首页> 中国专利> 一种深埋非对称小间距隧道围岩压力计算方法

一种深埋非对称小间距隧道围岩压力计算方法

摘要

一种深埋非对称小间距隧道围岩压力计算方法,本方法考虑了小间距隧道左右两侧洞的几何与结构非对称条件,以及两洞的开挖顺序,基于普氏平衡拱理论,提出了深埋非对称小间距隧道土压力荷载的计算方法,以期为此类工程的支护结构设计提供参考。本文基于普氏平衡拱理论,在考虑了左、右洞结构不对称和不同时施工的条件下,推导了深埋非对称小间距隧道的围岩压力计算公式,并且讨论了隧道中夹岩柱厚度、开挖跨度与高度、中夹岩柱抗压强度以及加固系数等因素对隧道竖向与侧向压力的影响规律,并结合工程监测实例验证了公式的合理性。

著录项

  • 公开/公告号CN105138767A

    专利类型发明专利

  • 公开/公告日2015-12-09

    原文格式PDF

  • 申请/专利权人 北京工业大学;

    申请/专利号CN201510518979.6

  • 发明设计人 李鹏飞;王帆;魏盼;张成平;

    申请日2015-08-23

  • 分类号G06F17/50;

  • 代理机构北京思海天达知识产权代理有限公司;

  • 代理人沈波

  • 地址 100124 北京市朝阳区平乐园100号

  • 入库时间 2023-12-18 12:45:22

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2018-06-29

    授权

    授权

  • 2016-01-06

    实质审查的生效 IPC(主分类):G06F17/50 申请日:20150823

    实质审查的生效

  • 2015-12-09

    公开

    公开

说明书

技术领域

本发明涉及一种深埋非对称小间距隧道围岩压力计算方法,属于轨道交通基 础设施建设领域。

背景技术

随着我国城市化进程的加快,以交通为主体的基础设施建设规模逐渐扩大, 连接城市间的高速公路网和城市中心区的道路网正在形成,穿山越岭的隧道工程 和城市地下道路工程进入了建设高潮。

小间距隧道凭借其结构型式的灵活性和新颖性,已逐渐成为解决特殊地质地 形条件下公路线桥隧衔接、总体线型优化以及土地资源合理利用等问题的有效型 式。鉴于公路线位和地形条件的要求,在我国一些城市地下道路建设中出现了非 对称小间距隧道。作为一种新型的结构型式,非对称小间距隧道除具有结构受力 复杂和施工工序繁多等一般小间距隧道的特点外,还具有几何不对称、结构不对 称和左右荷载不对称等复杂的力学特性,而且开挖与支护交错进行,使得围岩应 力变化和支护荷载转换变得更加复杂。因此,非对称小间距隧道一出现边引起了 学术界较大的关注。陶振东依托西安地铁二号线南尤区间隧道,采用双线性遍布 节理模型,对黄土地区浅埋非对称小间距隧道进行了动态施工力学模拟研究。王 云龙等依托青岛胶州湾海底隧道团岛段的小间距隧道,通过现场监测结果分析了 小间距非对称浅埋隧道的围岩压力特征及支护受力。李永珑采用有限元数值模拟 的方法,以南京地铁二号线非对称小净距隧道为背景,深入研究了施工全过程的 力学行为及工序深化,总结了变形特性、力学响应及塑性区分布规律。黄朱林依 托厦门机场路一期工程万石山小间距段隧道,通过调查研究和有限元数值模拟, 讨论了非对称小间距隧道近接施工时的合理施工方法和施工工序,并且分析了近 接施工对其围岩稳定性及力学行为的影响因素。然而这些研究主要集中在浅埋非 对称小间距隧道方面,而对深埋非对称小间距隧道的研究相对较少。

围岩压力作用模式和计算方法直接关系到支护型式的选取和支护参数的确 定,也一直是学术界研究的热点问题之一。刘继国等对深埋小间距隧道围岩压力 进行了探讨,并推导了计算公式。肖明清对小间距浅埋隧道的围岩压力进行了探 讨;龚建伍等[7]对浅埋小间距隧道围岩压力进行了理论分析和探讨,指出浅埋对 称小间距隧道围岩压力的偏压特征等。张志强等利用数值模拟分析了隧道开挖顺 序对支护力学行为特性及围岩稳定性的影响。邓超荣在新奥法思想的指导下,采 用FLAC3D数值模拟建立三维数值计算模型,分析了小间距隧道施工过程中围 岩的稳定性。舒志乐等对偏压小净距隧道围岩压力进行了理论探讨,得出了围岩 压力的理论计算公式。郑俊清通过对小净距隧道施工过程进行监控量测,分析数 据,并利用PLAXIS进行有限元数值模拟,分析了隧道初衬支护结构的受力情况, 为支护体系的优化提供了依据。凌昌荣等通过有限元数值模拟,并将数值模拟结 果与采用的楔体结构模型计算结果进行对比分析,对偏压小间距隧道荷载结构的 计算进行了研究。吕小龙通过有限差分软件FLAC3D进行数值模拟,对小净距 隧道围岩压力的分布特点进行了探讨研究。许书生等通过对小净距隧道不同开挖 方法的有限元数值模拟,分析了小净距隧道不同施工方法对洞周围岩稳定性的影 响。赵孝辉等采用二维弹塑性数值方法,利用有限元分析软件ANSYS对不同净 距条件下的小净距隧道的中夹岩柱的受力、变形特点进行了分析。综上所述,小 间距隧道围岩压力计算方法文献相对较少,且主要集中在常规对称隧道,关于非 对称小间距隧道围岩压力的理论计算方法鲜有研究。

发明内容

本方法考虑了小间距隧道左右两侧洞的几何与结构非对称条件,以及两洞的 开挖顺序,基于普氏平衡拱理论,提出了深埋非对称小间距隧道土压力荷载的计 算方法,以期为此类工程的支护结构设计提供参考。

前苏联学者M.M.普罗托奇雅阔诺夫(Протодъяконов),根据对顿巴斯矿区 等矿山隧道的多年观测和在松散体介质中的模型试验研究结果,在1909年出版 的《岩层作用于矿井支架的压力》一书中,创立了普氏塌落压力拱理论,又称普 氏平衡拱理论(简称普氏理论)。20世纪50年代初期,我国地下工程设计中引 进了普氏理论,普氏理论在我国地下工程建设中得到了广泛应用。普氏理论的计 算模型如图1所示。

普氏理论中,B为隧道开挖跨度;T为隧道开挖高度;H为平衡拱高度;W 为平衡拱与拱顶水平面交线的长度;γ为围岩重度;θ为滑移面与竖向的夹角, 根据工程现场测试确定,无测试数据时通过计算得到,为围岩 计算摩擦角;q为作用于隧道支护结构的竖向均布压力,e1和e2分别为作用于隧 道拱顶和拱底的侧向压力。

根据普氏理论的有关假定,作用于隧道支护结构的竖向均布压力q和侧向梯 形分布压力e表示为

q=γH(1)

式中:f为岩石坚固性系数,同时取为围岩内摩擦角;其他符 号及意义同前。

深埋非对称小间距隧道围岩压力计算过程如下:

S1围岩压力作用模式

工程实践与理论研究均表明,隧道开挖方式和中夹岩柱体的加固措施及效果 对小间距隧道围岩压力的大小及平衡拱的形成影响较大。鉴于此,结合单洞普氏 平衡拱理论,中夹岩柱的非常稳定和非常不稳定是小间距隧道承载拱形成的两个 极端情形。

当中夹岩柱厚度较大,且隧道施工方案合理,中夹岩柱非常稳定时,两侧的 洞室就可以分别形成独立的承载拱,小间距隧道围岩压力可以简化为两个单侧承 载拱下部不稳定土体引起的松散土压力。而当中夹岩柱非常不稳定或围岩变形过 大时,左右两个洞室将连成一个整体形成一个大的极限承载拱,此时小间距隧道 围岩压力可以简化为该极限承载拱下方不稳定土体引起的松散压力。一般而言, 深埋小间距隧道围岩压力作用模式可以简化为介于两种极限情况之间,即中夹岩 柱的承载力分担了极限承载拱内的松散压力,抑制了极限承载拱的形成。综合以 上分析,将深埋小间距隧道围岩压力作用模式简化为如图2所示的作用模式。

图中Bl、Br分别为左、右侧隧洞的开挖跨度,B0为两隧洞的净距,T为两 隧洞的开挖高度,Wl、Wr分别为左、右侧隧洞形成的独立平衡拱的跨度,Hl、 Hr分别为左、右侧隧洞形成的独立平衡拱的高度,W0为两独立平衡拱间的最小 净距,Wm为两独立平衡拱外侧点的间距,也可以认为是附加承载拱或极限平衡 拱的跨度。Hm'和Hm分别为附加承载拱和极限承载拱的高度。其他相关假定和 说明如下:

(1)左右隧道不同时施工,为推导方便,假定左洞先开挖,即为先行洞; 右洞后开挖,即为后行洞。

(2)单开挖先行洞时,与规范单洞情况相同,先行洞左右侧滑移面与竖向 夹角相同,设为θ1,意义同前。后行洞开挖时,其右侧岩 土体形成的滑移面与竖向的夹角同样为θ1;由于受到先行洞开挖的影响,后行洞 左侧中夹岩柱受到扰动,其围岩滑移的范围增大,滑移面与竖向的夹角变为θ3(假 定θ3=k3θ1,k3为放大系数)。在后行洞开挖的影响下,中夹岩柱再次受到扰动, 先行洞右侧围岩滑移的范围增大,滑移面与竖向的夹角变为θ2(假定θ2=k2θ1, k2为放大系数)。

(3)假定先行洞与后行洞开挖完成以后各自形成的独立平衡拱仍然满足普 氏理论,即有:

Hl=Wl2f---(5a)

Hr=Wr2f---(5a)

其中,Wl=Bl+Ttanθ1+Ttanθ2,Wr=Br+Ttanθ1+Ttanθ3,其他符号意义同前。

(4)假定附加承载拱的高度Hm'与极限承载拱的高度Hm满足:

HmHm=Wl+WrWm---(6)

其中,Wm=Wl+W0+Wr,极限平衡拱的高度Hm可根据普氏理论的平衡拱计算公 式求得:

Hm=Wm2f---(7)

由(6)和(7)式可得:

Hm=Wl+Wr2f---(8)

其他符号意义同前。

S2围岩压力计算简化模型

根据以上分析,将深埋小间距隧道围岩压力计算简化为如下模型(见图3)。

竖向压力简化梯形分布荷载,即将两洞室的围岩压力计算简化为单洞独立平 衡拱模型和附加承载拱模型两部分之和,一部分是先行洞与后行洞拱顶的基本松 散压力均布荷载ql和qr;另一部分是先行洞与后行洞拱顶的附加梯形荷载ql'和 qr'。先行洞与后行洞共同形成的附加承载平衡拱下部松散土压力减去基本松散 土压力及中夹岩柱体上部土压力荷载后的荷载,可以简化为梯形分布荷载,其中 先行洞、后行洞开挖最大跨度线两端点上方附加梯形荷载分别为ql1'、ql2'和qr1'、 qr2';侧向压力仍简化为梯形分布荷载(见图3)。

S3计算公式推导

(1)竖向土压力荷载计算

先行洞、后行洞拱顶的基本松散压力分别为

ql=γHl(9a)

qr=γHr(9b)

各个符号意义同前。

为求得附加竖向压力ql1'、ql2'和qr1'、qr2',本文假定小间距隧道单侧承载 拱曲线和附加承载拱曲线均为抛物线,因此Sl、Sr和Sm'分别为二者与隧道拱顶 水平线围成区域的面积,可以表示如下:

Sl=2WlHl3---(10a)

Sr=2WrHr3---(10b)

Sm=2WmHm3---(10c)

其他各个符合意义同前。

假定附加荷载在隧道拱顶呈三角形分布,则对附加承载拱内的土体(图4 中阴影部分)进行受力分析如图4所示。图中Gm'为附加承载拱内土体的重量, 可表示为Gm=23γWmHm-23γWlHl-23γWrHr;W0为中夹岩柱有效承载宽度,近 似认为其对附加承载拱的支撑力为P0;ql0'与qr0'分别为先行洞与后行洞普氏平 衡拱的内侧边沿处的附加荷载;其他符号及意义同前。

根据结构的支撑力与平衡拱内的土体重量平衡,则可得到:

23γWmHm-23γWlHl-23γWrHr=P0+12γWlHl0+12γWrHr0---(11)

式中:Hl0'与Hr0'分别为ql0'与qr0'相对应的荷载高度,其他符号意义 同前。且近似取Hl0'与Hr0'之间的比例关系为:

Hl0Hr0=WlWr---(12)

由(10)和(11)式解得:

Hl0=2WlWl2+Wr2[2WlWr+W0(Wl+Wr)3f-P0γ]---(13a)

Hr0=2WrWl2+Wr2[2WlWr+W0(Wl+Wr)3f-P0γ]---(13b)

各个符号意义同前。

根据比例关系可得:

Hql1Hl0=Ttanθ1Wl---(14a)

Hql1Hql2=Ttanθ1Bl+Ttanθ1---(14b)

Hqr1Hr0=Ttanθ1Wr---(15a)

Hqr1Hqr2=Ttanθ1Br+Ttanθ1---(15b)

式中:和分别为和qr1'、qr2'对应的荷载 高度;其他符号意义同前。

由(14a)、(14b)式和(15a)、(15b)式解得:

Hql1=Ttanθ1WlHl0---(16a)

Hql2=Bl+Ttanθ1WlHl0---(16b)

Hqr1=Ttanθ1WrHr0---(17a)

Hqr2=Br+Ttanθ1WrHr0---(17b)

将式(13a)和式(13b)代入上式(16a)、(16b)和(17a)、(17b)即可得到先行洞和后行洞 上方边沿处梯形附加荷载的高度和式中各个符合意义 同前。

则可求得先行洞和后行洞的竖向土压力荷载分别为:

ql1=ql+ql1=γ(Hl+Hql1)---(18a)

ql2=ql+ql2=γ(Hl+Hql2)---(18b)

qr1=qr+qr1=γ(Hr+Hqr1)---(19a)

qr2=qr+qr2=γ(Hr+Hqr2)---(19b)

式中各个符号意义同前。

(2)侧向土压力荷载计算

水平土压力荷载作用在小间距隧道支护结构两侧,通过下面计算公式求得:

el1=λql1(20a)

el2=λ(ql1+γT)(20b)

el3=λql2(20c)

el4=λ(ql2+γT)(20d)

er1=λqr1(21a)

er2=λ(qr1+γT)(21b)

er3=λqr2(21c)

er4=λ(qr2+γT)(21d)

式中:el1~4、er1~4分别为先行洞和后行洞水平方向土压力(kPa);λ为 侧压力系数,按朗肯土压力理论计算,即λ=tan2θ;其他符号意义同前。

(3)中夹岩柱支撑力P0的计算方法

在计算小间距隧道中夹岩柱的承载力时,考虑隧道支护结构(如预应力对拉 锚杆)的主动支护力对岩体抗压强度的提高效应,其换算强度表达式为:

R0=k0Rp(22)

式中:Rp为考虑加固前岩体抗压强度(kPa);k0为放大系数;。

因此,中夹岩柱对上部岩体的支撑力如下:

P0=R0W0(23)

附图说明

图1普氏理论示意图。

图2平衡拱模式。

图3围岩压力计算简图。

图4小间距隧道附加承载拱受力示意图。

图5.1竖向围岩压力与中夹岩柱厚度的关系曲线。

图5.2拱脚侧向围岩压力与中夹岩柱厚度的关系曲线。

图6.1竖向围岩压力与先行洞开挖跨度的关系曲线。

图6.2拱脚侧向围岩压力与先行洞开挖跨度的关系曲线。

图7.1竖向围岩压力与开挖高度的关系曲线。

图7.2拱脚侧向围岩压力与开挖高度的关系曲线。

图8.1竖向围岩压力与中夹岩柱抗压强度的关系曲线。

图8.2拱脚侧向围岩压力与中夹岩柱抗压强度的关系曲线。

图9.1竖向围岩压力与中夹岩柱加固系数的关系曲线。

图9.2拱脚侧向围岩压力与中夹岩柱加固系数的关系曲线。

图10.1竖向围岩压力实测值与理论值对比图。

图10.2拱脚侧向围岩压力实测值与理论值对比图

具体实施方式

以下结合附图和实施例以及相关实施例分析进行进一步详细阐述。

围岩压力特征规律分析如下,为研究深埋非对称小间距隧道围岩压力的分布 特征,以V级围岩为例,取基本计算参数为:围岩重度γ=20kN/m3,内摩擦角 为计算内摩擦角先行洞和后行洞的开挖跨度分别为Bl=13m、 Br=11m,开挖高度T=8m,中夹岩柱抗压强度放大系数k0=3,先行洞内侧滑 移面与竖向夹角放大系数k2=1.14,后行洞左侧滑移面与竖向夹角放大系数 k3=1.12,以及中夹岩柱厚度B0作为可变参数进行影响因素敏感性分析。分析某 一因素影响时,保证其它参数不变,其基准取值如表1所示。

表1影响因素敏感性分析参数基准值

中夹岩柱厚度的影响

根据本文推导公式,仅改变中夹岩柱厚度B0(m),保持其它参数不变,得到 竖向荷载高度随中夹岩柱厚度B0(m)的变化曲线如图5.1-5.2所示。可以看出,中 夹岩柱厚度的变化对先行洞与后行洞内外侧的围岩压力均有影响,且对内侧影响 较为明显。竖向、侧向围岩压力均表现出:随着中夹岩柱厚度的增大,围岩压力 不断减小,且近似呈线性变化;当中夹岩柱厚度增大到一定值时,先行洞与后行 洞的围岩压力均趋于稳定,且各洞内外侧的围岩压力趋于相等,即成为分离式隧 道。

开挖跨度的影响

仅改变先行洞开挖跨度,根据本文推导公式可以求得隧道围岩压力的变化曲 线如图6.1-6.2所示。可以看出,先行洞开挖跨度改变对后行洞外侧竖向与侧向 压力基本没有影响;竖向、侧向压力均表现出:随着先行洞开挖跨度的增大,先 行洞内外侧、后行洞内侧围岩压力均不断增大,且近似呈线性变化,但后行洞内 侧增大较不明显,这说明先行洞开挖跨度的改变对后行洞的影响不大。

开挖高度的影响

仅改变开挖高度,根据本文推导公式可以求得隧道围岩压力的变化曲线如图 7.1-7.2所示。可以看出,随着开挖高度的增大,竖向、侧向压力均表现出:各洞 内外侧围岩压力均增大,且近似呈线性变化;各洞内侧围岩压力比外侧增大的速 度较快。

中夹岩柱抗压强度的影响

仅改变中夹岩柱抗压强度Rp(kPa),保持其它参数不变,根据本文推导公式 得到隧道围岩压力的变化曲线如图8.1-8.2所示。可以看出,随着中夹岩柱抗压 强度的增大,各洞内外侧竖向、侧向围岩压力均表现出逐渐减小的趋势,且内侧 较外侧减小的快;当中夹岩柱的抗压强度增大到一定值时,围岩压力趋于稳定, 且各洞内外侧围岩压力趋于相等,即成为分离式隧道。

中夹岩柱加固系数的影响

仅改变中夹岩柱加固系数k0,保持其它参数不变,根据本文推导公式得到竖 向荷载高度随中夹岩柱加固系数k0的变化曲线如图9.1-9.2所示。可以看出,随 着中夹岩柱加固系数的增大,各洞内外侧竖向、侧向围岩压力均表现出逐渐减小 的趋势,且内侧较外侧减小的快;当中夹岩柱的加固系数增大到一定值时,围岩 压力趋于稳定,且各洞内外侧围岩压力趋于相等,即成为分离式隧道。

实施例

鉴于深埋非对称小间距隧道围岩压力的现场监测数据鲜有报道,本节依托沪 蓉西高速公路庙垭分岔隧道小间距段进行工程实例计算与分析。取一深埋围岩压 力监测断面,Ⅳ级围岩,且施工中先行开挖左洞。计算参数取值如下:左、右洞 最小间距8m,开挖跨度均为9.75m,开挖高度约为8m,围岩内摩擦角计算内摩擦角围岩重度γ=20kN/m3,加固前中夹岩柱的抗压强度取 Rp=800kPa,中夹岩柱抗压强度放大系数取k0=1.5,先行洞内侧滑移面与竖向 夹角放大系数取k2=1.35,后行洞左侧滑移面与竖向夹角放大系数取k3=1.30。

根据本文所推导的公式可以求得该监测断面的围岩压力,并将计算结果沿隧 道开挖轮廓线进行叠加,并与现场监测数据进行对比,如图10.1-10.2所示。可 以看出,除个别测点外,围岩压力计算结果要略大于现场实测结果,即计算结果 很好的包络了实测结果。其中,左、右洞内侧的实测围岩压力要显著大于计算结 果,笔者分析认为工程中采用了对拉注浆锚杆加固中夹岩柱,造成了中夹岩柱两 侧围岩压力的增大。至于左、右洞外侧拱肩处两种数据之间虽然存在一定的差值, 笔者认为这是因为考虑到现场监测数据受诸多因素的影响,如依托工程中采用了 强大的超前支护,改善了围岩条件,从而降低了围岩压力,且现场监测结果多是 相对于量测开始时的应力变化,并非结构的实际受力状态。总之,按本文推导公 式计算得到的围岩压力与实测值基本吻合,充分证明了本文推导公式的合理性。

本文基于普氏平衡拱理论,在考虑了左、右洞结构不对称和不同时施工的条 件下,推导了深埋非对称小间距隧道的围岩压力计算公式,并且讨论了隧道中夹 岩柱厚度、开挖跨度与高度、中夹岩柱抗压强度以及加固系数等因素对隧道竖向 与侧向压力的影响规律,并结合工程监测实例验证了公式的合理性。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号