首页> 中国专利> 碳纤维增强树脂基薄壁复合材料管件拉伸性能测试方法

碳纤维增强树脂基薄壁复合材料管件拉伸性能测试方法

摘要

碳纤维增强树脂基薄壁复合材料管件拉伸性能测试方法,采用胶接连接技术替代机械连接技术制备碳纤维增强树脂基薄壁复合材料管件力学拉伸试验件,并设计转接夹具将拉伸试验件装卡在力学试验机上,然后对拉伸试验件进行加载,最后得到破坏载荷和相应的变形值。本发明解决了现有碳纤维增强树脂基复合材料管材力学性能测试方法不适用于薄壁复合材料管件的问题,通过采用新型拉伸试验件制备方法,避免了机械连接导致的金属接头破坏管件的问题,为碳纤维薄壁复合材料管件提供了一种新的试验方法。使用该方法能够可靠的反映碳纤维增强树脂基薄壁复合材料管件实际的拉伸性能。

著录项

  • 公开/公告号CN105403457A

    专利类型发明专利

  • 公开/公告日2016-03-16

    原文格式PDF

  • 申请/专利权人 北京卫星制造厂;

    申请/专利号CN201510845319.9

  • 发明设计人 董丰路;王洋;易茂斌;陈维强;

    申请日2015-11-26

  • 分类号G01N3/08;

  • 代理机构中国航天科技专利中心;

  • 代理人臧春喜

  • 地址 100190 北京市海淀区知春路63号

  • 入库时间 2023-12-18 14:50:10

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2018-06-01

    授权

    授权

  • 2016-04-13

    实质审查的生效 IPC(主分类):G01N3/08 申请日:20151126

    实质审查的生效

  • 2016-03-16

    公开

    公开

说明书

技术领域

本发明涉及碳纤维增强树脂基复合材料管件拉伸性能测试方法,适用于测 定壁厚小于1.5mm(公称直径小于50mm)和直径与壁厚之比大于50(公称 直径为50mm-100mm)的碳纤维增强复树脂基合材料薄壁管件的机械性能, 属于碳纤维增强树脂基复合材料结构性能测试领域。

背景技术

碳纤维增强树脂基复合材料杆、管结构是组成复合材料构件的一种典型单 元,是航空、航天器结构中常用的结构组件,大型卫星天线支架等大多采用碳 纤维增强树脂基复合材料管件。

碳纤维增强树脂基复合材料管件成型一般采用纤维缠绕、预浸料铺层、拉 挤成型、热缩成型等工艺,不同的工艺方法和铺层设计在力学性能上具有较大 的差别。

在工程实践中,碳纤维增强树脂基复合材料管件力学性能测试结果不但可 以对产品设计构型和铺层进行优化,而且可用于对产品成型质量的检测。在测 试过程中,碳纤维增强树脂基复合材料管件的壁厚、纤维类型以及试验件的尺 寸精度对测试结果均有影响。目前常用的碳纤维增强树脂基复合材料管件的力 学拉伸性能测试方法为GB/T5349-2005《纤维增强热固性塑料管轴向拉伸性 能试验方法》。该方法不适于碳纤维增强树脂基薄壁复合材料管材的拉伸性能测 试,该方法规定了制备试验件的方式,即将待测管件两端加装了金属接头,金 属接头靠摩擦力夹紧待测管件,在测试过程中,金属接头容易对管件造成损伤, 尤其对于高模量碳纤维增强树脂基薄壁复合材料管材,导致力学测试结果离散 度较大,无法真实反映产品的实际性能。

发明内容

本发明的技术解决问题是:克服现有技术的不足,提供碳纤维增强树脂基 薄壁复合材料管件拉伸性能测试方法,避免了金属接头对待测试管件的损伤, 减小了力学测试结果的离散度,从而得到测量产品实际的拉伸性能。

本发明的技术解决方案是:碳纤维增强树脂基薄壁复合材料管件拉伸性能 测试方法,步骤如下:

(1)利用机械设备从待测试碳纤维增强树脂基薄壁复合材料管件上截取一 段作为测试用,截取时将管件内腔使用玻璃钢棒垫实,并对截取后得到的测试 用管件两个端面铣加工,保证两个端面平行度0.05mm;

(2)为步骤(1)得到的测试用管件的一端加工金属接头,所述金属接头 包括内套筒和外套筒,外套筒上设计有装卡台阶,内套筒外径和测试用管件之 间、测试用管件和外套筒内径之间的配合间隙为单边0.1~0.2mm;

(3)测量并计算测试用管件内径和外径平均尺寸、实际制备的内套筒外径 平均尺寸以及外套筒内径平均尺寸,计算内套筒和测试用管件之间以及测试用 管件和外套筒之间相互配合的间隙值;

(4)根据步骤(3)计算得到的间隙值,选择与待测试碳纤维增强树脂基 薄壁复合材料管件相同牌号和规格的碳纤维丝束,使用胶黏剂浸渍碳纤维丝束, 然后将浸渍的碳纤维丝束缠绕胶接在内套筒外径和测试用管件与外套筒胶接区 域的外径上,常温固化24小时后使用800目水砂纸对碳纤维丝束进行打磨, 保证内套筒和测试用管件之间以及测试用管件和外套筒之间的配合间隙值为单 边0.1mm-0.2mm;

(5)将胶黏剂均匀涂刷在测试用管件、内套筒、外套筒之间的胶接表面, 然后将内套筒和外套筒胶接在测试用管件一端,常温固化7天;

(6)重复步骤(2)—(5),为测试用管件的另一端加工并胶接金属接头, 得到拉伸试验件;

(7)为拉伸试验件加工转接夹具,所述转接夹具一端与装卡台阶相匹配, 另一端与力学试验机上的卡头匹配;

(8)在拉伸试验件中部径向对称各贴一处应变片,然后将拉伸试验件通过 转接夹具装卡在力学试验机上;

(9)运行力学试验机,测定拉伸模量时,对拉伸试验件进行均匀连续加载, 加载速度为1mm/min~2mm/min,记录载荷值及相应的变形值,并根据载荷 值及相应的变形值计算待测试管件的拉伸模量,其中施加的最大载荷不超过材 料的弹性变形范围;

(10)测定拉伸强度时,对拉伸试验件进行均匀连续加载,加载速度为5 mm/min~6mm/min,直至试样破坏,记录破坏载荷和位移,并根据破坏载荷 计算拉伸强度。

所述步骤(2)中内套筒为空心圆柱体,其一端带有台阶,用于卡在测试用 管件的端口处,外套筒包括一体成型的两个直径不同的空心圆柱体,且直径大 的空心圆柱体一端与内套筒的台阶相匹配,直径大的空心圆柱体另一端相对于 直径小的空心圆柱体突出的部分作为装卡台阶。

所述步骤(4)中将浸渍的碳纤维丝束胶接在内套筒外径和测试用管件外径 上的方式为:浸渍的碳纤维丝束沿圆周方向均布,数量为3~8束。

所述步骤(8)中将拉伸试验件装卡在力学试验机上时,应使拉伸试验件轴 线与试验机上、下夹头的中心线对准。

所述步骤(9)中对拉伸试验件进行加载时,如果有载荷和变形值的自动记 录装置则均匀连续加载,如果没有,则应分级加载,加载级数不少于五级,相 邻两级之间的载荷增量相同。

本发明相比现有技术具有如下优点:

(1)本发明在待测试管件两端胶接了金属接头,增大了待测试管件整体结 构的稳定性,解决了GB/T5349-2005规定的试验件形式在用于薄壁复合材料 管件时机械连接的金属接头对管件造成损伤的问题,从而真实反映薄壁管件的 拉伸性能。

(2)本发明金属内、外套筒设置有限位台阶,可以有效保证内、外套筒与 管件试验件的胶接尺寸,从而保证管件试验件有效测试段尺寸30mm,既满足 GB/T5349-2005的规定,又有效降低了测试结果的离散度。

(3)本发明将碳纤维丝束胶接在内套筒外径和测试用管件与外套筒胶接区 域的外径,大于8束,碳纤维丝束太厚,不利于胶接,小于3束,胶接强度变 弱。选择3-8束碳纤维丝束,一方面能够有效保证内套筒和测试用管件之间以 及测试用管件和外套筒之间的配合间隙值为单边0.1mm-0.2mm,另一方面形 成类似于螺纹的连接关系,增强了金属接头和测试用管件的胶接强度,防止测 试过程中胶接区域发生破坏而导致试验结果不准确,从而确保试验结果真实反 映产品性能。

(4)本发明针对现有标准GB/T5349-2005《纤维增强热固性塑料管轴向 拉伸性能试验方法》规定的试验件形式不适用于薄壁结构复合材料管件的问题, 为薄壁测试用管件设计了胶接金属接头,扩展了复合材料管件拉伸性能测试的 测试范围,有助于复合材料结构产品的轻量化发展。

附图说明

图1为本发明方法流程图;

图2为内套筒剖视图;

图3为外套筒示意图;

图4为拉伸试验件套装转接夹具的示意图。

具体实施方式

碳纤维增强树脂基复合材料管件尤其是薄壁管件是航空、航天器结构中常 用的结构组件,大型卫星天线支架等大多采用碳纤维增强树脂基复合材料管件, 因此对其结构性能进行测试非常重要。但是目前常用的测试方法GB/T 5349-2005《纤维增强热固性塑料管轴向拉伸性能试验方法》将待测管件两端 加装了金属接头,测试过程中,靠摩擦力夹紧管件的金属接头容易对管件造成 损伤,无法真实测量产品的实际拉伸性能。因此,本发明提出了一种薄壁管件 的拉伸性能测试方法,该方法首先为待测试管件两端加工并胶接内外套筒(金 属接头),形成拉伸试验件,由于金属接头与待测试管件之间通过胶接连接,因 此该试验件能够有效避免在拉伸施加载荷进行测试时金属接头(胶接的内外套 筒)对待测试管件的损伤,从而得到待测试管件的实际拉伸性能。

如图1所示,本发明的碳纤维增强树脂基薄壁复合材料管件拉伸性能测试 方法,步骤如下:

(1)利用机械设备从待测试碳纤维增强树脂基薄壁复合材料管件上截取一 段作为测试用,截取时将管件内腔使用玻璃钢棒垫实,并对截取后得到的测试 用管件两个端面铣加工,保证两个端面平行度0.05mm;

(2)为步骤(1)得到的测试用管件的D1端(设测试用管件的两端分别 为D1端和D2端)加工金属接头,所述金属接头包括内套筒和外套筒,如图2 所示,内套筒为空心圆柱体,其一端带有台阶,用于卡在测试用管件的端口处, 如图3中所示,外套筒包括一体成型的两个直径不同的空心圆柱体,且直径大 的空心圆柱体一端与内套筒的台阶相匹配,直径大的空心圆柱体另一端相对于 直径小的空心圆柱体突出的部分作为装卡台阶。内套筒外径和测试用管件之间、 测试用管件和外套筒内径之间的配合间隙为单边0.1~0.2mm。

(3)测量并计算测试用管件内径和外径平均尺寸、实际制备的内套筒外径 平均尺寸以及外套筒内径平均尺寸,计算内套筒和测试用管件之间以及测试用 管件和外套筒之间相互配合的间隙值。

(4)根据步骤(3)计算得到的间隙值,选择与待测试碳纤维增强树脂基 薄壁复合材料管件相同牌号和规格的碳纤维丝束,使用REDUX420胶黏剂浸 渍碳纤维丝束,然后将浸渍的碳纤维丝束缠绕胶接在内套筒外径和测试用管件 D1端与外套筒胶接区域的外径上,浸渍的碳纤维丝束沿圆周方向均布,数量为 3~8束。常温固化24小时后使用800目水砂纸对碳纤维丝束进行打磨,保证 内套筒和测试用管件之间以及测试用管件和外套筒之间的配合间隙值为单边 0.1mm-0.2mm。

(5)将REDUX420胶黏剂均匀涂刷在测试用管件、内套筒、外套筒之间 的胶接表面,然后将内套筒和外套筒胶接在测试用管件D1端,常温固化7天。

(6)重复步骤(2)—(5),为测试用管件的另一端(D2端)加工并胶 接金属接头。

(7)为拉伸试验件加工转接夹具,用于在拉伸试验时夹住拉伸试验件,转 接夹具一端与装卡台阶相匹配,另一端与力学试验机上的卡头匹配,拉伸试验 件套装转接夹具后如图4所示。

(8)在拉伸试验件中部径向对称各贴一处应变片,然后将拉伸试验件装卡 在力学试验机上,应使拉伸试验件轴线与试验机上、下夹头的中心线对准。

(9)运行力学试验机,测定拉伸模量时,对拉伸试验件进行均匀连续加载 (如果有载荷和变形值的自动记录装置则均匀连续加载,如果没有,则应分级 加载,加载级数不少于五级,相邻两级之间的载荷增量相同),记录载荷值及相 应的变形值,并根据载荷值及相应的变形值计算待测试管件的拉伸模量,其中 施加的最大载荷不超过材料的弹性变形范围,加载速度为(1~2)mm/min。

(10)测定拉伸强度时,对拉伸试验件进行均匀、连续加载,加载速度为 (5~6)mm/min,直至试样破坏,记录破坏载荷,并根据破坏载荷计算拉伸 强度。

实施例

以对内径Φ24mm,壁厚0.6mm的碳纤维增强树脂基薄壁复合材料管 件进行拉伸性能测试为例:

一、利用金刚石砂轮片从待测试碳纤维增强树脂基薄壁复合材料管件上 截取长度为230mm一段作为测试用,截取时选用直径Φ24mm的玻璃棒插入 待测试碳纤维增强树脂基薄壁复合材料管件垫实,利用金刚石砂轮片对截取 后得到的测试用管件两个端面铣加工,保证两个端面平行度0.05mm。

二、根据步骤一得到的测试用管件的内、外径尺寸为测试用管件的一端 设计加工测试用金属接头,所述金属接头包括内套筒和外套筒,内套筒为空 心圆柱体,其一端带有台阶,用于卡在测试用管件的端口处,外套筒包括一 体成型的两个直径不同的空心圆柱体,且直径大的空心圆柱体的一端与内套 筒的台阶相匹配,直径大的空心圆柱体另一端相对于直径小的空心圆柱体突 出的部分作为装卡台阶,内套筒外径和测试用管件之间、测试用管件和外套 筒内径之间的配合间隙为单边0.1~0.2mm。

如图2所示,内套筒内径d’小于待测试管件内径4mm~8mm,内套筒 台阶部分的外径D’大于待测试管件外径2mm~6mm,内套筒台阶的高度h 为3mm~5mm,H为与待测试管件胶接的高度,d为待测试管件内径。台 阶部分的外径以及台阶的高度太小或内套筒的内径太大,容易在拉伸过程中 损坏,台阶部分的外径以及台阶的高度太大或内套筒的内径太小不具有实用 性。

如图3所示,外套筒中直径小的圆柱体外径b大于待测试管件外径 5mm~10mm,外套筒中直径大的圆柱体外径D”大于待测试管件外径10~ 15mm,直径大的圆柱体与内套筒台阶相匹配部分的内径D’与内套筒台阶部 分的外径相同,相匹配部分的高度与内套筒台阶高度h相同,直径大的圆柱 体高度W为外套筒高度的1/2总长,H为与待测试管件胶接的高度,图中D 为待测试管件外径。外套筒两部分的外径、相匹配部分的高度h太小的话, 容易在拉伸过程中损坏,太大不具有实用性。

三、采用精度为0.02mm的游标卡尺测量测试用管件内径和外径平均尺 寸,实际制备的内套筒外径平均尺寸以及外套筒内径平均尺寸,计算出内套 筒和测试用管件之间以及测试用管件和外套筒之间相互配合的间隙值;

四、按重量比A:B=10:4配置REDUX420胶黏剂,根据步骤三计算得 到的间隙值,选择与待测试碳纤维增强树脂基薄壁复合材料管件相同牌号和 规格的碳纤维丝束浸渍REDUX420胶黏剂,然后将浸渍的碳纤维丝束缠绕 胶接在内套筒外径和测试用管件与外套筒胶接区域,沿圆周方向均布,数量 为8束,常温固化24小时后使用800目水砂纸对碳纤维丝束进行打磨,保 证内套筒和测试用管件之间以及测试用管件和外套筒之间的配合间隙值均 在单边0.1mm-0.2mm范围内。

五、将REDUX420胶黏剂均匀涂刷在测试用管件、内套筒、外套筒之 间的胶接表面,然后将内套筒和外套筒胶接在测试用管件对应的一端,常温 固化7天。

六、重复步骤二到五,为测试用管件的另一端加工并胶接金属接头,得 到拉伸试验件。

七、为拉伸试验件加工转接夹具,所述转接夹具一端与装卡台阶相匹配, 另一端与力学试验机上的卡头匹配。如图4所示,其中1为转接夹具,2为 内套筒,3为外套筒,4为待测试管件。

八、在拉伸试验件有效测试段中部(即待测管件未胶接金属接头区域) 径向对称各贴一处应变片;将经过步骤七制备好的测试用管件装卡在力学试 验机上,安装时,应使试样轴线与试验机上、下夹头的中心线对准。

九、运行力学试验机,测定拉伸模量时,对拉伸试验件进行加载,有自 动记录装置可连续加载,否则应分级加载,加载分级不少于五级,施加的最 大载荷不应超过材料的弹性变形范围,记录各级载荷及相应的变形值。并根 据各级载荷及相应的变形值计算待测试管件的拉伸模量,加载速度为 2mm/min。

(10)测定拉伸强度时,对拉伸试验件进行均匀、连续加载,直至试样 破坏,记录破坏载荷(或最大载荷)与试样的破坏情况,并根据破坏载荷计 算拉伸强度,加载速度为5mm/min。

按下述公式计算拉伸强度:

轴向拉伸强度σt按公式(1)计算。

σt=Fπ(D-t)t...(1)

式中:

σt——轴向拉伸强度,MPa;

F——破坏载荷(或最大载荷),N;

D——待测试管件平均外径,mm;

t——待测试管件平均壁厚,mm。

轴向拉伸模量Et按公式(2)计算。

Et=LoΔFπ(D-t)tΔL...(2)

式中:

Et——轴向弹性拉伸模量,GPa;

Lo——仪表测量标距(位移),mm;

ΔF——材料弹性范围内的载荷增量,N;

ΔL——与载荷增量ΔF对应的标距Lo内的变形增量,mm。

本发明解决了现有碳纤维增强树脂基复合材料管材力学性能测试方法不适 用于薄壁复合材料管件的问题,采用新型拉伸试验件制备方法,为待测试管件 设计并加工金属接头,并通过胶接的方式连接,得到拉伸试验件,避免了机械 连接导致的金属接头破坏管件的问题,为碳纤维薄壁复合材料管件提供了一种 新的试验方法。使用该方法能够可靠的反映碳纤维增强树脂基薄壁复合材料管 件实际的拉伸性能。

本发明未详细描述内容为本领域技术人员公知技术。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号