首页> 中国专利> 一种热泵热水机试验室冷热平衡装置

一种热泵热水机试验室冷热平衡装置

摘要

本发明公开了一种热泵热水机试验室冷热平衡装置,包括压缩机、三通调节阀A、制热换热器、制冷换热器、三通调节阀B、经济器、气液分离器、储液器、过滤器、冷水蒸发器、热水冷凝器和储水箱;储水箱、冷水蒸发器的水通道和热水冷凝器的水通道通过管道组连通构成水循环系统;冷水蒸发器的制冷剂通道、热水冷凝器的制冷剂通道、压缩机、三通调节阀A、制热换热器、制冷换热器、三通调节阀B、经济器、气液分离器、储液器和过滤器通过另一管道组连通构成热泵循环系统。本发明的优点在于:采用冷热平衡、转移、储存技术,利用很少的电能作为驱动就能满足测试室-25度至50度温度需求,代替了蒸气、电加热设备投入,投资成本低、安装、操作简单,且系统运行高效节能。

著录项

  • 公开/公告号CN105115186A

    专利类型发明专利

  • 公开/公告日2015-12-02

    原文格式PDF

  • 申请/专利权人 江苏天舒电器有限公司;

    申请/专利号CN201510583685.1

  • 申请日2015-09-15

  • 分类号

  • 代理机构北京一格知识产权代理事务所(普通合伙);

  • 代理人滑春生

  • 地址 226000 江苏省南通市经济技术开发区光机电园20号

  • 入库时间 2023-12-18 12:30:52

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2017-09-26

    授权

    授权

  • 2015-12-30

    实质审查的生效 IPC(主分类):F25B29/00 申请日:20150915

    实质审查的生效

  • 2015-12-02

    公开

    公开

说明书

技术领域

本发明涉及一种冷热平衡装置,特别涉及一种热泵热水机试验室冷热平衡装置。

背景技术

热泵热水机测试室内空气侧降温主要采用如下方式:测试室内环境温度较高时,采用中温空调机,环境温度较低时,采用低温空调机,此中低温空调机,通过冷却塔进行散热。测试室内空气侧升温主要采用电加热或蒸汽加热。降温卸载主要采用多机头自动或手动卸载台数,从而达到恒温的目的。热泵热水机初始水温依靠风冷冷热水机进行升降温。上述加热存在以下的缺点,对测试室内空气侧进行降温采用中低温两种空调机,投入成本高,占地方,安装麻烦,在操作时还要进行中低温进行切换,操作很烦杂,在降温过程中还需要进行停机,这样降温不持续,而且还会造成大量的能量损失。同时通过冷却塔进行散热,将许多热能散发到外界环境中,而此时测试室内却需要一小部分热能进行降温平衡。同时由于冷却塔在夏季环境温度较高时,散热效果差,从而会出现需冷却的水温较高,机组消耗的电能会直线上升,有时机组还会出现故障,不能正常运行。测试室升温采用电加热或蒸汽,运行费用也会比较高。

发明内容

本发明要解决的技术问题是提供一种成本低、控温效果好、操作简单的热泵热水机试验室冷热平衡装置。

为解决上述技术问题,本发明的技术方案为:一种热泵热水机试验室冷热平衡装置,其创新点在于:包括压缩机、三通调节阀A、制热换热器、制冷换热器、三通调节阀B、经济器、气液分离器、储液器、过滤器、冷水蒸发器、热水冷凝器和储水箱;

所述储水箱、冷水蒸发器的水通道和热水冷凝器的水通道通过管道组连通构成水循环系统;

所述冷水蒸发器的制冷剂通道、热水冷凝器的制冷剂通道、压缩机、三通调节阀A、制热换热器、制冷换热器、三通调节阀B、经济器、气液分离器、储液器和过滤器通过另一管道组连通构成热泵循环系统。

进一步的,所述水循环系统的具体结构为:储水箱包括热水储水箱和冷水储水箱;热水储水箱具有出水口A和进水口A,冷水储水箱具有出水口B和进水口B;热水冷凝器出水口C和进水口C,冷水蒸发器出水口D和进水口D;热水储水箱出水口A通过水管A与热水冷凝器进水口C相连,热水冷凝器出水口C通过水管B与热水储水箱进水口A相连;冷水储水箱出水口B与冷水蒸发器进水口D通过水管C相连,冷水蒸发器出水口D与冷水储水箱进水口B通过水管D相连;热水储水箱和冷水储水箱之间还通过水管E相连。

进一步的,所述水循环系统还包括设于水管B上的水泵A、设于水管D上的水泵B,以及设于水管E上的水泵C。

进一步的,所述热泵循环系统的具体结构为:压缩机具有制冷剂进口A1、制冷剂进口A2和制冷剂出口A;三通调节阀A具有接口A1、接口B1和接口C1;制热换热器具有制冷剂进口B和制冷剂出口B;热水冷凝器具有制冷剂进口C和制冷剂出口C;制冷换热器具有制冷剂进口D和制冷剂出口D;冷水蒸发器具有制冷剂进口E和制冷剂出口E;三通调节阀B具有接口A2、接口B2和接口C2;经济器具有制冷剂进口F和制冷剂出口F,以及制冷剂进口G和制冷剂出口G;制冷剂出口A通过管道A与接口A1相连,接口B1通过管道B与制冷剂进口B相连,接口C1通过管道C与制冷剂进口C相连,制冷剂出口B与制冷剂出口C通过管道D汇合后依次与储液器和过滤器相连,过滤器通过管道E与制冷剂进口F相连;制冷剂进入经济器分为两路,一路由制冷剂出口F通过管道F连接制冷剂进口G,制冷剂出口G通过管道G与制冷剂进口A2相连;另一路由制冷剂出口F通过管道H连接接口A2,接口B2通过管道I与制冷剂进口D相连,接口C2通过管道J与制冷剂进口E相连,制冷剂出口D与制冷剂出口E通过管道K汇合与气液分离器相连,气液分离器通过管道L与制冷剂进口A1相连。

所述制热换热器和制冷换热器设置于冷热处理箱内,冷热处理箱还包括回风箱和内部设置风机的送风箱。

进一步的,所述管道F上设有补气膨胀阀。

进一步的,所述管道H上设有膨胀阀。

本发明的优点在于:

1、采用冷热平衡、转移、储存技术,利用很少的电能作为驱动就能满足测试室-25度至50度温度需求,代替了蒸气、电加热设备投入,投资成本低、安装、操作简单,且系统运行高效节能。

2、通过能量转移储存技术,将多余的热能和冷量时行储存,以便满足热泵热水机加热热水的水温需求。

3、通过动态控制模块,保证测试室温度达到设定的温度的同时,又能控制精确;并通过多路动态分配技术,将热能和冷量进行精确分配。

4、采用补气强化技术,提高在测试室低环境温度时系统的制热量和性能系统,系统运行更高效和稳定。

附图说明

图1为本发明一种热泵热水机试验室冷热平衡装置的原理图。

具体实施方式

如图1所示,为本发明一种热泵热水机试验室冷热平衡装置的原理图,包括压缩机1、三通调节阀A3、制热换热器4、制冷换热器7、三通调节阀B11、经济器14、气液分离器2、储液器10、过滤器12、冷水蒸发器16、热水冷凝器22和储水箱。

储水箱、冷水蒸发器16的水通道和热水冷凝器22的水通道通过管道组连通构成水循环系统;水循环系统的具体结构为:储水箱包括热水储水箱21和冷水储水箱17;热水储水箱21具有出水口A和进水口A,冷水储水箱17具有出水口B和进水口B;热水冷凝器22出水口C和进水口C,冷水蒸发器16出水口D和进水口D;热水储水箱21出水口A通过水管A与热水冷凝器22进水口C相连,热水冷凝器22出水口C通过水管B与热水储水箱21进水口A相连;冷水储水箱17出水口B与冷水蒸发器16进水口D通过水管C相连,冷水蒸发器16出水口D与冷水储水箱17进水口B通过水管D相连;热水储水箱21和冷水储水箱17之间还通过水管E相连;在水管B、水管D和水管E上分别设置水泵A20、水泵B18和水泵C19。

冷水蒸发器16的制冷剂通道、热水冷凝器22的制冷剂通道、压缩机1、三通调节阀A3、制热换热器4、制冷换热器7、三通调节阀B11、经济器14、气液分离器2、储液器10和过滤器12通过另一管道组连通构成热泵循环系统;热泵循环系统的具体结构为:压缩机1具有制冷剂进口A1、制冷剂进口A2和制冷剂出口A;三通调节阀A3具有接口A1、接口B1和接口C1;制热换热器4具有制冷剂进口B和制冷剂出口B;热水冷凝器22具有制冷剂进口C和制冷剂出口C;制冷换热器7具有制冷剂进口D和制冷剂出口D;冷水蒸发器16具有制冷剂进口E和制冷剂出口E;三通调节阀B11具有接口A2、接口B2和接口C2;经济器14具有制冷剂进口F和制冷剂出口F,以及制冷剂进口G和制冷剂出口G;制热换热器4和制冷换热器7设置于冷热处理箱内8,冷热处理箱8还包括回风箱9和内部设置风机6的送风箱5。

制冷剂出口A通过管道A与接口A1相连,接口B1通过管道B与制冷剂进口B相连,接口C1通过管道C与制冷剂进口C相连,制冷剂出口B与制冷剂出口C通过管道D汇合后依次与储液器10和过滤器12相连,过滤器12通过管道E与制冷剂进口F相连;制冷剂进入经济器14分为两路,一路由制冷剂出口F通过管道F连接制冷剂进口G,管道F上设有补气膨胀阀15,制冷剂出口G通过管道G与制冷剂进口A2相连;另一路由制冷剂出口F通过管道H连接接口A2,管道H上设有膨胀阀13,接口B2通过管道I与制冷剂进口D相连,接口C2通过管道J与制冷剂进口E相连,制冷剂出口D与制冷剂出口E通过管道K汇合与气液分离器2相连,气液分离器2通过管道L与制冷剂进口A1相连。

工作时,压缩机1排气口排出的高温高压气态制冷剂到达三通调节阀A3后,分别流入热水冷凝器4和制热换热器22,由动态控制模块自动检测、识别和控制三通调节阀A3两边开度来分配流量。出口汇合到一起后到储热器10、过滤器12,到达经济器14进行过冷热回收后分为两路,一路到膨胀阀13,另一路到补气膨胀阀15,再到经济器14进行吸热后回到压缩机1补气口。另一路通过膨胀阀13节流节压后到达三通调节阀B11,三通调节阀B11也由动态控制模块控制分配到冷水蒸发器16和制冷换热器7。两路液体经过蒸发吸热后合并到一起进入汽液分离器2,再回到压缩机1吸气口。

测试室里空气由冷热处理箱8的回风箱9到达制热换热器4或制冷热交换器7进行升降温,再经送风箱5送入测试室。热水冷凝器22和冷水蒸发器16分别通过水泵A20和水泵B18对热水储水箱21和冷水储水箱17进行循环。将多余冷热量转移到储水箱中。当热水储水箱21水温高于60度或冷水储水箱17温度低于5度时,开动水泵C19,进行冷热量综合,热水储水箱21温度降低到50度以下时或冷水储水箱17温度升高到15度时,停止水泵C19,储水箱冷热量综合平衡结束。

根据测试室温度、设定温度与送风箱出风温度可进行多种模式下的工作:

1、强冷模式

当T测试室≥T设定+2时,执行强冷模式,三通调节阀A3上A1-B1保持全关闭状态,A1-C1保持全开,此时将压缩机1排出的高温高压气态制冷剂中的热量通过热水冷凝器22转移到热水储水箱21中,三通调节阀B11上A2-B2保持全开,A2-C2保持全关闭状态,此时水泵B18处于关闭,液态制冷剂全部流入到制冷换热器7,对测试室回来的空气吸热降温。

2、调节制冷模式

当T设定+2>T测试室≥T设定+1时,执行调节制冷模式,通过检测冷热处理箱8中的出风温度,从而调节两个三通调节阀,动作如下:

(1)T出风≤T设定-6,则三通调节阀A3以每分钟总开度的5%由C1向B1打开,将一小部分热能通过制热换热器4对经过的回风温度进行升温,从而避免送风箱5的出风温度太低,引起测试室降温太快。三通调节阀B11上A2-B2保持全开,A2-C2保持全关闭状态,此时水泵B18处于关闭,液态制冷剂全部流入到制冷换热器7,对测试室回来的空气吸热降温。

(2)T设定-4≤T出风<T设定-6,则三通调节阀A3以每分钟总开度的3%由C1向B1打开,将一小部分热能通过制热换热器4对经过的回风温度进行升温,从而避免送风箱5的出风温度太低,引起测试室降温太快。三通调节阀B11以每分钟总开度的1%由B2向C2打开,将一小部分冷量通过冷水蒸发器16将多余的冷量转移到冷水储水箱17中。

(3)T设定-2≤T出风<T设定-4,则三通调节阀A3以每分钟总开度的1%由C1向B1打开,将一小部分热能通过制热换热器4对经过的回风温度进行升温,从而避免送风箱5的出风温度太低,引起测试室降温太快。三通调节阀B11以每分钟总开度的3%由B2向C2打开,将一小部分冷量通过冷水蒸发器16将多余的冷量转移到冷水储水箱17中。

(4)T设定-1≤T出风<T设定-2,则三通调节阀A3保持前一个状态下开度不变。三通调节阀B11以每分钟总开度的1%由B2向C2打开,将一小部分冷量通过冷水蒸发器16将多余的冷量转移到冷水储水箱17中。

(5)T设定-0.5≤T出风<T设定-1,则三通调节阀A3、三通调节阀B11保持前一个状态下开度不变。此状态下如果T测试室<T设定+1时,则转入精确制冷控温模式。

3、精确制冷控温模式

当T设定+1>T测试室>T设定-1时,测试室已经达到国家标准中规定的试验条件,进入精确控制模式,精确制冷控温模式如下:

(1)当T设定+0.5≤T测试室<T设定+1时,则三通调节阀A3保持前一个状态下开度不变。三通调节阀B11以每五分钟总开度的1%由B2向C2打开,将一小部分冷量通过冷水蒸发器16将多余的冷量转移到冷水储水箱17中。

(2)当T设定+0.2≤T测试室<T设定+0.5时,则三通调节阀A3保持前一个状态下开度不变。三通调节阀B11以每十分钟总开度的1%由B2向C2打开,将一小部分冷量通过冷水蒸发器16将多余的冷量转移到冷水储水箱17中。

(3)当T设定-0.2<T测试室<T设定+0.2时,则三通调节阀A3、三通调节阀B保持前一个状态下开度不变。

(4)当T设定-0.5<T测试室≤T设定-0.2时,则三通调节阀B11保持前一个状态下开度不变。三通调节阀A3以每十分钟总开度的1%由C1向B1打开,将一小部分热量通过制热换热器4送到测试室,从而提高测试室温度,保持测试室温度维持在精确的设定范围内。

(5)当T设定-1<T测试室≤T设定-0.5时,则三通调节阀B11保持前一个状态下开度不变。三通调节阀A3以每5分钟总开度的1%由C1向B1打开,将一小部分热量通过制热换热器4送到测试室,从而提高测试室温度。

4、强热模式

(1)当T测试室≥T设定-2时,执行强热模式,三通调节阀A3上A1-B1保持全关开状态,A1-C1保持全闭,此时将压缩机1排出的高温高压气态制冷剂中的热量通过制热换热器4将热量送到测试室中,三通调节阀B11上A2-B2保持全关闭,A2-C2保持全打开状态,此时水泵B18处于开启,液态制冷剂全部流入到冷水蒸发器16,对通过冷水储水箱17进行蓄冷。

5、调节制热模式

(1)当T设定-1>T测试室≥T设定-2时,执行调节制热模式,通过检测冷热处理箱8中的出风温度,从而调节两个三通调节阀,动作如下:

(2)T出风≥T设定+6,则三通调节阀A3以每分钟总开度的5%由B1向C1打开,此时水泵A20开启,将一小部分热能通过热水冷凝器22将多余的热能释放到储热水箱21中,从而避免送风箱5的出风温度太高,引起测试室升温太快。三通调节阀B11上A2-B2保持全关闭,A2-C2保持全打开状态,此时水泵B18处于开启,液态制冷剂全部流入到冷水蒸发器16,对通过冷水储水箱17进行蓄冷。

(3)T设定+4≤T出风<T设定+6,则三通调节阀A3以每分钟总开度的3%由B1向C1打开,将一小部分热能通过热水冷凝器22将多余的热能释放到储热水箱21中,从而避免送风箱5的出风温度太高,引起测试室升温太快。三通调节阀B11以每分钟总开度的1%由C2向B2打开,将一小部分冷量通过制冷换热器7将一小部分冷量送给测试室。

(4)T设定+2≤T出风<T设定+4,则三通调节阀A3以每分钟总开度的1%由B1向C1打开,将一小部分热能通过热水冷凝器22将多余的热能释放到储热水箱21中,三通调节阀B11以每分钟总开度的3%由C2向B2打开,将一小部分冷量通过制冷换热器7将一小部分冷量送给测试室。

(5)T设定+1≤T出风<T设定+2,则三通调节阀A3保持前一个状态下开度不变。三通调节阀B11以每分钟总开度的1%由C2向B2打开,将一小部分冷量通过制冷换热器7将一小部分冷量送给测试室。

(6)T设定+0.5≤T出风<T设定+1,则三通调节阀A3、三通调节阀B11保持前一个状态下开度不变。此状态下如果T测试室>T设定-1时,则转入精确制热控温模式。

6、精确制热控温模式

(1)当T设定-1<T测试室≤T设定-0.5时,则三通调节阀B11保持前一个状态下开度不变。三通调节阀A3以每五分钟总开度的1%由B1向C1打开,将一小部分热量通过热水冷凝器22将多余的热量转移到热水储水箱21中。

(2)当T设定-0.5<T测试室≤T设定-0.2时,则三通调节阀B11保持前一个状态下开度不变。三通调节阀A3以每十分钟总开度的1%由B1向C1打开,将一小部分热量通过热水冷凝器22将多余的热量转移到热水储水箱21中。

(3)当T设定-0.2<T测试室≤T设定+0.2时,则三通调节阀A3、三通调节阀B保持前一个状态下开度不变。

(4)当T设定+0.2<T测试室≤T设定+0.5时,则三通调节阀A3保持前一个状态下开度不变。三通调节阀B11以每十分钟总开度的1%由C2向B2打开,将一小部分冷量通过制冷换热器7送到测试室,从而降低测试室温度,保持测试室温度维持在精确的设定范围内。

(5)当T设定+0.5<T测试室≤T设定+1时,则三通调节阀A3保持前一个状态下开度不变。三通调节阀B11以每5分钟总开度的1%由C2向B2打开,将一小部分冷量通过制冷换热器7送到测试室,从而降低测试室温度。

以上显示和描述了本发明的基本原理和主要特征。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号