首页> 中国专利> 一种高催化活性的非晶金属氧化物析氢电极及其制备方法

一种高催化活性的非晶金属氧化物析氢电极及其制备方法

摘要

本发明公开了一种高催化活性的非晶金属氧化物析氢电极及其制备方法。该电极包含非晶金属氧化物活性涂层,该非晶金属氧化物选择非晶氧化镍、非晶氧化钌、非晶氧化钼、非晶氧化铈、非晶氧化锶中的任意一种或多种。其制备方法包含:步骤1,预处理镍网,形成多孔过渡氧化镍层;步骤2,配置活性涂层前驱液,并涂覆于镍网上;步骤3,经热分解、激光熔覆辅助固结,获得该析氢电极。该制备工艺简单,热分解温度低,制备的析氢电极催化活性高,高电流密度下不易极化,催化剂与基底结合牢固,不易脱落,且抗逆电流性能优异。与传统镍网相比,在4000A/m2的高电流密度下,其可降低析氢过电位250mv。在频繁开关机的条件下,电解槽槽压平稳,波动幅度小。

著录项

  • 公开/公告号CN104894595A

    专利类型发明专利

  • 公开/公告日2015-09-09

    原文格式PDF

  • 申请/专利权人 派新(上海)能源技术有限公司;

    申请/专利号CN201510257124.2

  • 发明设计人 张延峰;沈陈炎;

    申请日2015-05-19

  • 分类号C25B1/04(20060101);C25B11/06(20060101);

  • 代理机构上海信好专利代理事务所(普通合伙);

  • 代理人贾慧琴

  • 地址 201203 上海市浦东新区张江高科技园区蔡伦路1690号2号楼207室

  • 入库时间 2023-12-18 10:40:55

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2019-05-07

    未缴年费专利权终止 IPC(主分类):C25B1/04 授权公告日:20170912 终止日期:20180519 申请日:20150519

    专利权的终止

  • 2017-09-12

    授权

    授权

  • 2015-10-07

    实质审查的生效 IPC(主分类):C25B1/04 申请日:20150519

    实质审查的生效

  • 2015-09-09

    公开

    公开

说明书

技术领域

本发明涉及一种电极,具体地,涉及一种高催化活性的非晶金属氧化物析氢电极(以下简称“催化电极”)及其制备方法,它主要应用于水电解制氢的阴极。

背景技术

氢能是世界公认的清洁能源,它作为低碳和零碳能源正受到人们越来越多的关注。水电解制氢是工业上最重要的制氢方法之一,但其较高的阴极过电位导致电解过程效率较低、电解水能耗较大,因此研究和开发具有高催化性能的阴极材料,降低析氢过电位是减少电解水能耗的有效途径。

镍在碱性电解质中阴极极化条件下有较高耐腐蚀性且析氢效率较高,在传统工业生产中被广泛用作水电解阴极材料。但镍电极比表面积较小,需要经表面处理改善其析氢活性,如热处理由羟基镍分解得到的镍粉或由羟基镍化学气相沉积而生成的多晶镍须,参见《电化学学会杂志》(《Journal of the electrochemistry society》),1981,128(9):1877—1880,但其制备工艺复杂且催化活性增加有限。雷尼镍(Raney Ni)特殊的隧道状孔结构和精细裂纹使它具有高的比表面积,且具有高的电化学活性和很好的稳定性,参见《电化学应用杂志》(《Journal of applied electrochemistry》),1992,22(8):7 1 1-7 1 6,但其在高电流密度下易极化。

通过采用贵金属铂作为催化剂确实可以较大的降低过电位,实现低能耗制氢。但铂价格昂贵,无法真正工业化生产应用。开发新的廉价、高效电极催化剂是实现清洁、低能耗制氢的重要途径。1980年,史密斯(Smith)在第七届国际催化会议上首次提出非晶合金可以作为催化材料后,引起了人们广泛的关注。与传统催化剂相比,非晶催化剂表面具有浓度较高的不饱和中心,且不饱和中心的配位数具有一定范围,使其催化活性和选择性明显优于相应的晶态催化剂。使得非晶态合金在多相催化中具有极大的吸引力,被认为是2l世纪最有前途的高效清洁催化新材料。

    目前非晶态合金的制备方法主要有骤冷法、化学还原法。骤冷法是指将熔融的金属或合金通过各种途径以至少105—106 K/s的速率高速冷却,使熔体中的原子来不及进行规则排列就完成凝固,从而使得液态金属的无序结构得以保持从而形成非晶态。通过这种方法可以大规模制备非晶态合金,但制得的非晶态合金比表面积较小,通常只有0.1—0.2 m2/g,催化活性极低,如果用做催化剂,还需要经过严格、复杂的活化过程,参见《先进催化(Adv. catal.)》,“非晶金属合金催化材料(New Catalytic Materials from Amorphous Metal Alloys)”,莫尔纳.A(Molnar .A),史密斯.G .V(Smim.G .V),巴尔托克.M(Bartok.M), 1989, 36:329—383。20世纪80年代,人们发展了化学还原法制备非晶态合金并将其用于催化研究。该方法是在室温下用还原性物质(如KBH4或NaH2PO2)还原金属离子,在金属沉积的同时,类金属B或P也随着金属(M)一起沉积下来,从而形成M—B(P)非晶态合金。化学还原法制得的非晶态合金具有比骤冷法所得非晶态合金大得多的比表面积,但该法制备的非晶合金成分不稳定、粒径分布不均匀、易团聚。且其储存困难,在空气中极易被氧化,无法实现工业化应用(参见“非晶态合金催化剂的制备与改性研究进展”,《应用化工》,2010,29(4):592-595)。

因此,开发制备非晶催化剂的新方法,制备出兼具稳定性和催化剂活性的非晶催化剂对于实现非晶催化剂的工业应用具有重要意义。

发明内容

本发明的目的在于提供一种用于水电解制氢的析氢催化电解及其制备方法,解决现有水电解析氢催化电极催化效率低、高电流密度下易极化、催化剂易脱落、抗逆电流能力差的问题。

为达到上述目的,本发明提供了一种高催化活性的非晶金属氧化物析氢电极,该电极包含非晶金属氧化物活性涂层,该非晶金属氧化物选择非晶氧化镍、非晶氧化钌、非晶氧化钼、非晶氧化铈、非晶氧化锶中的任意一种或多种。

上述的高催化活性的非晶金属氧化物析氢电极,其中,所述的非晶金属氧化物活性涂层是活性涂层前驱液经热分解、激光辅助法制备得到,所述的活性涂层前驱液为醋酸镍、醋酸钌、醋酸钼、醋酸铈和醋酸锶中的任意一种或多种混合而成。

上述的高催化活性的非晶金属氧化物析氢电极,其中,所述的非晶金属氧化物活性涂层的厚度在0.1-20μm。

本发明还提供了一种上述的高催化活性的非晶金属氧化物析氢电极的制备方法,该方法包含以下步骤:

步骤1,预处理镍网:进行毛化和氧化处理,形成多孔过渡氧化镍层;

步骤2,配置活性涂层前驱液,并涂覆于上述预处理后的镍网上,形成涂层;所述的活性涂层前驱液为醋酸镍、醋酸钌、醋酸钼、醋酸铈和醋酸锶中的任意一种或多种混合而成;

步骤3,经热分解、激光熔覆辅助形成非晶金属氧化物活性涂层,从而获得催化电极。

上述的制备方法,其中,所述的步骤1中,预处理镍网还包括预先将基底镍网用碱液浸泡数小时,然后对镍网进行彻底清洗,以除去镍网上的油污等杂质。

上述的制备方法,其中,所述的步骤1中,利用激光对镍网进行预处理。

上述的制备方法,其中,所述的活性涂层前驱液的浓度为30-300克/升。所述的活性涂层前驱液中,以醋酸钌计,醋酸镍的用量为0~10;醋酸铈的用量为0~0.3;醋酸钼的用量为0~3;醋酸锶的用量为0~0.5。优选地,所述的活性涂层前驱液中各活性成分选择醋酸钌、醋酸镍以及醋酸锶的混合物,其中,醋酸钌、醋酸镍以及醋酸锶质量比介于1: (2~3):(0.2~0.5)之间。

上述的制备方法,其中,步骤2中,活性涂层前驱液经浸渍提拉工艺涂覆于镍网表面,使得涂覆得更为均匀,效率提高。

上述的制备方法,其中,步骤3中,在激光熔覆辅助固结后还若干次地交替进行浸渍提拉涂覆、热分解步骤。

上述的制备方法,其中,步骤3中,所述的热分解温度小于400℃,将活性涂层前驱液分解生成对应的非晶金属氧化物。

上述的制备方法,其中,所述的非晶金属氧化物活性涂层的厚度在0.1-20μm。

     本发明制备的催化电极在基底表面附着牢固、均匀。具有优异的催化活性、低极化率和良好的抗逆电流性能。与传统镍网相比,在4000A/m2的高电流密度下,其可降低析氢过电位250mv。在频繁开关机的条件下,电解槽槽压平稳,波动幅度小。

附图说明

图1本发明的实施例二制备的催化电极局部200倍电子数码显微镜照片。

图2本发明的实施例二制备的催化电极的局部扫描电镜照片。

图3 本发明的实施例一至三制备的催化电极与纯镍网对照的过电位曲线。

具体实施方式

以下结合附图通过具体实施例对本发明作进一步的描述,这些实施例仅用于说明本发明,并不是对本发明保护范围的限制。

实施例一

    将基底镍网在20%氢氧化钠溶液中浸泡4小时,然后用去离子水清洗干净。利用激光进行毛化和氧化处理,形成多孔过渡氧化镍层,以增大镍网的比表面积,有利于提高析氢电极的催化活性。将80克/升的醋酸钌、150克/升的醋酸镍、40克/升的醋酸铈乙醇溶液按乙醇溶液重量比1:1:0.2混合均匀,配成活性涂层前驱液。将该前驱液经浸渍提拉工艺涂覆于基底镍网上,置于250度的烘箱中40分钟进行热分解,使得上述前驱液分解为非晶氧化物,然后利用激光熔覆进行辅助固结,得催化电极1。上述激光熔覆的工艺条件为:所述的激光的激光器为5 kW恒流电激励CO2激光器,激光熔覆功率为3.2 kW,扫描速度为450 mm/min,光斑直径为3 mm。

实施例二

将基底镍网在20%氢氧化钠溶液中浸泡4小时,然后用去离子水清洗干净。利用激光进行毛化和氧化处理,形成多孔过渡氧化镍层。将30克/升的醋酸钌、300克/升的醋酸镍、70克/升的醋酸钼乙醇溶液按乙醇溶液重量比1:1:1混合均匀,配成活性涂层前驱液。将该前驱液经浸渍提拉工艺涂覆于基底镍网上,置于300度的烘箱中40分钟,然后利用激光熔覆(工艺条件同实施例一)进行辅助固结。重复浸渍提拉和热分解5次,得催化电极2。

实施例三

将基底镍网在20%氢氧化钠溶液中浸泡4小时,然后用去离子水清洗干净。利用激光进行毛化和氧化处理,形成多孔过渡氧化镍层。将70克/升的醋酸钌、50克/升的醋酸钼、75克/升的醋酸锶和90克/升的醋酸铈乙醇溶液按乙醇溶液重量比1:1:0.2:0.2混合均匀,配成活性涂层前驱液。将该前驱液经浸渍提拉工艺涂覆于处理过的基底镍网上,置于350度的烘箱中45分钟,然后利用激光熔覆(工艺条件同实施例一)进行辅助固结。重复浸渍提拉和热分解 6次,得催化电极3。

实施例四

将基底镍网在20%氢氧化钠溶液中浸泡4小时,然后用去离子水清洗干净。利用激光进行毛化和氧化处理,形成多孔过渡氧化镍层。将40克/升的醋酸钌、120克/升的醋酸镍、60克/升的醋酸锶的乙醇溶液按乙醇溶液重量比1:1:0.2混合均匀,配成活性涂层前驱液。将该前驱液经浸渍提拉工艺涂覆于处理过的基底镍网上,置于400度的烘箱中30分钟,然后利用激光熔覆(工艺条件同实施例一)进行辅助固结。重复浸渍提拉和热分解3次,得催化电极4。

实施例五

    将基底镍网在20%氢氧化钠溶液中浸泡4小时,然后用去离子水清洗干净。利用激光进行毛化和氧化处理,形成多孔过渡氧化镍层。将70克/升的醋酸钌、50克/升的醋酸钼、75克/升的醋酸锶和90克/升的醋酸铈乙醇溶液按乙醇溶液重量比1:1:0.2:0.2混合均匀,配成活性涂层前驱液。将该前驱液经浸渍提拉工艺涂覆于处理过的基底镍网上,置于350度的烘箱中45分钟,然后利用激光熔覆(工艺条件同实施例一)进行辅助固结。重复浸渍提拉和热分解6次,得催化电极5。

本发明制备的催化电极,经用电子数码显微镜以及扫描电镜等实验手段对实施例二的活性涂层进行表征,如附图1和2所示。由图可以看出该催化电极活性涂层涂覆均匀,涂层厚度可精确控制。

对上述实施例的催化电极进行电解失重测试,结果如下表1所示。

表1:实施例一~五制备的催化电极电解失重测试数据

  

从表1中可以看出活性涂层与基底具有优异的结合力,在高电流密度下电解基本无脱落,符合水电解工业用电极的标准。

   对上述实施例的析氢催化性能进行了实验测试,采用恒电流电解法测催化电极的电极电位,其结果如表2。

表2:实施例一~五制备的催化电极析氢电位测试数据

 

从表2中可以看出,实施例一~五制备的催化电极的析氢电位均低于纯镍网的析氢电位。

对实施例一、实施例二以及实施例三采用线性扫描法测试析氢过电位。结果如图3所示。由图3可以看出与纯镍网相比,催化电极在高电流密度下具有较低的过电位,说明催化电极在高电流密度下具有较高的催化活性以及较好的耐极化性。

    抗逆电流的性能是衡量一个阴极的重要指标,对本方法制备的催化电极在电解槽上进行抗逆电流试验,电解槽产氢量为0.5m3/h,共有18个单元小室。在工业电解的条件下(温度85℃,质量分数30%的KOH溶液,电流密度2000A/m2)非连续电解30天,每天电解12h,记录平均槽压的变化,结果如表3所示。

表3:实施例一~五制备的催化电极非连续电解小室槽压变化(电流密度2000A/m2

 

由上表3可以看出,电解30天后电解槽小室平均槽压基本没有很大变化,比较平稳,说明本方法制备的电极具有较好的抗逆电流的性能。

本发明先将基底镍网用碱液浸泡数小时,然后清洗干净。利用激光进行毛化和氧化处理,形成多孔过渡氧化镍层。将醋酸镍、醋酸钌、醋酸钼、醋酸铈和醋酸锶中的一种或多种按设定计量比配置成乙醇溶液,作为活性涂层前驱液。然后将配置好的活性涂层前驱液涂覆于镍网表面,然后经热分解、激光辅助固结活性涂层,从而获得催化电极。根据实际需要(涂层的厚度和牢固度)选择涂覆及热分解的次数,可以是一次,也可以是多次。

尽管本发明的内容已经通过上述优选实施例作了详细介绍,但应当认识到上述的描述不应被认为是对本发明的限制。在本领域技术人员阅读了上述内容后,对于本发明的多种修改和替代都将是显而易见的。因此,本发明的保护范围应由所附的权利要求来限定。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号