首页> 中国专利> 基于加权分数阶傅里叶变换的水下通信混合载波方法

基于加权分数阶傅里叶变换的水下通信混合载波方法

摘要

基于加权分数阶傅里叶变换的水下通信混合载波方法,涉及水下通信载波系统。在发送信号S之前,先发送一串具有和信号相同长度、相同结构的已知序列X,X经过信道后得到接收信号Y;选取最优阶α

著录项

  • 公开/公告号CN105162527A

    专利类型发明专利

  • 公开/公告日2015-12-16

    原文格式PDF

  • 申请/专利权人 厦门大学;

    申请/专利号CN201510591880.9

  • 申请日2015-09-17

  • 分类号H04B13/02;H04L27/32;H04L25/02;

  • 代理机构厦门南强之路专利事务所(普通合伙);

  • 代理人马应森

  • 地址 361005 福建省厦门市思明南路422号

  • 入库时间 2023-12-18 12:50:07

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2019-02-22

    授权

    授权

  • 2016-01-13

    实质审查的生效 IPC(主分类):H04B13/02 申请日:20150917

    实质审查的生效

  • 2015-12-16

    公开

    公开

说明书

技术领域

本发明涉及水下通信载波系统,尤其是涉及一种基于加权分数阶傅里叶变换的水下通信 混合载波方法。

背景技术

由于水声信道存在较大的多径时延和大的多普勒频移等特点,因此必须提高在衰落信道 环境下的系统性能。为了应对上述复杂多变的水声环境,目前在水声通信通信系统中应用的 载波体制主要包括两种:多载波(MultipleCarrier,MC)正交频分复用(Orthogonal FrequencyDivisionMultiplexing,OFDM)技术与单载波频域均衡(Single Carrier-FrequencyDomainEqualization,SC-FDE)。二者各有优缺点:

OFDM可有效抵抗频率选择性衰落,并且提高了频谱利用率。在理想情况下,与相同传输 速率的单载波系统相比,OFDM系统每个子载波上的码元宽度是单载波系统码元宽带的N倍(N 为FFT运算的点数),通常远大于信道的时延扩展,因此OFDM系统每个子载波均具有极强的 抵抗码间串扰的能力。但是,OFDM采用频域处理技术,以一个FFT块为单位进行处理,相位 噪声将导致严重的子载波干扰,使系统性能急剧恶化,所以多载波调制对相位噪声非常敏感。 此外,OFDM系统存在对定时误差、载频同步误差比较敏感和峰均功率比高等问题,直接影响 了OFDM技术的进一步应用。

与多载波调制技术相比,单载波调制技术具有其独有的优势:(1)由于多载波PAPR较高, 而单载波调制PAPR比较低,故多载波系统比单载波系统需要更宽的线性范围,需要动态范围 很大的高成本线性放大器;(2)单载波调制采用的时域处理技术,相位跟踪器可以在每个时刻 都对相位进行调节,故单载波系统对相位噪声不敏感。但是,由于无线信道的传播环境非常 恶劣,在高速率数据传输条件下的多径传播引起的时延扩展会对系统产生较大的影响。为了 消除信道对系统性能的影响,需要进行信道估计和信道均衡。一般地,单载波调制系统在时 域进行均衡,通常采用训练序列来正确设置时域均衡器的抽头系数,使均衡器的自适应算法 在接收数据时可以跟踪不断变化的信道。SC-FDE系统可以放宽对接收机模拟元器件的约束, 所以,廉价的功率放大器可以得到高效率地使用,从而使得具有较长的待机时间和电池寿命 的移动终端成本低廉;由于使用了高效的FFT运算,接收机的复杂度比具有时域横向均衡器 的常规单载波系统的得多。但SC-FDE系统是在时域上进行符号判决的,它对定时偏差更加敏 感,对接收端的同步要求更高。

可见,OFDM与SC-FDE这两种调制体制各有优缺点,在传输性能上存在互补性,这也是 目前的实际系统中两种体制相互共存的根本原因。

通常,单载波系统具有良好的抗多普勒效应性,而多载波系统具有较好的抗多径性能。 而实际的水声环境中往往是多径效应和多普勒效应并存,是一种混合的水声环境。

发明内容

本发明的目的在于提供结合信道特点和WFRFT的变换性质,以最低误码率为优化目标, 可以求得系统的最优阶,得到在不同传输环境下最优传输系统的一种基于加权分数阶傅里叶 变换的水下通信混合载波方法。

本发明包括以下步骤:

步骤1:在发送信号S之前,先发送一串具有和信号相同长度、相同结构的已知序列X, X经过信道后得到接收信号Y;

步骤2:选取最优阶αopt,将αopt反馈回发送端,再发送信号S;

步骤3:在变换阶数为α阶的加权分数傅立叶变换域上对基带数据进行调制,采用-α阶 分数傅立叶变换将调制后的数据变换到时域发送到信道中去;

步骤4:根据分数傅立叶变换的阶数旋转相加性,即分数傅立叶变换的酉特性,将数据 变换回相应的分数域上进行解调。

本发明是基于WFRFT的混合载波系统是在最优阶αopt的模式下进行通信的,系统误码率 最低,性能最好。

与常规水下通信系统相比,本发明具有以下优点:

根据以上所述,加权分数傅里叶变换具有边界性和可加性。根据边界性,FFT即为加权 分数傅里叶变换的阶数α=1时的情况。将接收信号经过FFT变换后,在频域上进行频域均衡 以抵抗信道衰落的影响。根据加权分数傅里叶变换的可加性,均衡后的信号再经过(α-1)阶 的加权分数傅里叶变换后即可变换到α加权分数域上。从而可以有效地解决水下通信系统的 识别率低、鲁棒性差、可靠性不高而不能满足新形势下的水下通信要求的问题。

综上所述,本发明提出基于级联原子库的海洋目标辨识探测技术,可以有效地解决水下 目标识别系统的识别率低、鲁棒性差、可靠性不高而不能满足新形势下的水下目标识别要求 的问题。

本发明只需要采用统一的物理层传输设备就可实现单/多载波系统以及分数域系统,是一 种真正意义上的混合载波调制系统,充分发挥单载波和多载波的优势,提高通信系统混合体 制在水声环境下的适用性。它可以与现有的传输体制相互兼容,各个分数域信号模式间也可 以平滑过渡,能更好与实际的信道环境相互匹配。

本发明提出WFRFT系统能体现单载波体制和多载波体制混合的特性,可建立基于WFRFT 的混合载波系统模型,并分别研究了在多径衰落信道和双选信道下该系统的性能。结合信道 特点和WFRFT的变换性质,以最低误码率为优化目标,可以求得系统的最优阶,得到在不同 传输环境下的最优传输系统。

附图说明

图1为本发明实施例的加权系数wl(α)(l=0,1,2,3)的模随系统最优阶次αopt的变化规律 图。

图2为本发明实施例的SC-FDE的基本系统框图。

图3为本发明实施例的基于FFT的OFDM系统实现框图。

图4为本发明实施例的WFRFT系统最优阶次判决流程图。

图5为本发明实施例的引入最优阶选取算法的WFRFT系统框图。

具体实施方式

以下结合实施例和附图对本发明作进一步说明。

首先,来看一下傅里叶变换的周期特性,传统的傅里叶变换的周期为4,令g(x)是一个 满足均方可积的时域信号,对它连续做四次傅里叶变换,每一步得到的结果如下所示:

g(x)→G(x)→g(-x)→G(-x)→g(x)

其中,G(x)表示信号的频域形式,g(-x)和G(-x)分别为信号时域形式和频域形式的反 转。

在C.C.Shih的定义中,四个基本态函数分别对应为原始信号的0~3次整数阶傅里叶变换 的结果,也就是g(x),G(x),g(-x)和G(-x)变换阶次为α的四项加权分数傅里叶变换的 具体表达式如下所示:

Fα[g(x)]=w0(α)g(x)+w1(α)G(x)+w2(α)g(-x)+w3(α)G(-x)(1)

其中wl(α)(l=0,1,2,3)为加权系数,它们与变换阶次α的数学关系如公式(2)和(3)所示:

wl(α)=cos[(α-l)4]cos[2(α-l)4]exp[3(α-l)j4],(l=0,1,2,3)---(2)

wl(α)=cos[(α-l)4]cos[2(α-l)4]exp[-3(α-l)j4],(l=0,1,2,3)---(3)

公式(2)和(3)本质上是一致的,只不过旋转的方向不同,也就是联合时/频域的具体路径 不同。变换阶次α的周期为4,一般将区间[0,4]定义为α的主周期,或者称为全周期。加权 系数wl(α)(l=0,1,2,3)的模随参数α的变化规律如图1所示。

利用欧拉公式对加权系数的表达形式进行转换,可以得到它的指数函数形式。针对不同 的实际情况,采用合适的表达形式,将极大的方便理论的推导。以公式(2)为例,其对应的指 数表达形式如下式所示:

wl(α)=14Σn=03exp[2πnj(α-l)4],(l=0,1,2,3)---(4)

基于WFRFT混合载波通信系统的构建利用了WFRFT的边界性和可加性。边界性即原始时 域信号g(x)的0阶变换结果为它的时域表达形式,α=1的情况为信号频域形式。可加性即 为公式(5)所示:

Fα[Fβ[g(x)]]=Fα+β[g(x)](5)

其中,α与β均为系统变换阶次。发送端信号是由α阶分数域变换到时域,接收端信号 先经过FFT,即α=1的WFRFT变换到频域进行均衡后,再经过α-1的WFRFT变换回α阶分数 域。

混合载波系统在特定的参数条件下可以转化为现有的单载波及多载波系统。当变换阶数 α=0时,混合载波系统即变为SC-FDE系统如图2所示,而当变换阶数α=1时,则对应OFDM 系统,如图3所示。

在不同的环境下,其通信系统的性能会差别很大,多径和多普勒的影响也会非常明显, 因此在不同的环境下,如何设计最优系统和求得系统最优解,提高系统的传输性能,对于提 升WFRFT系统的适用性,具有重要的意义。本节主要解决在不同信道环境下的优化系统设计。

其最佳的通信系统,与信道的不同传输条件是紧密结合的,一般情况下,通信系统都是 以误码率作为系统性能的衡量标准。误码率表达式为:

BER=biterrbitsum---(6)

其中,biterr表示传输中的错误比特数,bitsum表示所传输的总比特数。

本发明的一个基本思路是:考虑到信号传输会受到通信环境中各种干扰的影响,而不同 变换阶次下的系统受这些干扰的影响程度也不同。干扰程度越小,对应的误码率也相应越小。 因此结合变换的阶次,设计系统优化目标,实现最优的WFRFT系统设计。

在水声信道中,多径效应和多普勒频移对通信系统的传输质量有着非常重要的影响。主 要考虑这两个因素,水声信道的冲激响应为:

h(t,τ)=Σi=1Lαiδ(τ-τi)ej2πfdit---(7)

其中,L,αi,τi,fdi分别表示多径数、幅度、时延、多普勒频移。

发送信号x(t)经过信道传输后,接收端接收到的信号y(t)可以表示为:

y(t)=Σi=1Lαix(τ-τi)ej2πfdit+n(t)---(8)

n(t)为高斯白噪声信号。当采样频率为Fs时,接收信号的离散表示形式为:

y(n)=Σi=1Lαix(nFs-τi)ej2πfdit+n(t)---(9)

接收信号y(t)中包含了源信号x(t)信息,以及多径、多普勒和噪声造成的干扰信息。可 以用另一种表达形式:

y(n)=x(n)+n(n)(10)

其中,n(n)表示干扰信息,为接收信号和源信号之间的差值。

在通信系统中,接收端接收信号后还要经过解调和判决等过程,噪声干扰的严重程度会 影响信号最终的正确判决,从而影响系统性能。而WFRFT系统中,选择不同的变换阶次,信 号经过信道所受到的干扰信息也不同。令发送的已知信号为X={x(1),x(2),x(3)...},经过信 道后的接收信号为Y={y(1),y(2),y(3)...},则在WFRFT系统中,信号经过α阶WFRFT变换, 可以得到量化后的噪声Nα

Nα=||Fα[Y]-Fα[X]||22---(11)

Nα越小,即干扰信息对源信息的影响越小,系统的误码率越小,系统性能更好。因此, 以Nα的最小值为优化目标,求得该目标下的变换阶次α即为所求的最优阶。

根据式(11),最优的阶次α可以在α的区间内进行搜索,寻找最优变换阶次。最优阶选 取问题的解可描述为式(11)所示:

αapt=argminα||Fα[Y]-Fα[X]||22---(12)

表示2-范数,Fα[]表示α阶加权分数傅里叶变换。最优阶次α可以通过式(2)进行 一维搜索得到。在α区间[0,4]中,设定一个一定精度的数值为步长进行搜索遍历,确定使得 Nα为最小值,此时所对应的α即为最优阶次。算法流程图如图4所示。

将加权分数傅立叶变换引入通信系统中来即得到混合载波数字通信系统,其系统框图如 图5所示。

步骤1:在发送信号S之前,先发送一串具有和信号相同长度、相同结构的已知序列X, X经过信道后得到接收信号Y。

步骤2:选取最优阶αopt,将αopt反馈回发送端,再发送信号S。

步骤3:在变换阶数为α阶的加权分数傅立叶变换域上对基带数据进行调制,采用-α阶 分数傅立叶变换将调制后的数据变换到时域发送到信道中去。

步骤4:根据分数傅立叶变换的阶数旋转相加性,即分数傅立叶变换的酉特性,将数据 变换回相应的分数域上进行解调。

基于WFRFT的混合载波系统是在最优阶α的模式下进行通信的,系统误码率最低,性能 最好。

本发明提出的基于加权分数阶傅里叶变换(WeightedfractionalFouriertransform, WFRFT)混合载波系统模型,能够提供包括时/频域在内的各种分数域信号模式,可以将传统的 单/多载波体制融合到一个统一的框架之下,从而建立一种真正意义上的混合载波调制系统。 该系统通过变换WFRFT阶次的边界性,使得混合载波系统可以与传统的单/多载波调制体制完 美兼容;同时变换阶次取值的连续性使混合载波系统还可以提供介于时/频域之间的分数域信 号模式,通过参数调节,并结合水声信道大的多径时延、大的多普勒频移的特点,以最低误 码率为优化目标,选择WFRFT混合载波系统最优变换阶次αopt,从而在水下双选信道环境中, 可切换至相应环境下的最优传输系统,基于加权分数傅里叶变换的混合系统能同时优于单载 波和多载波系统。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号