首页> 中国专利> 一种适用于三相并网逆变器的双零矢量模型预测控制方法

一种适用于三相并网逆变器的双零矢量模型预测控制方法

摘要

本发明公开了一种适用于三相并网逆变器的双零矢量模型预测控制方法,包括以下步骤:(1)利用预测模型预测系统状态;(2)使用价值函数筛选出最优开关矢量;(3)若最优开关矢量为非零矢量,则采用其对应的控制信号;若最优矢量为零矢量,则根据不等式判据选择某一个零矢量并采用相应的控制信号;(4)当进入下一个采样周期后,转到步骤(1)。本发明通过建立一个新的判据来选择并采用两种零矢量,与传统的模型预测控制相比,本方法可以有效地平衡上、下桥臂开关损耗和减少开关次数。

著录项

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2017-03-15

    授权

    授权

  • 2016-02-03

    实质审查的生效 IPC(主分类):H02J3/38 申请日:20150923

    实质审查的生效

  • 2016-01-06

    公开

    公开

说明书

技术领域

本发明涉及一种适用于三相并网逆变器的双零矢量模型预测控制方法。

背景技术

模型预测控制是一种计算机控制方法,有着深刻的实际工程应用背景。它釆用实时预测、 滚动优化和反馈校正机制,对干扰和不确定性因素有较好的适应性,可达到较好的控制效果。 模型预测控制的基本过程是先采样系统状态变量并使用系统模型来进行预测,然后利用价值 函数在线计算出最优控制信号。

假设系统变量在tk时刻的采样值为x(k),被控系统的预测模型可描述为:

x(k+1)=f(x(k),u(k))(1)

式中,x(k+1)为系统状态变量的预测值,x(k)和u(k)分别为被控系统的状态量和输入量。 假定系统共有有限的n种控制策略S1、S2、S3…Sn,如图1所示,则会有n组输入量产生相应 的n组预测值。然后使用价值函数来评估这n个预测值与参考值的差距。价值函数值越小, 预测值与参考值就越接近。所以使价值函数最小的控制策略被选定为最优控制策略。如图1 中在tk时刻得到的n个预测值中,x1(k+1)与参考值最接近,所以此时控制策略采用S1

在三相逆变器的模型预测控制中,控制策略共有7种,即零矢量和六个非零矢量,如图 2所示。逆变器的模型预测控制过程如图3所示,根据输出侧采样电流和预测模型可计算出7 个预测电流i(k+1),然后利用价值函数来衡量这7个预测电流与参考电流的接近度,常用的 价值函数如下:

g=|iα(k+1)-iα*|+|iβ(k+1)-iβ*|---(2)

式中,iα(k+1)和iβ(k+1)为预测电流;iα*和iβ*为参考电流。最后,使价值函数最小 的开关状态被系统采用。

三相逆变器的六个开关管共有8种开关组合。由于两个零矢量v0和v7产生的输出效果一样, 所以通常只选择一种零矢量参与模型预测控制。若采用v0参与控制,则下桥臂开关的导通损 耗会多于上桥臂;若采用v7参与控制,则上桥臂开关的导通损耗会多于下桥臂。因此,只使 用一种零矢量会造成上、下桥臂开关的损耗失衡,引起发热不均,影响整个逆变器的使用寿 命。

发明内容

本发明为了解决上述问题,提出了一种适用于三相并网逆变器的双零矢量模型预测控制 方法,本方法通过建立一个新的判据来合理地分配两种零矢量。与传统的模型预测控制方法 相比,本方法可以有效地平衡上、下桥臂开关损耗和减少开关次数。

为了实现上述目的,本发明采用如下技术方案:

一种适用于三相并网逆变器的双零矢量模型预测控制系统,包括预测模块、价值函数模 块、逆变器和滤波器,其中,预测模块根据采集滤波器的输出信号,建立预测模型,价值函 数模块用于衡量预测值与参考值的接近程度,将使价值函数最小的逆变器的控制策略被选定 为最优控制策略,筛选出最优开关矢量。

所述最优开关矢量为非零矢量,则采用其对应的控制信号;若最优矢量为零矢量,则根 据不等式判据选择某一个零矢量并采用相应的控制信号。

一种适用于三相并网逆变器的双零矢量模型预测控制方法,包括以下步骤:

(1)根据系统结构和参数建立预测模型,利用预测模型预测系统状态;

(2)利用价值函数来衡量预测值与参考值的接近程度,将使价值函数最小的控制策略被 选定为最优控制策略,筛选出最优开关矢量;

(3)判断最优开关矢量是否为零矢量,若最优开关矢量为非零矢量,则采用其对应的控 制信号;若最优矢量为零矢量,则根据不等式判据选择某一个零矢量并采用相应的控制信号;

(4)进入下一采样周期,重复步骤(1)-(3)。

所述步骤(1)中,预测模型是根据系统结构和参数建立起的可计算未来系统状态变量的 数学模型。

所述步骤(1)中,设系统变量在tk时刻的采样值为x(k),被控系统的预测模型描述为:

x(k+1)=f(x(k),u(k))(1)

式中,x(k+1)为系统状态变量的预测值,x(k)和u(k)分别为被控系统的状态量和输入量。

所述步骤(2)中,价值函数是一个用来衡量预测值与参考值接近程度的函数,采用如下 公式:

g=|iα(k+1)-iα*|+|iβ(k+1)-iβ*|---(2)

式中,iα(k+1)和iβ(k+1)为预测电流;iα*和iβ*为参考电流。

所述步骤(2)中,设定系统共有有限的n种控制策略S1、S2、S3…Sn,则产生有n组输 入量产生相应的n组预测值,利用价值函数来评估n个预测值与参考值的差距,使价值函数 最小的控制策略被选定为最优控制策略。

所述步骤(3)中,当最优开关矢量为零矢量,不等式判据为:

Sa(k-1)+Sb(k-1)+Sc(k-1)>1(3)

式中,Sx(k-1)(X=a、b、c)为上一采样周期的各相开关状态,当等式成立时,选用v7(111),否则选用v0(000)。

本发明的有益效果为:

通过建立一个新的判据来从两种零矢量中选择其一,与传统的控制方法相比,这可以使 得两种零矢量都参与控制,且使用的比率大概一致,因而可以有效平衡上、下桥臂的开关损 耗,减少总开关次数。

附图说明

图1为模型预测控制原理;

图2为三相逆变器的电压矢量;

图3为三相并网逆变器的模型预测控制结构图;

图4为双零矢量模型预测控制算法流程图。

具体实施方式:

下面结合附图与实施例对本发明作进一步说明。

模型预测控制是一种计算机控制方法,有着深刻的实际工程应用背景。它釆用实时预测、 滚动优化和反馈校正机制,对干扰和不确定性因素有较好的适应性,可达到较好的控制效果。 模型预测控制的基本过程是先采样系统状态变量并使用系统模型来进行预测,然后利用价值 函数在线计算出最优控制信号。

假设系统变量在tk时刻的采样值为x(k),被控系统的预测模型可描述为:

x(k+1)=f(x(k),u(k))(1)

式中,x(k+1)为系统状态变量的预测值,x(k)和u(k)分别为被控系统的状态量和输入量。 假定系统共有有限的n种控制策略S1、S2、S3…Sn,如图1所示,则会有n组输入量产生相应 的n组预测值。然后使用价值函数来评估这n个预测值与参考值的差距。价值函数值越小, 预测值与参考值就越接近。所以使价值函数最小的控制策略被选定为最优控制策略。如图1 中在tk时刻得到的n个预测值中,x1(k+1)与参考值最接近,所以此时控制策略采用S1

在三相逆变器的模型预测控制中,控制策略共有7种,即零矢量和六个非零矢量,如图 2所示。逆变器的模型预测控制过程如图3所示,根据输出侧采样电流和预测模型可计算出7 个预测电流i(k+1),然后利用价值函数来衡量这7个预测电流与参考电流的接近度,常用的 价值函数如下:

g=|iα(k+1)-iα*|+|iβ(k+1)-iβ*|---(2)

式中,iα(k+1)和iβ(k+1)为预测电流;iα*和iβ*为参考电流。最后,使价值函数最小 的开关状态被系统采用。

由于三相逆变器的两个零矢量v0和v7产生的输出效果一样,在传统模型预测控制中只有 一种零矢量参与控制。这就会造成上、下桥臂的开关损耗失衡,引起发热不均。为了解决上 述问题,当通过价值函数筛选出的最优矢量为零状态矢量时,根据以下不等式选择零矢量v0或v7

Sa(k-1)+Sb(k-1)+Sc(k-1)>1(3)

式中,Sx(k-1)(X=a、b、c)为上一采样周期的各相开关状态。当式(3)成立时,选用 v7,否则选用v0

一种适用于三相并网逆变器的双零矢量模型预测控制方法如图4所示,包括以下步骤:

(1)利用预测模型预测系统状态;

(2)使用价值函数筛选出最优开关矢量;

(3)若最优开关矢量为非零矢量,则采用其对应的控制信号;若最优矢量为零矢量,则 根据不等式判据选择某一个零矢量并采用相应的控制信号;

(4)当进入下一个采样周期后,转到步骤(1)。

所述步骤(1)中,预测模型是根据系统结构和参数建立起的可计算未来系统状态变量的 数学模型。

所述步骤(2)中,价值函数是一个用来衡量预测值与参考值接近程度的函数,可采用如 下公式:

g=|iα(k+1)-iα*|+|iβ(k+1)-iβ*|---(2)

式中,iα(k+1)和iβ(k+1)为预测电流;iα*和iβ*为参考电流。

所述步骤(3)中,不等式判据为:

Sa(k-1)+Sb(k-1)+Sc(k-1)>1(3)

式中,Sx(k-1)(X=a、b、c)为上一采样周期的各相开关状态。当式(3)成立时,选用 v7,否则选用v0

上述虽然结合附图对本发明的具体实施方式进行了描述,但并非对本发明保护范围的限 制,所属领域技术人员应该明白,在本发明的技术方案的基础上,本领域技术人员不需要付 出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围以内。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号