首页> 中国专利> 形成二氧化硅基层的组成物及制造二氧化硅基层的方法

形成二氧化硅基层的组成物及制造二氧化硅基层的方法

摘要

本发明提供一种形成二氧化硅基层的组成物及制造二氧化硅基层的方法,所述形成二氧化硅基层的组成物,包含:选自氢化聚硅氮烷、氢化聚环氧硅氮烷或它们的组合的二氧化硅基化合物;以及溶剂,其中,具有0.2μm到1μm粒子直径的粒子的数目少于或等于10/mL。本发明提供的用以形成二氧化硅基层的组成物可以减少粒子的产生,因此能极小化形成的层中的缺陷。

著录项

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2019-09-17

    授权

    授权

  • 2016-03-09

    实质审查的生效 IPC(主分类):C08L83/16 申请日:20141216

    实质审查的生效

  • 2016-02-10

    公开

    公开

说明书

相关申请的交叉引用

本发明要求2014年5月26日在韩国专利局所申请的韩国专利发明第10-2014-0063293号的优先权与利益,其全部内容通过参照方式并入本发明中。

技术领域

本发明涉及一种形成二氧化硅基层的组成物以及制造二氧化硅基层的方法。

背景技术

由于半导体技术的加速发展,在高积集度与高速半导体存储胞的研发上,已经进行了:藉由增加具有更小尺寸的半导体芯片的积集度而提升效能。这些半导体存储胞中,例如,可使用动态随机存取存储体(DRAM)。DRAM能够随意地输入和输出信息,并且可实现大容量。

DRAM可以包含:例如,多个单元胞,此单元胞包含一个MOS电晶体与一个电容。电容可以包含:两个电极与一个位在两电极间的介电层。此电容可以依照例如介电常数、介电层的厚度、电极面积等等而得到各种电容值。

当半导体芯片的尺寸减小时,其中的电容尺寸也会随之减小。然而,这较小的电容仍需要有足够的储存容量。例如,藉由增加垂直面积替代减少水平面积以增加整体的主动区,可以使电容具有更大的电容量。当这个方法被用于制造电容时,可使用藉由使用铸模(mold)且在铸模上的间隙中填入用以形成二氧化硅基层的组成物所形成的二氧化硅基层,以有效地形成比窄的水平面积相对高的电极。

发明内容

本发明的一实施例提供一种用以形成能够极小化缺陷(defect)的二氧化硅基层的组成物。

本发明的另一实施例提供一种利用用以形成二氧化硅基层的组成物来制造二氧化硅基层的方法。

根据本发明的一实施例,提出一种用以形成二氧化硅基层的组成物,包括:含有氢化聚硅氮烷(polysilazane)、氢化聚环氧硅氮烷(polysiloxazane)或是它们的组合的二氧化硅基化合物;以及溶剂;其中,具有约0.2μm到约1μm粒子直径的粒子的数目是少于或等于10/mL。

粒子的数目可以少于或等于约8/mL。

二氧化硅基化合物可以包括:含有以下面的化学式1表示的部分(moiety)的氢化聚硅氮烷。

[化学式1]

在上述的化学式1中,R1到R3各自是:氢、经取代或未经取代的C1到C30烷基(alkyl)基团、经取代或未经取代的C3到C30环烷基(cycloalkyl)基团、经取代或未经取代的C6到C30芳基(aryl)基团、经取代或未经取代的C7到C30芳烷基(arylalkyl)基团、经取代或未经取代的C1到C30杂烷基(heteroalkyl)基团、经取代或未经取代的C2到C30杂环烷基(heterocycloalkyl)基团、经取代或未经取代的C2到C30烯基(alkenyl)基团、经取代或未经取代的烷氧基(alkoxy)基团、羧基(carboxyl)基团、醛基(aldehyde)基团、羟基(hrdroxy)基团或是它们的组合。

二氧化硅基化合物可以包括:还含有以下面的化学式2表示的部分的氢化聚硅氮烷。

[化学式2]

在上述的化学式2中,R4到R7各自是:氢、经取代或未经取代的C1到C30烷基基团、经取代或未经取代的C3到C30环烷基基团、经取代或未经取代的C6到C30芳基基团、经取代或未经取代的C7到C30芳烷基基团、经取代或未经取代的C1到C30杂烷基基团、经取代或未经取代的C2到C30杂环烷基基团、经取代或未经取代的C2到C30烯基基团、经取代或未经取代的烷氧基基团、羧基基团、醛基基团、羟基基团或是它们的组合。

氢化聚硅氮烷或氢化聚环氧硅氮烷还可以在末端包括:以下面的化学式3表示的部分。此部分在氢化聚硅氮烷或氢化聚环氧硅氮烷结构的硅-氢键的总量基础上,占约15到35重量%的量。

[化学式3]

*-SiH3

氢化聚硅氮烷或氢化聚环氧硅氮烷可以具有:约1,000到200,000的重量平均分子量(Mw)。

氢化聚环氧硅氮烷可以含有:约0.2到3重量%的氧含量。

根据本发明的另一实施例,提出一种制造二氧化硅基层的方法,包括:在基底上涂布用以形成二氧化硅基层的组成物;干化涂布有用以形成二氧化硅基层的组成物的基底;以及在温度大于或等于约200℃的惰性气体环境中,固化所述基底。

用以形成二氧化硅基层的组成物可以利用旋转涂布(spin-oncoating)法涂布。

根据本发明的一实施例,用以形成二氧化硅基层的组成物可以减少粒子的产生,因此能极小化形成的层中的缺陷。

附图说明

图1到图9是依照本发明的一实施例的制造半导体电容的方法的顺序剖面图。

图10是显示根据比较例1与范例1到6的氢化聚硅氮烷溶液中的粒子数目以及使用这些溶液分别形成的每一层的四甲基氢氧化铵(TMAH)反应性结果的图表。

符号的说明

1:半导体基底

2:间隙

3:模制氧化层

5:导电层

5a:下电极

7:填充层

7a:填充图案

9:介电层

11:上电极

具体实施方式

本发明的示范性实施例将详细描述于后,且可以被本技术领域技术人员容易地实行。然而,揭示的内容可以以许多不同的形式体现,不限于本文所述的示范性实施例。

在图式中,层、薄膜、面板、区域等的厚度都是为了清晰度而夸大了。在整个说明书中,类似的参考号码指的是类似的元件。当像是层、薄膜、区域或基底的元件被称为“在”另一元件上时,可以理解为:此元件可以是直接位在另一元件上、或是存在介入元件(interveningelement)。相反地,当一个元件被称为“直接在”另一元件上时,表示不存在介入元件。

如说明书中所用的,当未提出不同的定义时,技术用语‘经取代(substituted)’代表:以取代基取代化合物的氢,所述取代基是选自于:卤素(halogen)原子(F、Br、Cl或I)、羟基(hydroxy)基团、烷氧基(alkoxy)基团、硝基(nitro)基团、氰基(cyano)基团、氨基(amino)基团、叠氮基(azido)基团、甲脒基(amidino)基团、肼基(hydrazino)基团、亚肼基(hydrazono)基团、羰基(carbonyl)基团、胺甲酰基(carbamyl)基团、硫基(thiol)基团、酯基(ester)基团、羧基(carboxyl)基团或其盐类、磺酸基(sulfonicacid)基团或其盐类、磷酸(phosphoricacid)或其盐类、烷基(alkyl)基团、C2到C16烯基(alkenyl)基团、C2到C16炔基(alkynyl)基团、芳基(aryl)基团、C7到C13芳烷基(arylalkyl)基团、C1到C4氧烷基(oxyalkyl)基团、C1到C20杂烷基(heteroalkyl)基团、C3到C20杂芳烷基(heteroarylalkyl)基团、环烷基(cycloalkyl)基团、C3到C15环烯基(cycloalkenyl)基团、C6到C15环炔基(cycloalkynyl)基团、杂环烷基(heterocycloalkyl)基团以及它们的组合。

如说明书中所用的,当未提出不同的定义时,技术用语‘杂(hetero)’代表:包含选自N、O、S及P的1至3个杂原子。

此外,在说明书中,符号“*”代表:此处是与相同或不同的原子或是化学式连接的部位。

在下文中,将描述根据本发明的一实施例以形成二氧化硅基层的组成物。

根据本发明的一实施例,形成二氧化硅基层的组成物包含:二氧化硅基化合物以及溶剂,所述二氧化硅基化合物包含氢化聚硅氮烷、氢化聚环氧硅氮烷或它们的组合。

形成二氧化硅基层的组成物包含液态的粒子,而且,粒子的数目可少于或等于10/mL,以及粒子可具有从约0.2μm到约1μm的直径。在较佳实施例中,粒子的数目少于或等于8/Ml。

包含在形成二氧化硅基层的组成物中的粒子是在合成此组成物的制程中形成的,而且,当粒子数目减少时,在二氧化硅基层中的缺陷数目也减少了。

根据本发明的一实施例,用以形成二氧化硅基层的组成物经控制以在每1mL的溶液包含少于或等于约10个粒子,以减少所形成的二氧化硅基层中的缺陷数目,而增进二氧化硅基层的效能。此处,用以计数的粒子可具有从约0.2μm到约1μm的直径。

此处,组成物中的粒子数目可以利用液态粒子计数器(LiquidParticleCounter,LPC)来进行计数,液态粒子计数器例如是理音(RION)公司的产品KS-42BF。

另一方面,用以形成二氧化硅基层的组成物的氢化聚硅氮烷可以包含以下面的化学式1表示的部分(moiety)。

[化学式1]

在上述的化学式1中,R1到R3各自是:氢、经取代或未经取代的C1到C30烷基基团、经取代或未经取代的C3到C30环烷基基团、经取代或未经取代的C6到C30芳基基团、经取代或未经取代的C7到C30芳烷基基团、经取代或未经取代的C1到C30杂烷基基团、经取代或未经取代的C2到C30杂环烷基基团、经取代或未经取代的C2到C30烯基基团、经取代或未经取代的烷氧基基团、羧基基团、醛基基团、羟基基团或是它们的组合。

氢化聚硅氮烷可以以各种方法制备,例如,众所周知的以卤代硅烷(halosilane)与氨反应来制备。

用以形成二氧化硅基层的组成物的氢化聚环氧硅氮烷还可以包含:以下述化学式2表示的部分以及以上述化学式1表示的部分。

[化学式2]

在上述的化学式2中,R4到R7是与化学式1中定义的R1到R3一样。

以此种方式,当组成物还包含上述化学式2表示的部分时,根据实施例制备的氢化聚环氧硅氮烷的结构包括不同于硅-氮(Si-N)键部分的硅-氧-硅(Si-O-Si)键部分,而且,硅-氧-硅键部分可以于热处理固化期间弱化应力以及减少收缩。

此处,氢化聚环氧硅氮烷可以具有约0.2到约3重量%的氧含量。当氧被包含在这范围时,氢化聚环氧硅氮烷结构中的硅-氧-硅可以于热处理期间充分地弱化应力以及防止收缩,避免因为此处理而在图案中产生破裂。

从这观点,氧可以进一步为约0.4到约2重量%的范围内的量。

此处,氧含量能够利用赛默飞世尔科技(ThermoFisherScientific)公司的产品FlashEA1112来进行量测;SiH3/SiH(全部)能够利用200MHz的质子NMR(布鲁克(Bruker)公司的产品AC-200)来进行量测,而且,重量平均分子量能够利用凝胶渗透层析(GelPermeationChromatography,GPC)量测:沃特世(Waters)公司的高效液相色谱法(HPLC)帮浦151、折射率(RI)侦测器2414,与昭和电工(Shodex)公司的KF801、KF802、KF803管柱。

而且,用以形成二氧化硅基层的组成物的氢化聚硅氮烷或氢化聚环氧硅氮烷在末端可以包括以下面的化学式3表示的部分。

[化学式3]

*-SiH3

以上述化学式3表示的部分是末端以氢为结尾的结构,且可以在氢化聚硅氮烷或氢化聚环氧硅氮烷的结构的硅-氢键的总量基础上占约15到约35重量%的量。当上述化学式3的部分是以此范围的量而被包含于氢化聚硅氮烷或氢化聚环氧硅氮烷的结构中时,在热处理期间SiH3部分会被防止分散成SiH4同时充分地发生氧化反应,且防止填入物图案的破裂。

制备好的氢化聚硅氮烷或氢化聚环氧硅氮烷可以具有约1,000到约200,000的重量平均分子量(Mw)。在这范围内,于热处理期间,较少的成分会被蒸发。在这些条件中,氢化聚硅氮烷或氢化聚环氧硅氮烷可以具有例如约3,000到约200,000的重量平均分子量。

在用以形成二氧化硅基层的组成物的总量基础上,二氧化硅基化合物可以占约0.1到约50重量%的量。在这范围内,二氧化硅基化合物可以保持适当的粘性,且产生无间隙(孔洞)的大致平坦与均匀层。

制备好的氢化聚硅氮烷或氢化聚环氧硅氮烷被溶解在溶剂中,以形成用以形成二氧化硅基层的组成物。

用以形成二氧化硅基层的组成物还可以包含热酸生成剂(ThermalAcidGenerator,TAG)。

热酸生成剂可以是增进用以形成二氧化硅基层的组成物的显影性质的添加物(additive),因此,使得包含硅的化合物能在较低温下进行显影。

如果热酸生成剂以热产生酸(H+)时,它可以包含任何化合物,没有特殊限制。特别是,它可以包含在90℃或更高温被活化且产生足够的酸且同时具有低挥发性(volatility)的化合物。

热酸生成剂可以包含例如以下面的化学式4表示的化合物。

[化学式4]

R54N+B

在上述的化学式4中,R5是经取代或未经取代的C1到C20烷基基团、环烷基基团、芳香族(aromatic)基团或它们的组合。

B可以是N03-、OH-或它们的组合。

热酸生成剂可以是例如选自硝基苄甲苯磺酸酯(nitrobenzyltosylate)、硝基苄苯磺酸酯(nitrobenzylbenzenesulfonate)、酚磺酸酯(phenolsulfonate)与它们的组合。

在用以形成二氧化硅基层的组成物的总量基础上,热酸生成剂可以占约0.01到约25重量%的量。在这范围内,化合物可以在低温进行显影,且同时改善涂布特性。

用以形成二氧化硅基层的组成物可还包含表面活性剂(surfactant)。

这表面活性剂没有特别限制,且可以是例如:非离子型的表面活性剂,像是聚氧乙烯烷基醚(polyoxyethylenealkylether):例如聚氧乙烯月桂基醚(polyoxyethylenelaurylether)、聚氧乙烯硬脂醚(polyoxyethylenestearylether)、聚氧乙烯十六烷基醚(polyoxyethylenecetylether)、聚氧乙烯油基醚(polyoxyethyleneoleylether)及其类似物;聚氧乙烯烷基烯丙基醚(polyoxyethylenealkylallylether):例如聚氧乙烯壬基苯酚醚(polyoxyethylenenonylphenolester)及其类似物;聚氧乙烯聚氧丙烯嵌段共聚物(polyoxyethylene-polyoxypropyleneblockcopolymers);聚氧乙烯山梨糖醇脂肪酸酯(polyoxyethylenesorbitanfattyacidester):例如山梨糖醇单月桂酸酯(sorbitanmonolaurate)、山梨糖醇单棕榈酸酯(sorbitanmonopalmitate)、山梨糖醇单硬脂酸酯(sorbitanmonostearate)、山梨糖醇单油酸酯(sorbitanmonoleate)、聚氧乙烯山梨糖醇单硬脂酸酯(polyoxyethylenesorbitanmonostearate)、聚氧乙烯山梨糖醇三油酸酯(polyoxyethylenesorbitantrioleate)、聚氧乙烯山梨糖醇三硬脂酸酯(polyoxyethylenesorbitantristearate)及其类似物;氟类(fluorine-based)表面活性剂:例如托克姆产品(TochemProducts)公司的EFTOPEF301、EF303、EF352、大日本油墨化学(DainipponInk&Chem)公司的MEGAFACEF171、F173、住友3M(Sumitomo3M)公司的FLUORADFC430、FC431、朝日玻璃(AsahiGlass)公司的AsahiguardAG710、SurflonS-382、SC101、SC102、SC103、SC104、SC105、SC106及其类似物;其他硅酮类(silicone-based)表面活性剂,像是信越化学(Shin-EtsuChemical)公司的有机硅氧烷聚合物(organosiloxanepolymer)以及其类似物。

在用以形成二氧化硅基层的组成物的总量基础上,表面活性剂可以占约0.00l到约10重量%的量。在这范围内,可以同时改善溶液的分散度(dispersion)与层的厚度均匀性。

用以形成二氧化硅基层的组成物可以是藉由在溶剂中溶解二氧化硅基化合物与成分而获得的溶液。制备好的氢化聚硅氮烷或氢化聚环氧硅氮烷可以溶解在本技术领域技术人员所熟知的溶剂中,而制备成用以沟填(gap-filling)半导体的溶液或组成物。

涂布溶剂可以因考量保存稳定性、涂布溶液或类似的干化速率而选用,例如,可选用具有沸点约50到约200℃的有机溶剂。例如,可以使用芳香族(aromatic)化合物、脂肪族(aliphatic)化合物、饱和碳氢化合物、醚类(ether)、酯类、酮类(ketone)以及其类似物,且特别的是这溶剂可以选自苯(benzene)、甲苯(toluene)、二甲苯(xylene)、乙苯(ethylbenzene)、二乙基苯(diethylbenzene)、三甲基苯(trimethylbenzene)、三乙基苯(triethylbenzene)、环己烷(cyclohexane)、环己烯(cyclohexene)、十氢化萘(decahydronaphthalene)、双戊烯(dipentene)、戊烷(pentane)、己烷(hexane)、庚烷(heptane)、辛烷(octane)、壬烷(nonane)、癸烷(decane)、乙基环己烷(ethylcyclohexane)、甲基环己烷(methylcyclohexane)、对薄荷烷(p-menthane)、二丙醚(dipropylether)、二丁醚(dibutylether)、苯甲醚(anisole)、乙酸丁酯(butylacetate)、乙酸戊酯(amylacetate)、甲基异丁酮(methylisobutylketone)与它们的组合。

根据本发明的另一实施例,制造二氧化硅基层的方法包括:在基底上涂布用以形成二氧化硅基层的组成物;干化涂布有形成二氧化硅基层的组成物的基底;以及在大于或等于约200℃的惰性气体环境(inertgasatmosphere)中,固化生成物(resultant)。

例如,用以形成二氧化硅基层的组成物可以使用溶液制程来进行涂布,像是旋转涂布(spin-oncoating)方法。

基底例如可以是像是半导体、液晶及其类似物的装置基底,但并不限于此。

根据本发明的另一实施例,提出一种包含二氧化硅基层的电子装置,所述二氧化硅基层是根据所述方法而制造。此电子装置可以是例如显示装置(像是LCD或LED)或半导体装置,并且二氧化硅基层可以是电子装置的绝缘层或是填充层。

根据本发明的又一实施例,提出一种制造半导体电容的方法以及根据此方法制造出的半导体电容。以下,参照图1到图9,将描述制造半导体电容的方法以及制造出的半导体电容。

图1到图9是剖面图,依序显示根据本发明的一实施例的制造半导体电容的方法。

参照图1,在半导体基底1上配置模制氧化层3(moldoxidelayer)。在半导体基底1上,已经配置有:电晶体(未显示)、接触垫(未显示)、接触插塞(未显示)以及其类似物。例如,模制氧化层3可以由氧化物制成,像是硅氧化物(SiO2)、四乙氧基硅烷(tetraethylothosilicate,TEOS)、硼磷硅玻璃(boronphosphorussilicateglass,BPSG)以及磷硅玻璃(phosphorsilicateglass,PSG),形成方法例如是气相沉积法(CVD)。

参照图2,利用对于模制氧化层3进行光微影(photolithography)而形成间隙2,所述间隙2暴露位于半导体基底1上的接触插塞。间隙2可以微小到小于50nn。间隙2可具有大于1的在高度与宽度之间的高宽比(aspectratio)。

参照图3,在半导体基底1与模制氧化层3上层压(laminate)导电层5。导电层5可以是单一层或多层。例如,导电层5可以由具有低电阻系数的金属(像是铝、铜、银与它们的合金)、像是镍、钛与类似的金属、多晶硅或其类似物制成。导电层5可以以溅镀或化学气相沉积以及类似的方式而形成。

参照图4,在导电层5上设置填充层7。所述填充层7可以是由包含有氢化聚硅氮烷或氢化聚环氧硅氮烷的组成物制成的二氧化硅基层。此二氧化硅基层与前面描述的一样。这组成物可以与涂布溶剂混合以提供溶液,且可以以像是旋转涂布的溶液制程进行涂布。

接着,对填充层7进行热处理。所述热处理可以在含有蒸气的环境下以约200℃或更高的温度执行。

参照图5,填充层7可以使用显影液(developingsolution)来进行显影。据此,去除设置在下方的导电层5上的填充层7,而留下一部分填充间隙2,形成预定的填充物图案7a。

参照图6,去除配置在模制氧化层3上的导电层5,留下模制氧化层3与填充物图案7a之间的部分,以分离具有预定形状的下电极5a。此处,去除下方的导电层5的方法可以是化学机械研磨(ChemicalMechanicalPolishing,CMP)法或回蚀刻法。

参照图7,同时去除模制氧化层3与填充物图案7a,而留下了下电极5a。模制氧化层3与填充物图案7a是以湿式蚀刻法而去除,此处,湿式蚀刻溶液可以包含任何能同时去除模制氧化层3与填充物图案7a的材料,但不特别限制。例如,可以包含含氟蚀刻液,像是氢氟酸(HF)与氟化氨(NH4F)。

参照图8,在包含下电极5a的基底的所有表面上,配置介电层9。

参照图9,在介电层9上层压导电层,然后进行光微影,而形成上电极11。

下电极5a、介电层9与上电极11构成电容。

下面的例子更详细地描绘了本发明的实施例。然而,这些实施例仅是例示,并非用以限定本发明。

比较例1

以干氮气取代配备有搅拌器与温度控制器的2公升(2L)反应器的内部。接着,将1,500g的干砒啶(pyridine)注入到反应器,且反应器保温在5℃。然后,以超过2小时的时间,缓慢注入140g的二氯硅烷(dichlorosilane)。之后,缓慢注入85g的氨,同时搅拌反应器4小时。接着,注入干氮气120分钟,且去除残余在反应器中的氨。获得的白色浆态(whiteslurry-phased)产品在干氮气环境下经由1μm铁氟龙(tetrafluoroethylene,TEFLON)过滤器进行过滤,得到1,000g过滤后的溶液。然后,将1,000g的干二甲苯加入过滤后的溶液,藉由使用旋转的蒸发器将混合液(mixture)中的二甲苯以砒啶取代重复3次,以将其固体浓度(solidconcentration)调整成20%,且得到的混合液以具有0.1μm孔洞尺寸的铁氟龙过滤器进行过滤。之后,将250g干砒啶加入所得到的氢化聚硅氮烷溶液中,且此混合液于100℃聚合,直到重量平均分子量达到约3,000时为止。

当聚合终止时,藉由使用旋转的蒸发器将产品的溶剂在30℃以二丁醚(dibutylether)取代重复3次,以将其固体浓度调整成20%,且得到的混合液以具有0.1μm铁氟龙过滤器进行过滤,获得氢化聚环氧硅氮烷。

范例1

以干氮气取代配备有搅拌器与温度控制器的2公升(2L)反应器的内部。接着,将1,500g的干砒啶注入到反应器,且反应器保温在5℃。然后,以超过2小时的时间,缓慢注入140g的二氯硅烷。之后,以超过4小时的时间缓慢注入85g的氨,同时搅拌反应器。接着,注入干氮气120分钟,且去除残余在反应器中的氨。获得的白色浆态产品在干氮气环境下经由1μm铁氟龙过滤器进行过滤,得到1,000g过滤后的溶液。然后,将1,000g的干二甲苯加入过滤后的溶液,藉由使用旋转的蒸发器将混合液中的二甲苯以砒啶取代重复3次,以将其固体浓度调整成20%,且得到的混合液以具有0.1μm孔洞尺寸的铁氟龙过滤器进行过滤。之后,将250g干砒啶加入所得到的氢化聚硅氮烷溶液中,且此混合液于100℃聚合,直到重量平均分子量达到约4,500时为止。

当聚合终止时,藉由使用旋转的蒸发器将产品的溶剂在30℃以二丁醚取代重复3次,以将其固体浓度调整成20%,且得到的混合液以具有0.1μm铁氟龙过滤器进行过滤,获得氢化聚环氧硅氮烷。

范例2

以干氮气取代配备有搅拌器与温度控制器的2公升(2L)反应器的内部。接着,将l,500g的干砒啶注入到反应器,且反应器保温在5℃。然后,以超过2小时的时间缓慢注入140g的二氯硅烷。之后,以超过4小时的时间缓慢注入85g的氨,同时搅拌反应器。接着,注入干氮气超过120分钟,且去除残余在反应器中的氨。获得的白色浆态产品在干氮气环境下经由1μm铁氟龙过滤器进行过滤,得到1,000g过滤后的溶液。然后,将1,000g的干二甲苯加入过滤后的溶液,藉由使用旋转的蒸发器将混合液中的二甲苯以砒啶取代重复3次,以将其固体浓度调整成20%,且得到的混合液以具有0.1μm孔洞尺寸的铁氟龙过滤器进行过滤。之后,将250g干砒啶加入已得到的氢化聚硅氮烷溶液中,且此混合液于100℃聚合,直到重量平均分子量达到约7,000时为止。

当聚合终止时,藉由使用旋转的蒸发器将产品中的溶剂在30℃以二丁醚取代重复3次,以将其固体浓度调整成20%,且得到的混合液以具有0.1μm铁氟龙过滤器进行过滤,获得氢化聚环氧硅氮烷。

范例3

以干氮气取代配备有搅拌器与温度控制器的2公升(2L)反应器的内部。接着,将1,500g的干砒啶注入到反应器,且反应器保温在5℃。然后,以超过2小时的时间,缓慢注入140g的二氯硅烷。之后,以超过4小时的时间缓慢注入85g的氨,同时搅拌反应器。接着,注入干氮气超过120分钟,且去除残余在反应器中的氨。获得的白色浆态产品在干氮气环境下经由1μm铁氟龙过滤器进行过滤,得到1,000g过滤后的溶液。然后,将1,000g的干二甲苯加入过滤后的溶液,藉由使用旋转的蒸发器将混合液中的二甲苯以砒啶取代重复3次,以将其固体浓度调整成20%,且得到的混合液以具有0.1μm孔洞尺寸的铁氟龙过滤器进行过滤。之后,将250g干砒啶加入已得到的氢化聚硅氮烷溶液中,且此混合液于100℃聚合,直到重量平均分子量达到约22,000时为止。

当聚合终止时,藉由使用旋转的蒸发器将产品中的溶剂在30℃以二丁醚取代重复3次,以将其固体浓度调整成20%,且得到的混合液以0.1μm铁氟龙过滤器进行过滤,获得氢化聚环氧硅氮烷。

范例4

以干氮气取代配备有搅拌器与温度控制器的2公升(2L)反应器的内部。接着,将1,500g的干砒啶注入到反应器,且反应器保温在5℃。然后,以超过2小时的时间缓慢注入140g的二氯硅烷。之后,以超过4小时的时间缓慢注入85g的氨,同时搅拌反应器。接着,注入干氮气超过120分钟,且去除残余在反应器中的氨。获得的白色浆态产品在干氮气环境下,经由1μm铁氟龙过滤器进行过滤,得到1,000g过滤后的溶液。然后,将1,000g的干二甲苯加入过滤后的溶液,藉由使用旋转的蒸发器将混合液中的二甲苯以砒啶取代重复3次,以将其固体浓度调整成20%,且得到的混合液以具有0.1μm孔洞尺寸的铁氟龙过滤器进行过滤。之后,将250g干砒啶加入已得到的氢化聚硅氮烷溶液中,且此混合液于100℃聚合,直到重量平均分子量达到约4,000时为止。

当聚合终止时,藉由使用旋转的蒸发器将产品中的溶剂在30℃以二丁醚取代重复3次,以将其固体浓度调整成20%,且得到的混合液以0.1μm铁氟龙过滤器进行过滤,获得氢化聚环氧硅氮烷。

范例5

以干氮气取代配备有搅拌器与温度控制器的2公升(2L)反应器的内部。接着,将1,500g的干砒啶注入到反应器,且反应器保温在5℃。然后,以超过2小时的时间,缓慢注入140g的二氯硅烷。之后,以超过4小时的时间缓慢注入85g的氨,同时搅拌反应器。接着,注入干氮气120分钟,且去除残余在反应器中的氨。获得的白色浆态产品在干氮气环境下,经由1μm铁氟龙过滤器进行过滤,得到1,000g过滤后的溶液。然后,将1,000g的干二甲苯加入过滤后的溶液,藉由使用旋转的蒸发器将混合液中的二甲苯以砒啶取代重复3次,以将其固体浓度调整成20%,且得到的混合液以0.1μm铁氟龙过滤器进行过滤。之后,将250g干砒啶加入已得到的氢化聚硅氮烷溶液中,且此混合液于100℃聚合,直到重量平均分子量达到约100,000时为止。

当聚合终止时,藉由使用旋转的蒸发器将产品中的溶剂在30℃以二丁醚取代重复3次,以将其固体浓度调整成20%,且得到的混合液以0.1μm铁氟龙过滤器进行过滤,获得氢化聚环氧硅氮烷。

范例6

以干氮气取代配备有搅拌器与温度控制器的2公升(2L)反应器的内部。接着,将1,500g的干砒啶注入到反应器,且反应器保温在5℃。然后,以超过2小时的时间,缓慢注入140g的二氯硅烷。之后,以超过4小时的时间缓慢注入85g的氨,同时搅拌反应器。接着,注入干氮气120分钟,且去除残余在反应器中的氨。获得的白色浆态产品在干氮气环境下,经由1μm铁氟龙过滤器进行过滤,得到1,000g过滤后的溶液。然后,将1,000g的干二甲苯加入过滤后的溶液,藉由使用旋转的蒸发器将混合液中的二甲苯以砒啶取代重复3次,以将其固体浓度调整成20%,且得到的混合液以0.1μm铁氟龙过滤器进行过滤。之后,将250g干砒啶加入得到的氢化聚硅氮烷溶液中,且此混合液于100℃聚合,直到重量平均分子量达到约200,000时为止。

当聚合终止时,藉由使用旋转的蒸发器将产品中的溶剂在30℃以二丁醚取代重复3次,以将其固体浓度调整成20%,且得到的混合液以0.1μm铁氟龙过滤器进行过滤,获得氢化聚环氧硅氮烷。

评估根据比较例1与范例1到范例6的氢化聚硅氮烷溶液的反应性(reactivity)与其中的粒子数目。以下述方法进行评估。

[TMAH反应性评估方法]

比较例1与范例1到范例6的溶液分别取3cc,以旋转涂布机(三笠(MIKASA)公司的产品MS-A200)将溶液滴到直径8英寸的晶圆中心,并以1500rpm的转速旋转涂布20秒,以及以75℃加热与干燥3分钟。然后,使用反射光谱式薄膜厚度仪(reflectionspectroscopicfilmthicknessmeter)与反射光谱式晶圆收缩仪(reflectionspectroscopicwafercontractionmeter)量测每一薄膜的厚度,之后,于将薄膜浸泡在四甲基氢氧化铵(tetramethylammoniumhydroxide,TMAH)中1分钟且以纯水清洗后,再以反射光谱式薄膜厚度仪(科美(K-MAC)公司的产品ST-4000)量测一次。

根据下面的计算方程式1可得知反应性。

[计算方程式1]

TMAHWER(TMAH湿蚀刻率(WetEtchRate,WER))

=(以75℃烘烤3分钟后与浸泡在TMAH中1分钟后减少的薄膜厚度)/(重量平均分子量)

[粒子数目评估]

溶液中的粒子数目是使用液态粒子计数器(LiquidParticleCounter,LPC)(RION公司的产品KS-42BF)计算。特别的是,根据比较例1与范例1到范例6的溶液分别取10mL,然后,以二丁醚(dibutylether,DBE)溶液清洗3次。之后,产出的溶液分别放入100mL的瓶中,然后再清洗3次。接着,分别计算5次溶液的粒子数,且平均第3次到第5次的量测值。此处,粒子的尺寸(粒子直径)范围从约0.2μm到1μm才是有效的计数对象。

评估结果显示在下面的表1与图10中。

(表1)

图10是显示根据比较例1与范例1到范例6的每一氢化聚硅氮烷溶液中的粒子数目以及这些溶液分别形成的薄膜层的TMAH反应性结果的图表。

参照表1与图10,根据范例1到范例6的由每mL包含小于或等于10个具有直径约0.2μm到1μm的粒子的氢化聚环氧硅氮烷溶液形成的薄膜层显示相对低的TMAH反应性,因为氢化聚环氧硅氮烷溶液具有较大的分子量。

虽然本发明已以实施例揭示如上,然其并非用以限定本发明,任何本技术领域技术人员,在不脱离本发明的精神和范围内,当可作些许的改动与润饰,故本发明的保护范围当视随附的申请专利范围所界定的为准。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号