岩油气藏蚀变程度确定油气藏中硫化氢的含量。

一种确定TSR对碳酸盐岩油气藏蚀变程度的装置,所述装置包括:

预判油气藏确定模块,用于根据获取的储层分布信息、储层构造信息、以及储层中硫酸 盐分布信息确定TSR反应发生的预判油气藏;

油气藏确定模块,用于根据所述预判油气藏的热演化史信息和埋藏史信息从所述预判油 气藏中选出符合预设筛选条件的TSR反应发生油气藏;

蚀变确定模块,用于在所述油气藏确定模块确定出的TSR反应发生油气藏进行储层岩 石、原油、天然气的检测,根据检测结果确定出TSR对碳酸盐岩油气藏蚀变程度。

在一个优选的实施例中,所述预判油气藏确定模块包括:

第一确定单元,用于根据所述储层分布信息确定优质储集层分布区域;

第二确定单元,用于根据所述储层构造信息确定油气藏的边底水区域;

第三确定单元,用于根据所述储层中硫酸盐地层分布信息确定发育硫酸盐的沉积区域;

第一数据处理单元,用于将所述优质储集层分布区域中油气藏的边底水区域且发育硫酸 盐的沉积区域作为所述TSR反应发生的预判油气藏。

在一个优选的实施例中,所述油气藏确定模块包括:

地质年代确定单元,用于根据所述预判油气藏的热演化史信息确定所述预判油气藏的储 层中第一次达到140℃以上的高温的地质年代;

第四确定单元,用于根据所述预判油气藏的埋藏史信息确定所述预判油气藏中从所述地 质年代开始持续140℃以上的高温的时间超过5百万年的预判油气藏;

第二数据处理单元,用于将所述时间超过5百万年的预判油气藏作为TSR反应发生油气 藏。

在一个优选的实施例中,所述蚀变确定模块包括:

第一蚀变确定单元,用于当所述检测结果为所述天然气的成分包括甲烷、硫化氢和二氧 化碳,且所述甲烷、硫化氢和二氧化碳在天然气中所占比例均大于第一预设比例,且所述储 层岩石溶蚀出干沥青时,确定TSR对碳酸盐岩油气藏蚀变程度为油气藏蚀变四级;

第二蚀变确定单元,用于当所述检测结果为所述天然气的成分包括甲烷、硫化氢和二氧 化碳,且所述甲烷在天然气中所占比例大于第二预设比例,且所述甲烷在天然气中所占比例 大于所述硫化氢和二氧化碳在天然气中所占比例,且所述储层岩石溶蚀出干沥青,且所述原 油中包括凝析油时,确定TSR对碳酸盐岩油气藏蚀变程度为油气藏蚀变三级;

第三蚀变确定单元,用于当所述检测结果为所述天然气的成分包括原油伴生气和湿气, 且所述原油伴生气和湿气在天然气中所占比例大于第三预设比例,且所述储层岩石溶蚀出干 沥青,且所述原油中包括凝析油时,确定TSR对碳酸盐岩油气藏蚀变程度为油气藏蚀变二级;

第四蚀变确定单元,用于当所述检测结果为所述天然气的成分包括原油伴生气,且所述 原油伴生气在天然气中所占比例大于第四预设比例且所述原油相态不变时,确定TSR对碳酸 盐岩油气藏蚀变程度为油气藏蚀变一级。

在一个优选的实施例中,所述装置还包括:

数据确定模块,用于根据所述TSR对碳酸盐岩油气藏蚀变程度确定油气藏中硫化氢的含 量。

本申请实施例通过储层分布信息、储层构造信息、储层中硫酸盐分布信息、埋藏史信息 和热演化史信息准确确定出TSR反应发生油气藏。并在所述TSR反应发生油气藏通过对储 层岩石、原油、天然气的检测来确定出TSR对碳酸盐岩油气藏蚀变程度。后续利用TSR对 碳酸盐岩油气藏蚀变程度可以准确的确定出油气藏中硫化氢的含量。与现有技术相比,本申 请实施例的技术方案填补了目前石油行业碳酸盐岩油藏无法准确确定TSR反应程度的空白, 从而可以准确确定出硫化氢的含量,有效保障碳酸盐岩油气藏的安全勘探。

附图说明

为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术 描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请中记 载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以 根据这些附图获得其他的附图。

图1是本申请提供的确定TSR对碳酸盐岩油气藏蚀变程度的方法的一种实施例的流程图;

图2是本申请提供的确定TSR反应发生的预判油气藏的一种实施例的流程图;

图3是本申请提供的确定TSR反应发生油气藏的一种实施例的流程图;

图4是本申请提供的根据检测结果确定出TSR对碳酸盐岩油气藏蚀变程度的一种实施例 的流程图;

图5是本申请实施例提供的确定TSR对碳酸盐岩油气藏蚀变程度的装置的结构示意图。

具体实施方式

为了使本技术领域的人员更好地理解本申请中的技术方案,下面将结合本申请实施例中 的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅 是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人 员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。

下面以几个具体的例子详细说明本申请实施例的具体实现。

以下首先介绍本申请一种钻井数据处理方法的一种实施例。图1是本申请提供的确定 TSR对碳酸盐岩油气藏蚀变程度的方法的一种实施例的流程图,本申请提供了如实施例或流 程图所述的方法操作步骤,但基于常规或者无创造性的劳动可以包括更多或者更少的操作步 骤。实施例中列举的步骤顺序仅仅为众多步骤执行顺序中的一种方式,不代表唯一的执行顺 序。在实际中的系统或客户端产品执行时,可以按照实施例或者附图所示的方法顺序执行或 者并行执行(例如并行处理器或者多线程处理的环境)。具体的如图1所示,所述方法可以 包括:

S110:根据获取的储层分布信息、储层构造信息、以及储层中硫酸盐分布信息确定TSR 反应发生的预判油气藏。

在本申请实施例中,可以根据获取的储层分布信息、储层构造信息、以及储层中硫酸盐 分布信息确定TSR反应发生的预判油气藏。如图2所示的是本申请提供的确定TSR反应发 生的预判油气藏的一种实施例的流程图。具体的,所述确定TSR反应发生的预判油气藏可以 包括:

S111:根据所述储层分布信息确定优质储集层分布区域。

具体的,在实际应用中,发生TSR反应一般需要在储集层孔隙发育且连通性好的优质储 集层分布区域。因此,可以根据所述储层分布信息确定优质储集层分布区域。

S112:根据所述储层构造信息确定油气藏的边底水区域。

具体的,在实际应用中,发生TSR反应一般是在储层中油水或气水结合处的油气藏的边 底水区域。因此,可以根据所述储层构造信息确定油气藏的边底水区域。

S113:根据所述储层中硫酸盐地层分布信息确定发育硫酸盐的沉积区域。

具体的,在实际应用中,发生TSR反应一般需要油气藏中有大量的硫酸根(SO42-)的 发育硫酸盐的沉积区域。因此,根据所述储层中硫酸盐地层分布信息确定发育硫酸盐的沉积 区域。

S114:将所述优质储集层分布区域中油气藏的边底水区域且发育硫酸盐的沉积区域作为 所述TSR反应发生的预判油气藏。

S120:根据埋藏史和热演化史确定所述TSR反应发生的预判油气藏中符合预设地质条件 的预判油气藏,将所述符合预设地质条件的预判油气藏作为TSR反应发生油气藏。

在本申请实施例中,在步骤S110确定出TSR反应发生的预判油气藏之后,可以根据埋 藏史和热演化史确定所述TSR反应发生的预判油气藏中符合预设地质条件的预判油气藏,将 所述符合预设地质条件的预判油气藏作为TSR反应发生油气藏。具体的,在实际应用中,发 生TSR反应条件一般包括140℃以上的高温,且从第一次达到140℃以上开始持续140℃以 上的高温的时间超过5百万年。如图3所示的是本申请提供的确定TSR反应发生油气藏的一 种实施例的流程图。具体的,所述确定TSR反应发生油气藏可以包括:

S121:根据所述预判油气藏的热演化史信息确定所述预判油气藏的储层中第一次达到 140℃以上的高温的地质年代。

S122:根据所述预判油气藏的埋藏史信息确定所述预判油气藏中从所述地质年代开始持 续140℃以上的高温的时间超过5百万年的预判油气藏。

S123:将所述时间超过5百万年的预判油气藏作为TSR反应发生油气藏。

S130:在所述TSR反应发生油气藏进行储层岩石、原油、天然气的检测,根据检测结果 确定出TSR对碳酸盐岩油气藏蚀变程度。

在本申请实施例中,在步骤S120确定TSR反应发生油气藏之后,可以在所述TSR反应 发生油气藏进行储层岩石、原油、天然气的检测,根据检测结果确定出TSR对碳酸盐岩油气 藏蚀变程度。如图4所示的是本申请提供的根据检测结果确定出TSR对碳酸盐岩油气藏蚀变 程度的一种实施例的流程图。具体的,所述根据检测结果确定出TSR对碳酸盐岩油气藏蚀变 程度可以包括:

S131:当所述检测结果为所述天然气的成分包括甲烷、硫化氢和二氧化碳,且所述甲烷、 硫化氢和二氧化碳在天然气中所占比例均大于第一预设比例,且所述储层岩石溶蚀出干沥青 时,确定TSR对碳酸盐岩油气藏蚀变程度为油气藏蚀变四级。

具体的,所述第一预设比例可以包括根据实际应用情况设定的大于50%的数值。在一个 具体的实施例中,所述第一预设比例可以设置为80%。具体的,当所述甲烷、硫化氢和二氧 化碳在天然气中所占比例均大于80%时,可以判断所述天然气的主要成分包括甲烷、硫化氢 和二氧化碳。一般的,甲烷在天然气中所占比例、硫化氢在天然气中所占比例、以及二氧化 碳在天然气中所占比例比较均衡,上述的实施例中所述第一预设比例设置为80%时,所述甲 烷在天然气中所占比例可以为25%,所述硫化氢在天然气中所占比例可以为28%,所述二氧 化碳在天然气中所占比例可以为27%。

具体的,当确定TSR对碳酸盐岩油气藏蚀变程度为油气藏蚀变四级时,可以判断油气藏 经历过很高的温度,且持续时间较长,地层水中硫酸根离子比较丰富,油气藏彻底蚀变,相 应的,油气藏中硫化氢含量高。

S132:当所述检测结果为所述天然气的成分包括甲烷、硫化氢和二氧化碳,且所述甲烷 在天然气中所占比例大于第二预设比例,且所述甲烷在天然气中所占比例大于所述硫化氢和 二氧化碳在天然气中所占比例,且所述储层岩石溶蚀出干沥青,且所述原油中包括凝析油时, 确定TSR对碳酸盐岩油气藏蚀变程度为油气藏蚀变三级。

具体的,所述第二预设比例可以包括根据实际应用情况设定的大于50%的数值。在一个 具体的实施例中,所述第二预设比例可以设置为85%。具体的,当所述甲烷、硫化氢和二氧 化碳在天然气中所占比例均大于85%,且所述甲烷在天然气中所占比例大于所述硫化氢和二 氧化碳在天然气中所占比例时,可以判断所述天然气的主要成分包括甲烷。上述的实施例中 所述第二预设比例设置为85%时,所述甲烷在天然气中所占比例可以为50%,所述硫化氢在 天然气中所占比例可以为18%,所述二氧化碳在天然气中所占比例可以为17%。具体的,所 述凝析油中包括金刚烷、硫代金刚烷、二苯并噻吩等含硫化合物

具体的,当确定TSR对碳酸盐岩油气藏蚀变程度为油气藏蚀变三级时,可以判断油气藏 发生严重的蚀变,相应的,油气藏中硫化氢含量较高。

S133:当所述检测结果为所述天然气的成分包括原油伴生气和湿气,且所述原油伴生气 和湿气在天然气中所占比例大于第三预设比例,且所述储层岩石溶蚀出干沥青,且所述原油 中包括凝析油时,确定TSR对碳酸盐岩油气藏蚀变程度为油气藏蚀变二级。

具体的,所述第三预设比例可以包括根据实际应用情况设定的大于50%的数值。在一个 具体的实施例中,所述第三预设比例可以设置为85%。具体的,当所述原油伴生气和湿气在 天然气中所占比例均大于85%时,可以判断所述天然气的主要成分包括原油伴生气和湿气。 一般的,原油伴生气在天然气中所占比例和湿气在天然气中所占比例比较均衡,上述的实施 例中所述第三预设比例设置为85%时,所述原油伴生气在天然气中所占比例可以为45%,所 述湿气在天然气中所占比例可以为40%。

具体的,当确定TSR对碳酸盐岩油气藏蚀变程度为油气藏蚀变二级时,可以判断油气藏 相态由油藏向凝析油油藏发生变化,凝析油包括硫代金刚烷、二苯并噻吩等含硫化合物,油 气藏发生蚀变,相应的,油气藏中硫化氢含量较少。

S134:当所述检测结果为所述天然气的成分包括原油伴生气,且所述原油伴生气在天然 气中所占比例大于第四预设比例且所述原油相态不变时,确定TSR对碳酸盐岩油气藏蚀变程 度为油气藏蚀变一级。

具体的,所述第四预设比例可以包括根据实际应用情况设定的大于50%的数值。在一个 具体的实施例中,所述第四预设比例可以设置为85%。具体的,当所述原油伴生气在天然气 中所占比例均大于85%时,可以判断所述天然气的主要成分包括原油伴生气。油气藏相态不 变,原油可以包括少量的硫代金刚烷等含硫化合物。

具体的,当确定TSR对碳酸盐岩油气藏蚀变程度为油气藏蚀变一级时,可以判断油气藏 发生轻微蚀变,相应的,油气藏中硫化氢含量极少。

上述油气藏蚀变四级到油气藏蚀变一级,油气藏的蚀变由强变弱,相应的,硫化氢的含 量也相应的减少。

在一些实施例中,在步骤S130之后,所述方法还可以包括:

根据所述TSR对碳酸盐岩油气藏蚀变程度确定油气藏中硫化氢的含量。

具体的,当TSR对碳酸盐岩油气藏蚀变程度越强,油气藏中硫化氢含量越高;反之,当 TSR对碳酸盐岩油气藏蚀变程度越弱,油气藏中硫化氢含量越低。

由此可见,本申请一种确定TSR对碳酸盐岩油气藏蚀变程度的方法的实施例提供的技术 方案可以通过储层分布信息、储层构造信息、储层中硫酸盐分布信息、埋藏史信息和热演化 史信息准确确定出TSR反应发生油气藏。并在所述TSR反应发生油气藏通过对储层岩石、原 油、天然气的检测来确定出TSR对碳酸盐岩油气藏蚀变程度。后续利用TSR对碳酸盐岩油气 藏蚀变程度可以准确的确定出油气藏中硫化氢的含量。与现有技术相比,本申请实施例的技 术方案填补了目前石油行业碳酸盐岩油藏无法准确确定TSR反应程度的空白,从而可以准确 确定出硫化氢的含量,有效保障碳酸盐岩油气藏的安全勘探。

本申请另一方面还提供一种确定TSR对碳酸盐岩油气藏蚀变程度的装置,图5是本申请 实施例提供的确定TSR对碳酸盐岩油气藏蚀变程度的装置的结构示意图。如图5所示,所述 装置500可以包括:

预判油气藏确定模块510,可以用于根据获取的储层分布信息、储层构造信息、以及储 层中硫酸盐分布信息确定TSR反应发生的预判油气藏。

油气藏确定模块520,可以用于根据所述预判油气藏的热演化史信息和埋藏史信息从所 述预判油气藏中选出符合预设筛选条件的TSR反应发生油气藏。

蚀变确定模块530,可以用于在所述油气藏确定模块520确定出的TSR反应发生油气藏 进行储层岩石、原油、天然气的检测,根据检测结果确定出TSR对碳酸盐岩油气藏蚀变程度。

在一个优选的实施例中,所述预判油气藏确定模块510可以包括:

第一确定单元,可以用于根据所述储层分布信息确定优质储集层分布区域;

第二确定单元,可以用于根据所述储层构造信息确定油气藏的边底水区域;

第三确定单元,可以用于根据所述储层中硫酸盐地层分布信息确定发育硫酸盐的沉积区 域;

第一数据处理单元,可以用于将所述优质储集层分布区域中油气藏的边底水区域且发育 硫酸盐的沉积区域作为所述TSR反应发生的预判油气藏。

在一个优选的实施例中,所述油气藏确定模块520可以包括:

地质年代确定单元,可以用于根据所述预判油气藏的热演化史信息确定所述预判油气藏 的储层中第一次达到140℃以上的高温的地质年代;

第四确定单元,可以用于根据所述预判油气藏的埋藏史信息确定所述预判油气藏中从所 述地质年代开始持续140℃以上的高温的时间超过5百万年的预判油气藏;

第二数据处理单元,可以用于将所述时间超过5百万年的预判油气藏作为TSR反应发生 油气藏。

在一个优选的实施例中,所述蚀变确定模块530可以包括:

第一蚀变确定单元,可以用于当所述检测结果为所述天然气的成分包括甲烷、硫化氢和 二氧化碳,且所述甲烷、硫化氢和二氧化碳在天然气中所占比例均大于第一预设比例,且所 述储层岩石溶蚀出干沥青时,确定TSR对碳酸盐岩油气藏蚀变程度为油气藏蚀变四级。

第二蚀变确定单元,可以用于当所述检测结果为所述天然气的成分包括甲烷、硫化氢和 二氧化碳,且所述甲烷在天然气中所占比例大于第二预设比例,且所述甲烷在天然气中所占 比例大于所述硫化氢和二氧化碳在天然气中所占比例,且所述储层岩石溶蚀出干沥青,且所 述原油中包括凝析油时,确定TSR对碳酸盐岩油气藏蚀变程度为油气藏蚀变三级。

第三蚀变确定单元,可以用于当所述检测结果为所述天然气的成分包括原油伴生气和湿 气,且所述原油伴生气和湿气在天然气中所占比例大于第三预设比例,且所述储层岩石溶蚀 出干沥青,且所述原油中包括凝析油时,确定TSR对碳酸盐岩油气藏蚀变程度为油气藏蚀变 二级。

第四蚀变确定单元,可以用于当所述检测结果为所述天然气的成分包括原油伴生气,且 所述原油伴生气在天然气中所占比例大于第四预设比例且所述原油相态不变时,确定TSR对 碳酸盐岩油气藏蚀变程度为油气藏蚀变一级。

在一个优选的实施例中,所述装置还可以包括:

数据确定模块,可以用于根据所述TSR对碳酸盐岩油气藏蚀变程度确定油气藏中硫化氢 的含量。

由此可见,本申请一种确定TSR对碳酸盐岩油气藏蚀变程度的方法或装置的实施例提供 的技术方案可以通过储层分布信息、储层构造信息、储层中硫酸盐分布信息、埋藏史信息和 热演化史信息准确确定出TSR反应发生油气藏。并在所述TSR反应发生油气藏通过对储层岩 石、原油、天然气的检测来确定出TSR对碳酸盐岩油气藏蚀变程度。后续利用TSR对碳酸盐 岩油气藏蚀变程度可以准确的确定出油气藏中硫化氢的含量。与现有技术相比,本申请实施 例的技术方案填补了目前石油行业碳酸盐岩油藏无法准确确定TSR反应程度的空白,从而可 以准确确定出硫化氢的含量,有效保障碳酸盐岩油气藏的安全勘探。

本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实 施例的不同之处,各个实施例之间相同相似的部分互相参见即可。尤其,对于系统实施例而 言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分 说明即可。

虽然通过实施例描绘了本申请,本领域普通技术人员知道,本申请有许多变形和变化而 不脱离本申请的精神,希望所附的权利要求包括这些变形和变化而不脱离本申请的精神。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号