首页> 中国专利> 两相静止坐标系下双馈风力发电机故障控制方法

两相静止坐标系下双馈风力发电机故障控制方法

摘要

本发明公开了两相静止坐标系下双馈风力发电机故障控制方法,由定子参考两相静止坐标系下的定子电流和转子电流计算出定子磁链和转子磁链,将转子电压公式进行离散,得到转子电压预测模型,在模型中为了使转子磁链跟随其给定值,需要将下一时刻转子的磁链的值替换为转子磁链同一时刻的给定值,转子磁链的给定值跟随其定子磁链的实际值。将预测到的定子参考两相静止坐标系下的转子电压,经过坐标转换,得到两相转子速旋转坐标系下的转子电压,最后经过PWM调制。该方法不但能够控制转子故障电流在1.5-1.6倍额定电流以内,而且故障期间电磁转矩脉动较小,提高了双馈风力发电机故障下不脱网运行能力。

著录项

  • 公开/公告号CN105048904A

    专利类型发明专利

  • 公开/公告日2015-11-11

    原文格式PDF

  • 申请/专利权人 河南师范大学;

    申请/专利号CN201510393237.5

  • 申请日2015-07-07

  • 分类号H02P9/10;H02P101/15;H02J3/38;F03D7/00;

  • 代理机构新乡市平原专利有限责任公司;

  • 代理人路宽

  • 地址 453007 河南省新乡市建设东路46号

  • 入库时间 2023-12-18 12:06:53

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2020-06-23

    未缴年费专利权终止 IPC(主分类):H02P9/10 授权公告日:20170825 终止日期:20190707 申请日:20150707

    专利权的终止

  • 2017-08-25

    授权

    授权

  • 2015-12-30

    实质审查的生效 IPC(主分类):H02P9/10 申请日:20150707

    实质审查的生效

  • 2015-11-11

    公开

    公开

说明书

技术领域

本发明属于双馈风力发电机运行控制领域,具体涉及一种电压跌落时两相静止坐标系下双馈风力发电机故障控制方法,保障故障期间发电机不脱网运行。

背景技术

风电在电力生产中越来越受到重视,大容量的风电机组与电网系统之间的相互作用、相互适应,由此出现的各种故障问题,形成了风力发电技术中重要的研发内容。近几年来双馈风力发电机的装机容量在电力系统中所占比重快速增大,它们与局部电网之间的相互影响也越来越大,由于双馈风力发电机的定、转子直接并网,电网故障对风电机组影响很大,并且在故障情况下,小容量励磁变换器对双馈风力发电机的控制能力也受到限制,导致双馈风力发电机的故障运行能力降低。

在电网电压骤降时,将直接转矩控制技术应用于双馈风力发电机中,该策略直接控制电机的转矩,虽然控制方法简单,减少了电机参数的应用,但是直接转矩控制也存在一定的问题:功率变换器的开关频率随滞环比较器的环宽变化而变化,而且会产生电流畸变,低速时转矩脉动较大,从而影响输出电能的质量。另外还有一部分文献提出电机的直接功率控制,该控制策略同样使用了滞环比较器,使得转子变换器开关频率随着有功功率和无功功率变化,该变化的开关频率需要复杂和昂贵的功率变流器和交流谐波滤波器。还有部分文献将空间矢量技术引入到直接功率控制方法,但是该方法需要较为复杂的坐标转换,控制精度不高。当电网电压发生单相跌落60%或者三相对称跌落60%故障时,目前大多数控制方法对故障期间转子电流值很难控制在其额定电流的2倍以内,电磁转矩波动比较大,对机组的冲击力很大。控制系统的响应速度和控制器的控制精度直接影响故障电流的抑制效果。因此需要提出一种解决上述问题的控制方法,即两相静止坐标系下故障控制方法。该控制具有故障动态响应速度快,控制精度高,可有效避免电网故障大扰动下控制器的饱和问题。不但能够控制转子故障电流在1.5-1.6倍额定电流以内,而且故障期间电磁转矩脉动较小,可有效提高双馈风力发电机在电网电压故障下不脱网运行能力。

发明内容

本发明针对现有技术的不足,提供了一种电网电压跌落时两相静止坐标系下双馈风力发电机故障控制方法,该控制方法具有动态响应速度快,控制精度高,不但能够控制转子故障电流在1.5-1.6倍额定电流以内,而且故障期间电磁转矩脉动较小,减小对发电机组的冲击,可有效提高双馈风力发电机在电网电压故障下不脱网运行能力。

电网电压正常运行时双馈风力发电机转子侧变换器采用基于定子磁链定向的矢量控制,电网电压骤降时采用故障控制方法。同时设置故障控制方法的控制频率为基于定子磁链定向的矢量控制的2倍,其具体实施步骤为:

(1)、将检测到的定子三相电压usabc和定子三相电流isabc经过坐标转换得到定子参考两相静止坐标系下定子两相电压usαβ和定子两相电流isαβ

(2)、计算出定子磁链空间位置角θ1,将检测到的转子三相电流irabc经过坐标转换得到定子参考两相静止坐标系下转子两相电流irαβ

(3)、将测得的转子转速ωr进行积分计算得到θr

(4)、将定子参考两相静止坐标系下的定子两相电流isαisβ,转子两相电流irαirβ,定子自感Ls,转子自感Lr和定转子间互感Lm进行定子磁链和转子磁链计算得到定子磁链α、β轴分量Ψsα、Ψsβ和转子磁链α、β轴分量Ψrα、Ψrβ

(5)、转子磁链的给定值进行计算,即:Ψr*=MΨs,其中Isr为定子电流额定值,Ψsr为定子磁链实际值,上标r表示以转子转速ωr旋转的两相坐标系,下标s表示定子侧的变量,故障期间M随Ψsr变换自适应改变,实现对转子磁链的实时最优控制,将得到的以转子转速ωr旋转的两相转子坐标系下的转子磁链给定值经过坐标转换得到定子参考两相静止坐标系下的转子磁链给定值;

(6)、双馈风力发电机转子电压在定子参考两相静止坐标系下的公式为:,式中:urαurβ分别表示转子电压α轴和β轴分量,Rr为转子电阻;

(7)、假定采样周期为Ts,将双馈风力发电机的的转子电压公式离散可得:,转子磁链无差拍控制目标使转子磁链在k+1时刻达到给定值,即式中Ψrα(k+1)、Ψrβ(k+1)分别为转子磁链αβ轴在k+1时刻的给定值Ψrα*(k+1)、Ψrβ*(k+1);

(8)、由步骤(7)中双馈风力发电机转子电压离散公式经过变形可得:,从公式中得到urα(k)、urβ(k),将urα(k)、urβ(k)经过坐标变换得到两相转子参考坐标系下的转子电压,然后进行PWM调制。

当电网电压发生单相跌落60%或者三相对称跌落60%故障时,目前大多数控制方法对故障期间转子电流值一般控制在其额定电流的2倍左右,电磁转矩波动比较大,对机组的冲击力很大。电网发生故障时,本发明参数M可以自适应改变,此控制器实现对转子磁链的实时预测和最优控制,避免了电网故障极端扰动下控制器的饱和问题。此过程中控制器提高控制频率为正常时的2倍,缩短了对故障的响应时间,同时所有变量基于定子参考两相静止坐标系,无需复杂的坐标变换,在故障瞬间可以快速有效地控制转子电流在1.5-1.6倍额定电流以内,电磁转矩波动也较小。

附图说明

图1为两相定子参考αβ静止坐标系、两相转子转速ωr旋转αrβr坐标系、两相同步速ωe旋转dq坐标系;

图2为控制结构框图;

图3为电网电压发生三相对称跌落60%故障时故障控制的运行结果图;

图4为电网电压发生单相跌落60%故障时故障控制的运行结果图。

具体实施方法

下面结合附图对本发明做进一步说明。图1为两相定子αβ静止坐标系、两相转子转速ωr旋转αrβr坐标系、两相同步速ωe旋转dq坐标系。本发明的控制方法基于定子参考两相静止坐标系,将采集到的定子电流和转子电流,经过坐标转换,得到定子参考两相静止坐标系下的变量。

双馈发电机在定子参考两相静止坐标系下的基本电压方程为:

(1)

(2)

式中:urαurβ分别表示转子电压α轴和β轴分量;irαirβ分别表示转子电流α轴和β轴分量;Ψrα和Ψrβ分别表示转子磁链α轴和β轴分量;ωr为发电机转子角速度;Rr为转子电阻。

定子参考两相静止坐标系下,转子磁链方程可以表示为:

Ψrα=Lmisα+Lrirα(3)

Ψrβ=Lmisβ+Lrirβ(4)

式中:isαi分别表示定子电流α轴和β轴分量;LsLrLm分别表示定子自感、转子自感以及定转子之间的互感。

对式(1)、(2)进行离散化,可得:

(5)

(6)

式中:Ts为采样周期。此控制目标使转子磁链在k+1时刻达到给定值,即式中,Ψrα(k+1)、Ψrβ(k+1)分别为转子磁链α、β轴在k+1时刻的给定值Ψrα*(k+1)、Ψrβ*(k+1)。所以可以得到下式:

(7)

(8)

式(7)、(8)即为双馈风力发电机故障控制模型。

两相转子转速ωr旋转的坐标系下,定子和转子磁链方程可以表示为:

Ψsr=LsIsr+LmIrr(9)

Ψrr=LrIrr+LmIsr(10)

其中IsIr分别表示定子电流和转子电流,Ψs和Ψr表示定子磁链和转子磁链,上标r表示以转子转速ωr旋转两相坐标系,下标s和r分别表示定子侧的变量和转子侧变量。

由式(9)和式(10)可以得到:

(11)

由式(9)和式(10)可以得到转子电流,计算过程中,将转子磁链的给定值Ψr*=MΨs代入可得:

(12)

式中LlsLlr分别表示定子漏电感和转子漏电感。

将转子磁链的给定值Ψr*=MΨs代入式(11)可以得到:

(13)

Isr为定子电流的额定值,Ψsr为定子磁链的实际值。通过定转子磁链与定转子电流的关系,以及转子磁链弱磁控制方法,得到M值大小,在故障期间M可以随Ψsr变换自适应改变,实现对转子磁链的实时最优控制。故障瞬间Ψsr的值最大,此时M取最大值,式(12)可以看出,M越大,转子故障电流值越小,因此可以实现故障瞬间对转子电流有效地控制,故障瞬间对转子过电流的控制尤为重要。双馈风力发电机定子侧直接与电网相连,定子侧电流的畸变对电网危害很大,因此故障期间Isr取额定值,以实现故障期间对定子电流的调节,控制定子电流在其允许的最大电流以内。最后将得到的以转子转速ωr旋转的两相转子坐标系下的转子磁链给定值,经过坐标转换,得到定子参考两相静止坐标系下的转子磁链给定值。

两相静止坐标系下双馈风力发电机故障控制方法,与矢量控制方法相比,它具有动态响应速度快,控制精度高,故障过程中无过冲等特点,且可以消除较大扰动下控制器的饱和。不但能够控制转子故障电流在1.5-1.6倍额定电流以内,而且故障期间电磁转矩脉动较小,减小对发电机组的冲击,可有效提高双馈风力发电机在电网电压故障下不脱网运行能力。

图2为本发明故障控制结构框图。当电网电压稳态运行时转子侧变换器进行基于定子磁链定向的矢量控制方法,当电网电压发生跌落时双馈风力发电机故障控制方法。两相静止坐标系下故障控制方法的步骤如下:(1)、将检测到的定子三相电压usabc和定子三相电流isabc经过坐标转换得到定子参考两相静止坐标系下定子两相电压usαβ和定子两相电流isαβ;(2)、计算出定子磁链空间位置角θ1,将检测到的转子三相电流irabc经过坐标转换得到定子参考两相静止坐标系下转子两相电流irαβ;(3)、将测得的转子转速ωr进行积分计算得到θr;(4)、将定子参考两相静止坐标系下的定子两相电流isαisβ,转子两相电流irαirβ,定子自感Ls,转子自感Lr和定转子间互感Lm进行定子磁链和转子磁链计算得到定子磁链α、β轴分量Ψsα、Ψsβ和转子磁链α、β轴分量Ψrα、Ψrβ;(5)、转子磁链的给定值进行计算,即:Ψr*=MΨs,其中Isr为定子电流额定值,Ψsr为定子磁链实际值,上标r表示以转子转速ωr旋转的两相坐标系,下标s表示定子侧的变量,故障期间M随Ψsr变换自适应改变,实现对转子磁链的实时最优控制,将得到的以转子转速ωr旋转的两相转子坐标系下的转子磁链给定值经过坐标转换得到定子参考两相静止坐标系下的转子磁链给定值;(6)、双馈风力发电机转子电压在定子参考两相静止坐标系下的公式为:,式中:urαurβ分别表示转子电压α轴和β轴分量,Rr为转子电阻;(7)、假定采样周期为Ts,将双馈风力发电机的的转子电压公式离散可得:,转子磁链无差拍控制目标使转子磁链在k+1时刻达到给定值,即式中Ψrα(k+1)、Ψrβ(k+1)分别为转子磁链αβ轴在k+1时刻的给定值Ψrα*(k+1)、Ψrβ*(k+1);(8)、由步骤(7)中双馈风力发电机转子电压离散公式经过变形可得:,从公式中得到urα(k)、urβ(k),将urα(k)、urβ(k)经过坐标变换得到两相转子参考坐标系下的转子电压,然后进行PWM调制。

图3为电网电压发生三相对称跌落60%故障时的运行结果图,从图中可以看出,电磁转矩几乎为零,波动较小,在电网稳定运行时,转子电流为2000A,当电压电压跌落时,采用故障运行控制,此时转子电流为3000A,转子电流控制在1.5倍额定峰值电流以内。

图4为电网电压发生单相跌落60%故障时的运行结果图,从图中可以看出,电磁转矩几乎为零,波动较小,在电网稳定运行时,转子电流为2000A,当电网电压跌落时,采用故障运行控制,此时转子电流为3200A,转子电流控制在1.6倍额定峰值电流以内。

以上实施例描述了本发明的基本原理、主要特征及优点,本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明原理的范围下,本发明还会有各种变化和改进,这些变化和改进均落入本发明保护的范围内。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号