首页> 中国专利> 用于化学分析和生物化学分析的光学技术

用于化学分析和生物化学分析的光学技术

摘要

本公开描述了用于物理样品、化学样品和/或生物样品的光学检测的结构和方法。光学检测结构可以包括LED源、多个滤光片、以及单个或多个样品区。检测器可以被用来记录荧光信号。样品区可以允许抽取式的基座的引入。

著录项

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2017-07-28

    授权

    授权

  • 2015-07-01

    实质审查的生效 IPC(主分类):G01N21/17 申请日:20130722

    实质审查的生效

  • 2015-06-03

    公开

    公开

说明书

相关申请的交叉引用

本申请要求于2012年8月3日提交的编号为61/679,552的美国临时 专利申请的权益,通过引用将该专利申请整体并入本文。本申请可能涉及 于2010年6月21提交的编号为8,395,773、题目为“用于测量样品的光学 装置和方法(Optical Devices and Methods for Measuring Samples)”的美国 专利,该专利将通过引用整体并入本文。

领域

本公开涉及化学样品、生物样品和/或物理样品的光学检测。

概要

根据第一方面,描述了用于光学检测的系统,该系统包括:具有第一 侧面和第二侧面的光源;具有第一侧面和第二侧面的第一滤光片,第一滤 光片的第一侧面实质上接近于光源的第二侧面;具有第一侧面和第二侧面 的准直和/或导引光学器件,准直和/或导引光学器件的第一侧面实质上接 近于第一滤光片的第二侧面;具有第一侧面和第二侧面的第二滤光片,第 二滤光片的第一侧面实质上接近于准直和/或导引光学器件的第二侧面;具 有第一侧面和第二侧面的杂散光控制光学器件,杂散光控制光学器件的第 一侧面实质上接近于第二滤光片的第二侧面;附接到杂散光控制光学器件 的一个或多个吸光层,其中一个或多个吸光层部分地覆盖杂散光控制光学 器件的第二侧面,因此允许来自光源的光通过;包含要被照射的样品的腔 室,腔室被包含在基座里,该基座包括附接到基座的第一侧面的反光器和 附接到基座底部的反光层,其中由样品发出的光被反光层反射回样品并且 被反光器导向基座的第二侧面;以及,具有第一侧面和第二侧面的检测器, 检测器的第一侧面实质上接近于基座的第二侧面,其中检测器检测由样品 发出的光。

附图说明

附图并入到本说明书中并且是构成说明书的一部分,附图说明了本公 开的一个或多个实施例,并且连同示例性实施例的描述,用于解释本公开 的原理和实现。

图1示出了使用顶部照射技术的光学检测结构的示例性布置的横截面 视图。

图2示出了使用侧面检测的有角度的照射技术的示例性布置。

图3示出了穿透辐射的示例性布置。

图4示出了具有多个孔样品区的示例性布置。

详细说明

贯穿本公开的实施例和变形的描述是为了说明发明概念的用途和实 现。说明性的描述应该作为提出的发明构思的例子来理解,而不是作为限 制本文公开的构思的范围来理解。类似的参考数字指示各种图中的对应部 分。

本公开的不同的实施例可以证明不同的光学技术,这些光学技术可以 允许来自大量样品类型的各种类型的光学测量(即,吸光率、荧光性等)。 此外,这些技术可以结合用于化学分析和生物化学分析的定量试验方法。 例如,光学技术可以用来获得用于实时聚合酶链式反应(qPCR)和酶联免 疫吸附测定(ELISA)的荧光测量。这种技术可以具有很多优点,例如, (但不局限于下列的优点):

1.小尺寸。

2.低成本。

3.合理的无透镜配置。

4.可以使光学器件可能无需机械接触和低校准要求。

5.泡沫的形成对光学器件没有影响。

6.可以允许查询大的表面区域和扁平样品的能力。

7.不要求精确的校准。

8.不要求严格的容忍度。

9.可以使复用成为可能。

10.高照度可以是可能的。

11.小的立体角,该小的立体角可以是非常敏感的。

12.可以集成在便携式仪器和定点护理(POC)仪器中。

13.可以用微流体、一次性的和许多其他基座类型仪器工作。

14.可以用许多不同的样品尺寸工作。

15.可以允许低成本LED光学元件的使用。

16.不需要分束器,因为是共焦的设计。

17.在没有任何滤光片使用的情况下,可以具有做荧光检测的能力。

根据本公开的示例性实施例,图1示出了顶部照射技术的示例性布置, 该顶部照射技术可以用来检测在基座(101)内的样品。图1的示例性实 施例包括LED(发光二级管)源(102)、第一滤光片(103)、准直和/或导 引光学器件或光导(104)、第二滤光片(105)、杂散光控制光学器件(106)、 安装在杂散光控制光学器件(106)两端的两个吸光器(107)和(108)、 中空基座(101)、检测器(113)和反光器或光学器件(119)。在图1的示 例性实施例中,基座(101)包括附接到基座(101)的第一侧面的垂直反光 器(115)、封闭在基座(101)内部的腔室(114)和附接到基座(101)底 部的反射衬层(116)。检测器(113)可以被放置在距基座(101)的第二 侧面的期望距离处并且光学器件(112)附接到检测器(113)的第一侧面, 光学器件(112)还可以被附接到第三滤光片(111)。被附接到检测器(113) 的第一侧面的光学器件(112)和第三滤光片(111)可以被放置在基座(101) 的第二侧面和检测器(113)的第一侧面之间。在图1的示例性实施例中, 反光器或光学器件(119)可以放置在基座(101)的第二侧面和滤光片(111) 的顶部以将来自基座(101)的第二侧面的光导引到检测器(113)。

在图1的示例性实施例所示的顶部照射技术的示例性布置中, LED(102)可以用来从顶部照射放置在腔室(114)的样品,其中腔室(114) 被封闭在基座(101)的里面。在一些实施例中,例如LCD(液晶显示器) 的其它光源也可以被使用。光导(104)(或者填充或者反射)放置在距 LED(102)一定距离处以捕捉受限于特定角度的光线。光导(104)可以由 各种形状组成以匹配在特定测量或应用中所需要的腔室(114)的形状。这 可允许具有可以匹配腔室(114)形状的设计波束形状且均匀化的波束。还 可以使用透镜来代替光导(104)。低成本的LED光学透镜和反光器可以在 允许各种大小的波束和斑点的很宽范围内的形状和大小中是可用的。此 外,在一些实施例中,也可以利用安装好的高亮度(HB)LED。在一些其 他实施例中,多个LED也可以被附接在一起来形成阵列或用于复用。

如在图1的示例性实施例所示,为了限制激发低于截止点的波长,第 一滤光片(103)可以被放置在LED(102)源和光导(104)之间。第一 滤光片(103)可以是吸光类型或者是干涉类型。第一滤光片(103)可以 包括但不受限于塑料、树脂、玻璃等各种材料。为了降低光学装置的成本, 也可以使用成本很低的塑料滤光片(例如,用在娱乐业和建筑业中的滤光 片)。在一些实施例中,滤光片(103)也可以放在LED(102)本身上。在一 些其他实施例中,染色LED可以被使用并且可被集成到类似于波导的光学 器件中,这有助于杂散光的减少。在图1的示例性实施例中,其两端安装 了两个吸光器(107)和(108)的杂散光控制光学器件(106)可以放置 在基座(101)和光导(104)之间以控制杂散光。

在图1的示例性实施例中,当腔室(114)里面的样品被来自LED(102) 的激发光线(118)照射时,发射光(117)可以从样品发出。该发射光波 (117)中的一些可以从顶部泄露。然而,由于全内反射(TIR),大部分 的光可以保持在基座(101)里面,并从基座侧面发出。可使用更高折射 率的材料(例如,塑料或另外的某种聚合物)来建造基座(101),由于临 界角改变,基座(101)将更多光保持在基座(101)的里面。因此,可以 执行从侧面的测量。在图1的示例性实施例中,检测器(113)可以放置在 距基座(101)的第二侧面期望的距离处,并且附接到检测器(113)的第 一侧面的光学器件(112)还可以附接到第三滤光片(111)。附接到检测器 (113)的第一侧面的光学器件(112)和第三滤光片(111)可以放置在基 座(101)的第二侧面和检测器(113)的第一侧面之间。在一些实施例中, 多个检测器可以放置在基座的侧面以允许用于多重检测。此外,每个检测 器有它自己的滤光片。各种种类的光学器件也可以放置在这些检测器的前 面。

在一些实施例中,基座(101)可以具有可以帮助收集光的内置特征。 基座(101)的侧面可以具有可以被集成到基座内的各种光学形状。在一 些实施例中,基座(101)的侧面可以是凸形的以将来自基座侧面的光引 导到检测器(113)。在一些实施例中,也可以使用外部光学元件。在图1 的示例性实施例中,可以使用垂直反光器(115)或光导元件以将光引导到 各个检测器中。基座(101)的衬层(116)可以被设计为是发光的以便使 光向下进入样品。此外,反射衬层(116)可以反射方向向下的有角度的从 基座面出来的光。通过使用诸如铝的金属或通过用诸如铝的金属涂敷聚合 物,衬层(116)可以制作成反光的。支撑物也可以由反光材料(例如,抛 光铝)制成,基座的剩余部分(在图中未示出)在该支撑物上。在图1的 示例性实施例中,基座(101)可以经过热循环并且可以执行qPCR。基座 (101)也可以被用于ELISA或其它定量的技术。

在一些实施例中,吸光器可以被策略性的放置,以通过吸收所反射的 激发光减少杂散光。在图1的示例性实施例中,在它两端安装有两个吸光 器(107)和(108)的杂散光控制光学器件(106)可以被放置在基座(101) 和光导(104)之间以控制杂散光。在图1的示例性实施例中,基座(101) 里面的腔室(114)可以薄而宽。在图1的示例性实施例中,腔室(114) 里面的样品可以被照射的这种方式,使得具有足够的信号来用于样品的光 学响应的检测。类似腔室(114)薄的设计相比厚的设计,具有更好的热响 应。在一些实施例中,对于具有更好的热特性(允许良好的热耗散)的薄 而宽的腔室,可以使用宽波束。

根据本公开的示例性实施例,图2示出了使用侧面检测的有角度照射 技术的示例性布置。如图2的示例性实施例所示的有角度照射技术不受限 于直接来自顶部的样品照射。类似于图1的示例性实施例,图2的示例性 布置包括光源(在图2中未示出)、中空基座(201)、检测器(213)和反 光器或光学器件(219)。类似于图1的示例性实施例,在图2的示例性实 施例中,基座(201)可以包括附接到基座(201)的第一侧面的垂直反光 器(215)、封闭在基座(201)里的腔室(214)和附接到基座(201)底部 的反射衬层(216)。

在图2的示例性布置中,检测器(213)可以被放置在距基座(201) 的第二侧面的期望距离处并且附接到检测器(213)第一侧面的光学器件 (212)还可以附接到第三滤光片(211)。附接到检测器(213)第一侧面 的光学器件(212)和第三滤光片(211)可以放置在基座(201)的第二侧 面和检测器(213)的第一侧面之间。在图2的示例性实施例中,反光器 或光学器件(219)可以放置在基座(201)的第二侧面和滤光片(211)的 顶部以将来自基座(201)第二侧面的光导引到检测器(213)。

在图2的示例性实施例中,照射腔室(214)内部的样品的光源可以根 据基座(201)有角度的放置。在图2的示例性实施例中,由于有角度放 置的光源,来自光源的激发光光线可以一个角度指向基座(201)或腔室 (214)内部的样品。由于塑料的折射率大于空气的折射率,那么如果基 座(201)由塑料制成,则光线将弯曲和进入基座(201)。光阻挡/吸收元 件(例如,吸光器(207))可以被策略性的放置,使得由于顶部照射导致 的反射光被吸收且不反弹和引起杂散光效应。

根据本公开的示例性实施例,图3示出了具有穿透辐射的顶部照射技 术的另一个示例性布置。在图3的示例性布置中,当吸光器(320)可放 置在基座(301)的底部的下面时,腔室(314)的底部可以由透明的聚合 物制成。因此,激发将被吸收。腔式结构也可以被制作以用于吸收光。聚 合物(制成基座(301)的聚合物)可以通过TIR(全内反射)导引发射光 到侧面。

根据本公开,图4的示例性实施例示出了使用公共覆盖膜(410),具 有多个孔(well)的顶部照射技术的示例性布置。类似于图1的示例性布 置,图4的布置可以包括用于照射样品的源(未在图中示出)、放置在用 于照射样品的源和基座(402)之间的滤光片(401)以保持住来自放在在 多个腔室(403)里面的要照射的样品的发射波。多个腔室(403)可以夹 在覆盖膜(410)和反光衬壁(404)之间。多个吸光器(例如,吸光器(405) 和(406))可以放置在基座(402)和滤光片(401)之间以消除杂散光。

在图4的示例性实施例中,检测器(407)可以放置在距基座(402) 的第二侧面的期望距离处。附接到检测器(407)的第一侧面的光学器件 (408)还可以附接到滤光片(409)。附接到检测器(407)的第一侧面的 光学器件(408)和滤光片(409)可以被放置在基座(402)的第二侧面 和检测器(407)的第一侧面之间。

该技术可以适用于具有紧凑诊断/分析的配件,该配件可以附接到手 机。在这种情况下,手机上的LED可以被用来照射并且手机的相机可以作 为检测器。滤光片(401)可以被包括以选择所要求的波长。诸如手机, 或者其他示例性的配件设备,可以拥有它自己的激发源。在发射通过滤光 片后,光导可以用来将发射引导到相机内。

在一些实施例中,根据用户的要求,发射和/或激发滤光片可以被集成 到设计中。例如,如果发射和激发波长相距很大,使得激发波长不与感兴 趣的发射波长重叠,则激发滤光片可以被省略。在这样的情况下,可使用 UV LED以激发可见的发光染色。另一方面,如果激发被很好的导引并且 没有以预期数量到达检测器(例如,激发不经历显著的全内反射(TIR) 或激发是可以预测的,比如在高温度处的荧光DNA(脱氧核糖核酸)染料 变得很低),则两个滤光片都可以被省略。激光二极管的使用也可以达到 两个滤光片都可以被省略目的。

如图4的示例性实施例所示,上面提及的技术可以以包括采样区 (孔)的这种方式来布置,其中每个孔可以被查询以制造低成本和小尺寸 的鲁棒的qPCR/等温荧光读取器或易使用的无需滤光镜的荧光读取器仪 器。可以轮流使用各种激发源也可以同时使用各种激发源。空气被用来加 热和冷却或保持等温温度等。在一些实施例中,如果底部是反光的,则可 以使用接触式冷却技术(例如,帕尔贴冷却)。此外,存在很多低成本的 激光二极管、激光器、LED和可用于大量染色的其它类型的光源。在很多 情况下,并不期望达到高准直度。在这种情况下,这可以通过使用不让过 量的激发光源进入检测器(被TIR导引、杂散或通过其它路径)的吸光结 构完成。

在本公开的示例性光学技术中,也可以使用CD激光二极管和光学器 件和转盘平台。在一些实施例中,垂直腔面发射激光器(VCSEL)也可以 被用于激发。在使用覆盖膜的情况下(像在杂交、PCB或金属腔中,壁可 以是不透明的),由于在很多情况下,覆盖膜会具有更高的折射率,所以 发射光可以在覆盖膜内传播,如图在图4中所示。某些角度的激发光通过 TIR被保持在覆盖膜中。覆盖膜可以放平或者倾斜。如果侧壁是不透明的, 进入面的光的百分比可少于使用透明基座的百分比。

在一些实施例中,被保持在覆盖膜中的光可以被用于检测。在这些情 况下,棱镜可以用来收集发射。例如,96孔板(作为已知的技术)的每个孔 可以接收激发照射,一次一个。可以用于顺序获得所有孔的发射的覆盖膜 允许紧凑的荧光计。可能存在一个大的吸收滤光片也可以充当激发滤光 片。由于LED的低成本,可以使用阵列。不透明的壁的使用是有益的,因 为如果板是由透明材料制成的,那么发射也可以导致在其它孔中的染色的 激发。然而,如图4的示例性实施例所示,在覆盖膜(410)中的光是从 每个孔到覆盖膜的末端,因此,将来自每个孔的光导向检测器。

作为光学技术的实现,如在图4的示例性实施例中所示,本领域的技 术人员熟知的是,可以激发多重染色的源可以通过使用简单的光学方程式 使复用变得容易。例如,荧光共振能量转移(FRET)探测仪可以由单个波 长激发,然而由于不同的受体染色,具有不同的发射峰值。可以采取如下 步骤进行测量:

a.将温度设置到95℃(或任何基线所要求的温度)并且记录荧光。 该读数可以是基线。它还可以包括一部分激发光。此外,基线也可以基于 时间(例如,可以是qPCR/等温反应的第一个周期)。

b.对于参考染色,读数可以是一部分激发的光和某个基线。

c.保持激励恒定和在参考温度(例如,60℃的退火温度)下测量荧 光。减去参考以计算发射。在很多情况下,由于染色荧光引起的消光效应 是可以忽略的;否则该效应可以被模型化并且可以由读数纠正。

在本公开的一些实施例中,样品区可以从顶部垂直于样品的表面照 射、或与法方向成角度照射。在一些实施例中,检测器可以放置在样品区 的侧面。这样的配置可以具有一些优点,包括但不限于紧凑的设计和更容 易访问样品区。使用用于要分析样品的基座的实施例,顶部照射和侧面检 测配置可能是有优势的,因为它可以允许基座容易地插入结构中并且在侧 面可以有效的收集反射光。基座可以被设计为允许从结构的侧面进行有效 收集。基座可以被设计为允许较少的不携带来自所分析的样品信息的光到 达检测器。

上面所阐述的例子为那些本领域的普通技术人员提供如何制作和使 用全部匹配本公开的实施例的完整的公开和描述,并且上面所阐述的例子 并不旨在限制一个或多个发明人所认为的他们的公开的范围。

上面所描述的用于执行此处所公开的方法和系统的方式的修改对于 本领域的技术人员而言是显而易见的并且旨在落入下面的权利要求的范 围内。说明书中所提到的全部专利和出版物是本公开所属技术领域的技术 人员的水平的表示。在本公开中所引述的全部参考通过与每个参考已经分 别通过其各自的全部引用被并入的方式相同程度的引用被并入。

应该理解的是,本公开不是限制当然是可以变化的特定的方法或系 统。还应该理解的是,此处所使用的术语的目的只是描述特定的实施例, 并且不旨在限制。除非另外明确规定,否则,如在本说明书和附属权利要 求中所用的,单数形式“一个(a)”、“一个(an)”、“该(the)”包括复数 的指示物。除非另外明确规定,否则,术语“多个(plurality)”包括两个 指示物或两个以上指示物。除非另外定义,否则,此处所使用的所有技术 术语和科学术语具有与本公开所属技术领域的一个普通技术人员所通常 理解的技术术语和科学术语相同的意思。

本公开的一些实施例已经被描述。尽管如此,应该理解的是,可以在 不违背本公开的精神和范围内做各种修改。因此,其他实施例是在下列权 利要求的范围内。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号