首页> 中国专利> 一种基于吸液驱气原理测定炭分子筛变压吸附气体分离性能的方法

一种基于吸液驱气原理测定炭分子筛变压吸附气体分离性能的方法

摘要

本发明公开一种利用吸液驱气原理评价炭分子筛变压吸附气体分离性能的方法。将饱和吸附气体探针的炭分子筛浸没于液体探针内,在恒容条件下进行吸液驱气实验,得到吸液驱气动力学曲线及平衡驱气量。通过吸附动力学模型模拟确定其动力学机理和气体选择性系数K,用于判断炭分子筛微孔孔口尺寸相对大小规律、分布均匀性以及微孔孔容相对大小,进而建立一种评价炭分子筛变压吸附气体分离性能的方法。本发明的方法能够从吸附机理和孔隙结构的角度准确判断微孔孔口尺寸及孔容满足气体分离要求的炭分子筛,既能够保证高选择性,又能够保证较高的吸附容量。

著录项

  • 公开/公告号CN105203440A

    专利类型发明专利

  • 公开/公告日2015-12-30

    原文格式PDF

  • 申请/专利权人 大连理工大学;

    申请/专利号CN201510579605.5

  • 发明设计人 徐绍平;贾忻宇;

    申请日2015-09-14

  • 分类号G01N15/08(20060101);

  • 代理机构21200 大连理工大学专利中心;

  • 代理人李宝元;温福雪

  • 地址 116024 辽宁省大连市甘井子区凌工路2号

  • 入库时间 2023-12-18 13:09:08

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2017-10-17

    授权

    授权

  • 2016-01-27

    实质审查的生效 IPC(主分类):G01N15/08 申请日:20150914

    实质审查的生效

  • 2015-12-30

    公开

    公开

说明书

技术领域

本发明涉及到一种基于吸液驱气原理测定炭分子筛变压吸附气体分离性能 的新方法,属于气体分离技术领域。

背景技术

炭分子筛(CarbonMolecularSieve,CMS)是常见的非极性碳质材料之一, 属于双峰孔径分布材料,主要包括孔径分布狭窄的超微孔(<0.7nm)结构和大 孔结构。超微孔孔口呈分子尺寸,对不同尺寸分子起筛分作用,适合动力学选 择性分离气体混合物,工业上常用于变压吸附空分制氮、空分制氧、回收CO2、 回收和精制氢气、提纯煤层气(CH4、N2等的混合气体)中的CH4等工艺。因 此评价超微孔孔结构特征及吸附性能尤为重要。

由于超微孔呈分子尺寸,流体在低温条件下存在扩散问题难以达到吸附平 衡,因此采用低温气体吸附法无法对其孔结构性能进行表征;而常温状态的气 体多处于超临界状态,目前对其吸附理论研究还不成熟。因此,当前对于超微 孔孔结构的表征及吸附性能的研究仍然是一个大难题。

炭分子筛变压吸附气体分离性能评价方法之一是选择性系数。美国专利 4933314A通过测定O2、N2分别在炭分子筛上1min时的吸附量,进而计算得到 O2/N2选择性系数α。该专利认为α越大同时O2吸附量越大,代表空分性能越 好。然而这种方法不能准确地反映炭分子筛实际气体分离性能;同时无法表征 炭分子筛内部孔隙结构。工业上广泛采用变压吸附气体分离测试结果进行炭分 子筛气体分离性能评价。如在空分制氮实验中,恒定产气出口流率,通过考察 产气N2浓度、充压时间、脱附气中最高O2浓度及脱附气量来评价空分性能;或 者恒定产气N2浓度,通过考察产气氮回收率、脱附气中最高O2浓度及脱附气量 来评价空分性能等等。但是,该方法在工业上没有形成一个统一的评价标准, 不同变压吸附装置、不同实验条件评价同一种吸附剂气体分离性能没有可比性; 同时相同装置上不同吸附剂需要的最优实验条件不同。

发明内容

针对以上技术不足,本发明的目的是借助吸液驱气原理判断炭分子筛超微 孔孔口尺寸相对大小规律、分布均匀性以及微孔孔容相对大小,进而建立一种 测定炭分子筛变压吸附气体分离性能的方法,用于指导炭分子筛的制备。

本发明所采用的技术方案是:

一种基于吸液驱气原理测定炭分子筛变压吸附气体分离性能的方法,步骤 如下:

本方法采用中国专利2008100125980公开的吸液驱气装置进行炭分子筛吸 液驱气测定。分别采用需要动力学选择性分离的双组分气体混合物(如O2/N2、 CO2/CH4、CH4/N2等)中对应的两种纯气体作为气体探针,表示为气体A、B, 其中A分子尺寸小于B分子尺寸;采用分子动力学直径小于气体分子且气体分 子不易溶解的极性液体作为液体探针。如测定碳分子筛变压吸附空分制氮性能 采用的液体探针为去离子水,气体探针分别是O2和N2。首先将经过破碎、筛分、 干燥、脱气预处理后的炭分子筛置于吸液驱气装置的样品池中,在常压、恒温 303.2K条件下连续通入气体探针进行饱和吸附;之后注入液体探针完全浸没炭 分子筛,在恒容条件下进行吸液驱气测试,测量吸液驱气动力学曲线和平衡驱 气量(ml/g)。

吸液驱气过程是一个液体在平衡吸附气体的样品内部自发扩散、而所吸附 的气体被驱替出的过程,属于气\液\固三相吸附过程,主要包含以下三个步骤: (1)外扩散过程:液体分子和气体分子的孔外扩散过程;(2)内扩散过程:液 体分子和气体分子的孔口和孔内扩散过程;(3)吸/脱附过程:气体分子从炭分 子筛固体表面脱附,液体分子在炭分子筛固体表面发生吸附。总的吸液驱气速 率由最慢的过程控制,即速率控制步骤。其中,外扩散影响已经通过连续磁力 搅拌液体探针进而增加其质量流率来消除;大孔主要起通道的作用,其对气体 分子的扩散阻力可以忽略;液体分子尺寸小于气体分子尺寸,因此液体分子受 到的微孔孔口和孔内扩散阻力要小于气体分子所受到的阻力;而炭分子筛属于 非极性炭质材料,气体分子表面吸附过程远远快于液体分子表面吸附过程。综 上所述,炭分子筛吸液驱气过程属于三阻力控制过程,主要受液体分子表面吸 附阻力、气体分子微孔孔口扩散阻力或孔内扩散阻力控制,对应的分别遵循准 二级动力学吸附(PSO)模型、直线推动力(LDF)模型及费克扩散模型。通过 对一系列炭分子筛吸液驱气动力学进行研究,发现微孔内扩散阻力和其他阻力 相比很小,只有在微孔孔口很小的时候才起一定作用;随着孔口尺寸的减小, 气体分子受到的孔口扩散阻力逐渐增大,其速控作用逐渐增强。

平衡驱气量Ve等于气体饱和吸附量。由于常温条件下气体多处于超临界状 态,只能对超微孔进行有效的填充,因此平衡驱气量Ve可以用于判断比较超微 孔孔容相对大小。

基于以上原理,借助准二级动力学吸附(PSO)模型、直线推动力(LDF) 模型和费克扩散模型对吸液驱气动力学曲线进行拟合,由各自的拟合相关系数 R2和动力学参数确定该炭分子筛吸液驱气过程的速率控制步骤、计算炭分子筛 气体选择性系数K,用于定性、定量地分析炭分子筛微孔孔口尺寸及分布均匀 性,进而测定炭分子筛变压吸附气体分离性能;K有如下形式:

其中,R2(气体A,PSO)代表吸液驱气体A过程的PSO模型线性拟合相关系数; R2(气体B,LDF)代表吸液驱气体B过程的LDF模型线性拟合相关系数。微孔孔口尺 寸越小,对气体分子的扩散阻力越大,即动力学曲线越符合LDF模型、偏离PSO 模型。因此,K值可以真实反映炭分子筛微孔孔口尺寸相对大小,即随着微孔 孔口尺寸的减小,K值随之减小。

具体测定方法为:

(1)首先判断炭分子筛微孔孔口尺寸分布均匀性:当整个过程主要受单一阻 力控制时,则孔口尺寸分布均一;否则,不适合气体分离工艺,不予以孔口尺 寸相对大小的判断。

(2)炭分子筛微孔孔口尺寸相对大小判断:

1)当K≈0,即炭分子筛吸液驱气体A过程符合PSO模型即主要受液体分 子吸附过程控制、吸液驱气体B过程符合LDF模型即主要受孔口扩散过程控制, 说明其微孔孔口对气体B的扩散阻力要远远大于气体A,A/B选择性高,微孔 孔口尺寸适中,适用于变压吸附气体A/B分离工艺。

2)当K>0,且炭分子筛吸液驱气体A、B过程均主要受液体分子表面吸附 过程控制,说明其微孔平均孔口尺寸偏大,A/B选择性差,不适合气体A/B分 离工艺;K值越小,分离性能越好。

3)当K<0,且炭分子筛吸液驱气体A过程主要受微孔孔口扩散阻力控制, 说明其微孔平均孔口尺寸偏小,在有效的吸附时间内A分子难以充分扩散至微 孔内而直接进入产品气中导致产B浓度降低,不适用于气体A/B分离工艺;K 值越大,分离性能越好。

(3)微孔孔容判断,即平衡驱气量越大,微孔孔容越大,越适用于变压吸附 气体分离工艺。

本发明的有益效果是:

(1)本发明可以用于定性评价多孔材料的超微孔孔结构性能,弥补低温气体吸 附法由于扩散限制无法测量超微孔孔结构参数的不足。

(2)从吸附动力学和微孔孔隙结构的角度定性、定量地评价炭分子筛变压吸附 气体混合物分离性能。

(3)可以用于选择炭分子筛的最佳制备条件,指导用于气体混合物分离的炭分 子筛的制备。

附图说明

图1炭分子筛CMS-1~CMS-6吸水驱N2动力学曲线。

图2炭分子筛CMS-1~CMS-6吸水驱O2动力学曲线。

具体实施方式

下面结合附图、表和实施例对本发明进一步说明。

实施例1

本实施例中,采用6种空分用炭分子筛(CMS-1~CMS-6)在30℃条件下 利用恒容吸液驱气装置分别进行吸水驱O2/N2实验,测得吸液驱气动力学曲线和 平衡驱气体积Ve(ml/g),如图1、2所示。借助准二级动力学吸附(PSO)模 型和直线推动力(LDF)模型进行线型模拟,分析比较各自的线性相关系数R2和动力学参数(表1、2所示),确定吸水驱气过程动力学速控步,计算选择性 系数K值,如表3所示。

通过分析表3中6种碳分子筛吸水驱O2/N2过程速控步和K值,其变压吸 附空分制氮性能总结如下:

(1)微孔孔口尺寸分布均匀性的判断:只有CMS-5微孔孔口尺寸分布不均匀, 不满足变压吸附空分制氮工艺的要求。

(2)分析炭分子筛微孔孔口尺寸相对大小,评价其变压吸附空分制氮性能。K 值大小规律:CMS-1>CMS-2>CMS-3>0>CMS-4>CMS-5>CMS-6,对应空分效果 (产氮浓度)规律:CMS-1<CMS-2<CMS-3≈CMS-4>CMS-5>CMS-6。CMS-3和 CMS-4微孔孔口尺寸相对大小适中,适合变压吸附空分制氮工艺。

(3)由表4所示,CMS-3的平衡驱气量为最大值4.4667ml/g,确定CMS-3微 孔孔容最大。因此最终断定:CMS-3由于其孔口尺寸适中、分布均一且微孔孔 容最大,最适合作为吸附剂用于变压吸附空分制氮工艺。

为了验证该发明的正确性,采用双塔变压吸附单元对上述6种碳分子筛进 行空分制氮实验。选定的实验条件为:入口流量950ml/min,恒定产气出口流率 为1.054ml/min/g;吸附温度30℃、吸附压力0.5MPa,脱附压力0.1MPa;吸附 时间64s,放空时间2s,均压时间1s。实验结果如表5所示。比较产气N2浓度 大小规律为:CMS-1<CMS-2<CMS-3≈CMS-4>CMS-5>CMS-6,说明空分性能规 律为:CMS-1<CMS-2<CMS-3≈CMS-4>CMS-5>CMS-6,其中CMS-3为最佳吸 附剂。以上结论与本实施例得到的结果完全一致,验证了本发明公开的测定碳 分子筛变压吸附气体分离性能方法的正确性和实用性。

实施例2

本实施例中,采用4种炭分子筛(CMS-1~CMS-4)在30℃条件下利用恒 容吸液驱气装置分别进行吸水驱N2/CH4实验,测得吸液驱气动力学曲线和平衡 驱气体积Ve(ml/g),如图1、2所示。借助准二级动力学吸附(PSO)模型和 直线推动力(LDF)模型进行线型模拟,确定吸水驱气过程动力学速控步,计算 选择性系数K值,如表6所示。K值大小规律:CMS-1>CMS-2>0>CMS-3>CMS-4, 对应气体分离效果规律:CMS-1<CMS-2>CMS-3>CMS-4。CMS-2的K值最接 近于0,因此最适合变压吸附分离N2/CH4工艺。

表1PSO模型和LDF模型模拟303.2K下炭分子筛CMS-1~CMS-6吸水驱

O2过程的动力学参数和线性相关系数

表2PSO模型和LDF模型模拟303.2K下炭分子筛CMS-1~CMS-6吸水驱 N2过程的动力学参数和线性相关系数

表3炭分子筛CMS-1~CMS-6吸水驱O2/N2过程速率控制步骤及选择性系数 K总结

Sample CMS-1 CMS-2 CMS-3 CMS-4 CMS-5 CMS-6 吸水驱O2过程 S S S S S+M M 吸水驱N2过程 S S M M S+M M K(%) 5.304 2.445 0.097 -0.016 -1.076 -2.792

符号S代表水分子表面吸附过程控制;M代表孔口扩散阻力控制

表4炭分子筛CMS-1~CMS-6吸水驱O2过程平衡驱气量Ve

Sample CMS-1 CMS-2 CMS-3 CMS-4 CMS-5 CMS-6 Ve(ml/g) 2.5140 2.5052 4.4667 3.1131 3.4951 2.9801

表5炭分子筛CMS-1~CMS-6双塔变压吸附空分测试数据

表6炭分子筛CMS-1~CMS-4吸水驱N2/CH4过程速率控制步骤及选择性系数K 总结

Sample CMS-1 CMS-2 CMS-3 CMS-4 吸水驱N2过程 S S M M 吸水驱CH4过程 S M M M K(%) 2.867 0.005 -1.744 -4.634

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号