首页> 中国专利> 基于多层平面波分解的一维单站RCS近远场转换方法

基于多层平面波分解的一维单站RCS近远场转换方法

摘要

本发明涉及一种多层平面波分解的一维单站RCS近远场转换方法,根据加法定理将目标散射近场用多层平面波展开,写成转移算子与目标反射率方向图函数在单位角谱球上的积分;根据目标扁平体特征将球面积分简化为圆周积分,依据算法所需要达到的精度截断转移算子,并使用可快速收敛的共轭梯度法进行矩阵求逆。本发明通过多层平面波分解快速算法,将近场一维单站散射数据转换为远场散射数据,达到非余量采样,具有快速近远场转换、自动天线方向图补偿、自动采样位置补偿、误差可控等特点,可指导近场采样设置,从而为获取目标RCS提供一种快速便捷的方法。

著录项

  • 公开/公告号CN105372640A

    专利类型发明专利

  • 公开/公告日2016-03-02

    原文格式PDF

  • 申请/专利权人 上海无线电设备研究所;

    申请/专利号CN201510802086.4

  • 发明设计人 贺新毅;童广德;徐秀丽;王晓冰;

    申请日2015-11-19

  • 分类号G01S7/41;

  • 代理机构上海信好专利代理事务所(普通合伙);

  • 代理人张妍

  • 地址 200090 上海市杨浦区黎平路203号

  • 入库时间 2023-12-18 14:30:45

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2018-06-19

    授权

    授权

  • 2016-03-30

    实质审查的生效 IPC(主分类):G01S7/41 申请日:20151119

    实质审查的生效

  • 2016-03-02

    公开

    公开

说明书

技术领域

本发明所涉及的是目标电磁散射与逆散射领域,尤其涉及电磁散射的一 维单站RCS近远场转换方法。

背景技术

目标RCS测试需要满足远场条件,目前较为成熟的方法有远场地平场测 试和紧缩场测试。然而,对于电大尺寸目标RCS测试,远场地平场需要巨大 的测试场地支持,紧缩场需要昂贵的反射面设施建设。近年来发展活跃的 RCS近场测试技术,在不满足远场条件的近场进行测试,再通过近远场转换 得到目标RCS,具有低廉便捷的特点。近远场转换方法是上述近场测试的关 键。

在检索到的国内外公开及有限范围发表的文献中,有论文和专利 (CN201410432104)介绍基于近场成像的近远场转换方法,未见基于多层平 面波分解的近远场转换方法。另有国外论文介绍多层平面波分解近远场转换 方法,但该方法不能用于一维单站RCS近远场转换。综上所述,现有技术未 公开基于多层平面波分解的一维单站RCS近远场转换方法。

发明内容

本发明的目的在于提出一种基于多层平面波分解的一维单站RCS近远 场转换方法,达到非余量采样,具有快速近远场转换、自动天线方向图补偿、 自动采样位置补偿、误差可控等特点,可指导近场采样设置,从而为获取目 标RCS(雷达散射截面)提供一种快速便捷的方法。

本发明提供一种基于多层平面波分解的一维单站RCS近远场转换方法, 其包含:

步骤1:确定近场散射数据采样平面,在该平面上以目标中心为圆心, 在最近半径和最远半径所确定的圆环内,使用任意天线在该圆环的任意位置 进行采样,记录每个采样点的天线接收电压及采样点位置;

步骤2:基于近场散射的多层平面波分解公式,即根据近场采样数据的 参数和系统所要达到的精度,计算方程常数系数和矩阵大小;

步骤3:根据步骤2计算所得矩阵大小,将单位圆周上的平面波谱均匀 离散化,逐一填充近场转移矩阵元素,完成矩阵方程的建立;

步骤4:用最陡下降的共轭梯度法求解矩阵方程,当迭代收敛时得到目 标反射率方向图;

步骤5:根据RCS与目标反射率方向图之间的关系获得目标RCS。

本发明通过一种多层平面波分解快速算法,将近场一维单站散射数据转 换为远场散射数据,从而获得目标RCS。基于优选的实施例可知,本发明所 述基于多层平面波分解的一维单站RCS近远场转换方法,根据加法定理将目 标散射近场用多层平面波展开,写成转移算子与目标反射率方向图函数在单 位角谱球上的积分;根据目标扁平体特征将球面积分简化为圆周积分,依据 算法所需要达到的精度截断转移算子,并使用可快速收敛的共轭梯度法进行 矩阵求逆。

本发明带来以下有益效果:

本发明提出一种在水平面上进行一维单站近场采样的近远场转换算法, 其优点在于近场采样数与模式截断阶数一致,达到了非余量采样,并与算法 所要达到的精度具有明确的关系,使得误差可控;天线方向图和采样位置引 起的影响在迭代求逆过程中被完全补偿了,使得近场测试时可选用任意天线, 可在平面内随机位置采样,避免了转台或扫描架等定位设备的使用,极大化 简了近场测试系统。

附图说明

图1是本发明中的基于多层平面波分解的一维单站RCS近远场转换算法 的流程图。

具体实施方式

以下结合附图说明本发明的较佳实施例。

如图1所示为本发明中基于多层平面波分解的一维单站RCS近远场转换 算法流程图。本发明的计算方法原理如下:

基于一阶Born近似和单站设定,建立入射场与散射场的辐射反射模型; 根据加法定理和目标的扁平体特征,将上述辐射反射模型用多层平面波展开, 转换成单位圆周上平面波谱的积分;使用共轭梯度法进行矩阵方程求解。

计算具体步骤如下:

步骤1:确定近场散射数据采样平面,在该平面上以目标中心为圆心, 在最近和最远半径所确定的圆环内,使用任意天线在该圆环的任意位置进行 采样,记录每个采样点的天线接收电压及采样点位置;设采样点数为M。

步骤2:基于近场散射的多层平面波分解公式,即根据近场采样数据的 各项参数和系统所要达到的精度,计算方程常数系数和矩阵大小;近场散射 的多层平面波分解公式为:

为入射波矢,k和分别是波数和波矢方向,Z是自由空间中的波阻 抗,Ui是入射电压,是采样点位置,TL是转移算子,ηS是与距离 无关的因子,表达式为

ηs(k)=W(k^)S(2k)W(k^)---(9)

是天线方向图,是与目标有关的函数。

在预处理阶段需要计算式(8)的系数和一维圆周积分的积 分点数KL

KL=2(L+1)(10)

L是转移算子TL的截断阶数,其选取需要满足如下条件

L=kd+αlog(π+kd)(11)

d是测试天线与目标的距离,α=-logε,ε是算法所要达到的精度。结合步骤 1,得到转移算子矩阵的大小为M×KL

步骤3:根据步骤2计算所得矩阵大小,将单位圆周上的平面波谱均匀 离散化,逐一填充近场转移算子矩阵元素,完成矩阵方程的建立;所述矩阵 方程是式(8)的离散形式

UM×1=-k2Z2Ui42π2CM×KL·HKL×1---(12)

下标表示矩阵的大小。转移算子矩阵C的元素为

TL(2kl,rm)|rm|=-jk4πrmΣl=1Kl(-j)l(2l+1)hl(2)(2klrm)Pl(k^l·r^m)---(13)

是第二类球汉克尔函数,是勒让德多项式。

步骤4:用最陡下降共轭梯度法求解矩阵方程(12),当迭代收敛时得到包 含目标反射率方向图的H矩阵;

步骤5:根据RCS与目标反射率方向图之间的关系获得目标RCS。

σ=limrA4πrA2|Um|2|Ui|2=k2Z24π|ηs(k)|2---(14)

综上所述,本发明中基于一阶Born近似和单站设定建立辐射散射模型, 使用加法定理将近场散射用多层平面波分解,并针对扁平体目标将单位球面 上的平面波积分缩减到了单位圆周上,实现了任意天线任意位置非余量采样 下一维单站RCS快速近远场转换方法,解决了在目标散射近场进行低廉便捷 测试并获取误差可控的RCS的需要。

尽管本发明的内容已经通过上述优选实施例作了详细介绍,但应当认识 到上述的描述不应被认为是对本发明的限制。在本领域技术人员阅读了上述 内容后,对于本发明的多种修改和替代都将是显而易见的。因此,本发明的 保护范围应由所附的权利要求来限定。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号