首页> 中国专利> 电荷传输半导体材料和半导体器件

电荷传输半导体材料和半导体器件

摘要

本发明涉及电荷传输半导体材料,其包含:a)任选地至少一种电掺杂剂,和b)至少一种包含1,2,3-三唑交联单元的交联的电荷传输聚合物,涉及其制备方法,和涉及包含所述电荷传输半导体材料的半导体器件。

著录项

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2019-03-22

    授权

    授权

  • 2015-09-16

    实质审查的生效 IPC(主分类):H01L51/00 申请日:20130906

    实质审查的生效

  • 2015-06-03

    公开

    公开

说明书

技术领域

本发明涉及一种电荷传输半导体材料、其制备方法和包含所述材 料的半导体器件。

背景技术

自从Tang等,1987[C.W.Tang等,Appl.Phys.Lett.(应用物理快报) 51(12)913(1987)]证实低工作电压以来,有机发光二极管已成为有希 望实现大面积显示器的候选者。它们由一系列的薄(通常1nm至1μm) 有机材料层构成,所述层可通过真空沉积、旋涂沉积或以其聚合物形 式从溶液中沉积而产生。在通过金属层电接触后,它们形成多种电子 或光电子组件,例如二极管、发光二极管、光电二极管和薄膜晶体管 (TFT),其在特性方面与基于无机层而构建的组件竞争。

在有机发光二极管(OLED)的情况下,如下产生光并由发光二极管 发光:由于外部施加的电压,将来自触点的电荷载流子(电子来自一侧, 空穴来自另一侧)注入相邻的有机层,随后在有源区中形成激子(电子- 空穴对),并且这些激子辐射复合。

这些有机组件相比于常规的无机组件(半导体,例如硅、砷化镓) 的优点在于,可以制造大面积元件,即大的显示元件(视觉显示器、屏 幕)。与无机材料相比,有机原料相对便宜(材料和能量的开支较小)。 此外,这些材料由于其与无机材料相比的低加工温度而可沉积在柔性 基底上,这开辟了在显示器和照明工程中的整个系列的新应用。

这种组件的基本结构包括下列层中的一个或多个的布置:

1.载体,基底

2.基极,空穴注入(正极),通常是透明的

3.空穴注入层

4.空穴传输层(HTL)

5.发光层(EL)

6.电子传输层(ETL)

7.电子注入层

8.盖电极(cover electrode),通常是具有低逸出功的金属,电子注 入(负极)

9.封装,以屏蔽环境影响。

尽管前述结构代表了最典型的情况,但通常可省略数个层(除了第 2层、第5层和第8层之外),或者一个层还可合并数种特性。美国专利 5,093,698公开了空穴传导和/或电子传导层可掺杂有其它有机分子,以 增加其电导率。

有机光伏(OPV)对于有效且大规模地将光转化成电提供了重大前 景。有机光伏器件的制造相比于无机结晶光伏器件的制造对于材料的 要求没那么苛刻。此外,所述制造相比于任何其它无机光伏器件的制 造消耗显著更少的能量。

一直在稳步提升有机光伏器件的效率。在2008年达到了5%的得到 证实的功率转换效率值,并且在2010年突破了8%的心理障碍,从而使 有机光伏器件的效率与无定形Si器件的典型值相持平。

OPV器件包含至少一个太阳能电池,或太阳能电池的布置。有机 太阳能电池具有最不同的层堆叠结构。通常它们在两个电极之间包含 至少一个有机光伏层。所述有机层可以是供体和受体的共混物,例如 P3HT(聚3-己基-噻吩)和PCBM(苯基C61丁酸甲酯)。如果使用界面注入 层来促进电荷载流子注入/提取,则此类简单的器件结构只实现合理的 效率(Liao等,Appl.Phys.Lett.(应用物理快报),2008.92:第173303页)。 其它有机太阳能电池具有多层结构,有时甚至是聚合物和小分子的混 合结构。还已知串联或多单元堆叠(US7675057,或Ameri等,Energy & Env.Science(能量和环境科学),2009.2:第347页)。多层器件可更容易 优化,因为不同的层可包含适于不同功能的不同材料。典型的功能层 是传输层、光学活性层、注入层等。

掺杂的电荷载流子传输层(通过混合受体类分子p型掺杂HTL,通 过混合供体类分子n型掺杂ETL)的使用描述于美国专利5,093,698中。在 这个意义上的掺杂是指,将掺杂物质混合至层中增加了这个层中的平 衡电荷载流子浓度,与所涉及两种物质之一的纯层相比,其产生提高 的电导率和从相邻的接触层到这个混合层的更好的电荷载流子注入。 在基质分子上仍发生电荷载流子的传输。根据美国专利5,093,698,将 掺杂层用作触点材料的界面处的注入层,发光层存在于其间(或者,当 使用仅一个掺杂层时,紧邻其它触点)。通过掺杂和相关的频带偏移(band  bending)而增加的平衡电荷载流子密度促进电荷载流子注入。根据美国 专利5,093,698,应获得有机层的能级(HOMO=最高占据分子轨道或最 高能态价带能量;LUMO=最低未占据分子轨道或最低能态导带能量), 以使得ETL中的电子以及HTL中的空穴可在无其它障碍的情况下注入 EL(发光层)中,这需要HTL材料具有非常高的电离能和ETL材料具有非 常低的电子亲合能。

有机半导体器件的重要特性是其电导率。通过电掺杂,可以显著 提高有机半导体器件的层的电导率。可以通过例如所谓的两点法来测 量薄层样品的电导率。在此,将电压施加至薄层并且测量流过该层的 电流。通过考虑触点的几何形状和样品的层厚度分别得到电阻和电导 率。

在有机电子学领域中,必须在彼此之上形成数个不同的功能有机 层以制造电子器件。所述器件的功能由堆叠层和其界面的优化的相互 作用产生。通常,存在两种不同的制备这些层和界面的方法。首先, 真空沉积,其次,将功能材料从溶液中涂覆在基底之上或先前制备的 另一个层之上。

根据这些技术,溶液方法由于其相比于高真空技术可以高产出大 量生产和成本较低而得到更多关注。

当使用溶液方法时,存在如下挑战:通过从溶剂中在层上沉积另 一个层,避免损坏或溶解先前的有机层或其特性的任何其它不希望的 变化。除了所谓的“正交溶剂”(orthogonal solvent)方法之外,先前有机 层的交联还可以防止该层的破坏、溶解或改变。

现有技术中有多种已知的可行的交联反应。它们中的许多已经用 于制造有机聚合物半导体。然而,如果交联层应充当电荷传输层,则 仍存在掺杂可能干扰交联反应的一般问题。用于制备掺杂的有机材料 的交联技术的使用受到以下事实的限制:交联一般包括高反应性基团 的反应或需要通过高温或高能照射来活化。这样的条件通常与掺杂剂 或与所产生的电荷载流子不相容。这在电掺杂情形下尤其适用,其产 生具有离子自由基特性的相当敏感的电荷载流子。

在OLED中测试的可用交联方法的信息调查提供于例如Zuniga等, Chem.Mater.(化学材料)2011,23,658-681中。迄今已知的任何方法都 具有其特定缺陷和限制。缩聚,例如广泛使用的聚硅氧烷的形成,通 常留下潜在地造成问题的副产物如HCl。适当活化的双键(例如苯乙烯 或丙烯酸酯类)的自由基聚合需要通过UV光、通过添加的自由基引发 剂、通过一般显著高于100℃的温度或这种方式的组合来活化。三氟苯 醚或苯并环丁烯环加成需要高于200℃的温度,查尔酮或肉桂酸酯环加 成需要通过UV光的吸收进行光化学活化。氧杂环丁烷阳离子聚合需要 利用强酸或反应性阳离子来活化。

迄今为止,对于反应性基团和交联方法与电掺杂剂之间的相容性 仍知之甚少。Yu等,J.Appl.Phys.(应用物理期刊)2008,104,124-505报 道了在带有UV交联的肉桂酸酯基团的聚乙烯基咔唑中和在带有被光酸 交联的氧杂环丁烷基团的聚三芳基胺中用C60F36进行成功的p型掺杂。

发明内容

因此,本发明的一个目的在于提供克服现有技术的缺点的电荷传 输半导体材料。特别地,将提供如下的电荷传输半导体材料,其可通 过在不存在照射、另外的引发剂或催化剂的温和条件下交联并通过在 交联期间保持其高电导率来获得。

这个目的已通过如下的电荷传输半导体材料实现,所述电荷传输 半导体材料包含:

a)任选地至少一种电掺杂剂(electrical dopant),和

b)至少一种交联的电荷传输聚合物,其包含通式Ia和/或Ib的1,2,3- 三唑交联单元,

其中

aa)Pol1-Pol4是独立选择的电荷传输聚合物,

bb)X1、X2、X3和X4是独立选择的间隔基(spacer)单元或表示所述 Pol基团与所述1,2,3-三唑环的直接键合,

cc)R和R'独立地选自H,卤素,腈,C1-C22饱和或不饱和的烷基, C3-C22环烷基,C6-C18芳基,C7-C22芳基烷基,

具有至多三个独立地选自氧、氮和硫的杂原子的C2-C13杂芳基,

SiR1R2R3,其中R1、R2和R3独立地选自C1-C4烷基或苯基,

COR4或COOR5,其中R4和R5独立地选自C1-C22烷基或C7-C22芳基 烷基,

CR6R7OR8,其中R6和R7独立地选自H、C1-C6烷基、C6-C9芳基,或 者R6和R7一起形成C3-C7环,并且R8是C1-C6烷基、C7-C22芳基烷基, SiR9R10R11,其中R9、R10和R11独立地选自C1-C4烷基或苯基,或COR12, 其中R12是H或C1-C21烷基,

其中R和R'可选自的基团可任选地被烷基、环烷基、芳基、杂芳基 或芳基烷基取代,其中在cc)下所述的C原子数目包括取代基的C原子数 目,并且在R和R'选自烷基、环烷基、芳基、杂芳基或芳基烷基的情况 下,所述基团可任选地部分或完全被卤素原子取代;

所述电荷传输半导体材料可通过如下方法获得,所述方法包括:

i)提供溶液,其含有

aaa)第一前体电荷传输聚合物,其包含至少一个共价连接的叠氮 (azide)基团和任选地至少一个炔(acetylenic)基;和/或第二前体电荷传输 聚合物,其包含至少一个共价连接的炔基和任选地至少一个叠氮基团; 和任选地至少一种交联剂,其包含至少两个选自叠氮和/或炔基的官能 团,

bbb)任选地至少一种电掺杂剂,

ccc)至少一种溶剂,

ii)将所述溶液沉积在基底上,

iii)除去所述溶剂,和

iv)优选通过加热,使所述叠氮与炔基反应以实现交联,

其中在所述第一前体电荷传输聚合物、所述第二前体电荷传输聚 合物和所述交联剂中的每种中,每分子的叠氮和/或炔基的平均数大于 2,优选大于2.05。

电掺杂剂应理解为如下的化合物,其出于调节半导体的电特性的 目的、优选为增加其电导率而引入半导体中。所述电掺杂剂优选是氧 化还原掺杂剂,其通过与电荷传输基质的氧化还原反应(电荷转移)而在 掺杂的半导体材料中产生具有离子自由基(ion radical)(空穴)特性的自由 电荷载流子。在所述掺杂剂是氧化还原p型掺杂剂的优选情况下,所述 电荷载流子具有阳离子自由基(cation radical)(空穴)的特性并且电荷载 流子传输是空穴传输。

氧化还原掺杂剂的强度可例如在其电化学氧化还原电位方面进行 比较,所述电化学氧化还原电位可通过循环伏安法在参比氧化还原体 系例如Fc/Fc+的存在下测量。循环伏安法和测定还原电位的其它方法的 细节以及二茂铁/二茂铁参比电偶与各种参比电极的关系可见于A.J. Bard等,"Electrochemical Methods:Fundamentals and Applications"(电化 学方法:原理和应用),Wiley,第2版,2000中。

根据本发明的间隔基单元是允许两个分子基团优选经由共价键合 进行连接的结构部分。通常,足够稳定以承受交联方法的条件的任何 共价结构都可以用作间隔基单元。术语“结构部分”用于更复杂的化 学结构的任何部分。

优选地,可使用具有至多30个多价原子的间隔基单元。甚至更优 选地,所述间隔基单元是仅包含共价键的分子基团。具有至多30个多 价原子的间隔基不需要本身有助于所述电荷传输半导体材料的电荷传 输特性。在间隔基单元包含共轭π轨道体系以允许电荷沿着间隔基单元 转移的情况下,可优选使用包含多于30个多价原子的间隔基单元。在 这种情况下,在本发明的掺杂的半导体材料中,所述间隔基单元不仅 可基本上起到连接所述电荷传输聚合物Pol与所述三唑交联单元的系链 (tether)的作用,而且同时与Pol一起在对间隔基长度无任何实质性限制 的情况下起到电荷传输基质的作用。多价在这方面是指高于1的价态。 氢和碱金属每次被视为单价,其它元素的价态取决于其在每个特定情 况下在间隔基中的键合。

以所述电荷传输半导体材料的总重量计,所述电荷传输半导体材 料中的间隔基单元的总量应不超过90重量%、优选80重量%、最优选50 重量%。

饱和烷基包含所有的仅含有碳碳单键的直链和支链烷基基团。不 饱和烷基是包含至少一个碳碳双键的直链或支链烃基团。

根据本发明的环烷基包括所有的环状和多环的碳结构,其还可以 任选地含有除芳族体系(芳基)之外的不饱和键。

术语芳基还包括被烷基基团如甲苯基、二甲苯基等取代的芳基基 团。其还包括所有种类的缩合芳族体系如萘基、蒽基、菲基和芳基取 代的芳基如1,1'-联苯-4-基。

卤素是指F、Cl、Br和I。

根据本发明的交联是指连接聚合物链以形成无限的(infinite)结构, 优选通过新的共价键,形成新(交联)的结构部分(交联单元)。基本上, 必要的是在交联反应混合物中每个分子具有至少两个可交联的反应性 基团,以能够在交联反应期间由连接在一起的起始分子与由起始可交 联反应性基团形成的新交联单元实现连续的无限网状物。术语“无限” 是指所述网状物形成巨大的聚合物分子,其尺寸仅受前体材料总量的 限制。每个分子的反应性基团的平均数越高,形成无限网状物所需的 交联基团的官能团转换率(凝胶点)越低。本领域普通技术人员将认识 到,交联电荷传输材料中的交联单元的数目增加可特别有利于实现如 下的层,其具有高稳定性、特别是针对相邻层加工中所使用任何溶剂 的破坏具高抵抗性。

在根据本发明的交联的电荷传输聚合物中,每个交联三唑单元可 键合至所述电荷传输聚合物Pol的相同分子或不同分子。每个Pol分子键 合至至少一个三唑交联单元。如果根据本发明的交联的电荷传输聚合 物形成无限结构,则直接地或经由间隔基连接至一个交联三唑基团的 Pol分子的平均数以及直接地或经由间隔基连接至一个Pol分子的交联 三唑基团的平均数高于二。

根据本发明的电荷传输聚合物是如下的聚合物,其由于沿着所述 聚合物的重叠轨道体系而能够传输注入的电荷。所述重叠轨道优选是 聚合物主链中的原子轨道,但也可以是沿着聚合物主链的悬侧基团 (pending side group)中所含的原子的轨道。注入电荷(呈通过与聚合物接触 的电极或通过与适当的电掺杂剂反应而注入或提取的电子形式)因此可 形成离域阳离子自由基或阴离子自由基,能够容易地迁移通过聚合物 材料并且因此在施加电压时产生可测量的电流。

优选地,所述电荷传输半导体材料具有高于10-10S/cm、优选高于 10-8S/cm、更优选高于10-6S/cm、最优选高于10-4S/cm的电导率。

通式Ia和/或Ib的交联的电荷传输聚合物可通过包括以下的方法获 得:可交联部分A中所包含并共价键合的叠氮基团-N3与互补可交联部 分B中所包含并共价结合的互补炔基-CC-R或-CC-R'的环加成反应,其 中R和R'如上文所限定的。

在本发明的一个优选实施方式中,至少可交联部分A或至少可交联 部分B具有前体电荷传输聚合物的特性。前体电荷传输聚合物是包含可 交联叠氮和/或炔基的电荷传输聚合物。所述前体电荷传输聚合物可为 直链或支链的,但可以不是交联的,因为交联将使其不可溶。

优选的是,至少一种前体电荷传输聚合物包含在本发明电荷传输 半导体材料的根据特征aaa)的混合物中。

在一个优选的实施方式中,所述第一前体电荷传输聚合物包含构 造单元IIa、IIb、IIc和/或IIe中的至少一种,和/或所述第二前体电荷传 输聚合物包含构造单元IIa'、IIb'、IIc'和/或IIe'中的至少一种:

其中Ar1-Ar14和Ar29-Ar32独立地选自C6-C18亚芳基,其任选地被烷 基或环烷基基团取代,所述烷基或环烷基基团可任选地部分或完全被 卤素原子取代,其中所述的C原子数目包括取代基的C原子数目,并且 其中在Ar7-Ar14和Ar29-Ar32的情况下,所述亚芳基基团是邻亚芳基基团, 其与第二亚芳基以及与同一结构单元的环脂族碳原子或氮原子形成五 元环,并且可由所述亚芳基基团的任何其它可能的位置实现与所述聚 合物的任何相邻结构单元的键合,

X5-X12和X35-X36是独立选择的间隔基单元或表示直接键合,

R13、R16-R18和R34独立地选自H,卤素,腈,C1-C22饱和或不饱和 的烷基,C3-C22环烷基,C6-C18芳基,C7-C22芳基烷基,

具有至多三个独立地选自氧、氮和硫的杂原子的C2-C13杂芳基,

SiR1R2R3,其中R1、R2和R3独立地选自C1-C4烷基或苯基,

COR4或COOR5,其中R4和R5独立地选自C1-C22烷基或C7-C22芳基 烷基,

CR6R7OR8,其中R6和R7独立地选自H、C1-C6烷基、C6-C9芳基,或 者R6和R7一起形成C3-C7环,并且R8是C1-C6烷基、C7-C22芳基烷基, SiR9R10R11,其中R9、R10和R11独立地选自C1-C4烷基或苯基,或COR12, 其中R12是H或C1-C21烷基,

其中R和R'可选自的基团可任选地被烷基、环烷基、芳基、杂芳基 或芳基烷基取代,其中在cc)下所述的C原子数目包括取代基的C原子数 目,并且在R和R'选自烷基、环烷基、芳基、杂芳基或芳基烷基的情况 下,所述基团可任选地部分或完全被卤素原子取代;

并且

R14-R15独立地选自H,C1-C22烷基,C3-C22环烷基,C6-C25芳基, C7-C22芳基烷基,C1-C20烷氧基,C6-C18芳氧基,C1-C20烷基硫基,C6-C18芳基硫基,C12-C24二芳基氨基,和具有至多三个独立地选自氧、氮和 硫的杂原子的C2-C13杂芳基,

其中,在R14-R15中的任一个选自烷基、芳基烷基、芳基、环烷基 或杂芳基的情况下,所述基团可任选地被烷基、环烷基、芳基、杂芳 基、芳基烷基取代,其中所述的C原子数目包括取代基的C原子数目, 并且所述基团可任选地部分或完全被卤素原子取代。

就此来说的邻亚芳基涉及在亚芳基基团的两个相邻碳原子处、例 如在苯环的1位和2位处键合至各自的亚芳基基团。

根据本发明的构造单元是在聚合物链中重复的结构单元。任何聚 合物链在形式上可通过将其构造单元如项链的珠粒一样连续地连接在 一起而获得。

所述构造单元可相同或不同并且可以以无规或规整次序以及以含 有多种相同构造单元的嵌段而存在于聚合物中。

在另一个优选的实施方式中,所述第一前体电荷传输聚合物包含 选自IIa、IIc和IIe的构造单元中的至少一种,和/或实施为第二电荷传输 聚合物包含选自IIa'、IIc'和IIe'的至少一种构造单元,其中

Ar1-Ar6是1,4-亚苯基,

X5、X6、X9-X12和X35-X38独立地选自C1-C10烷-α,ω-二基桥连基, 其中直接地或通过醚桥连基实现与所述亚芳基基团或与所述五元环的 环脂族碳原子的连接,

R38具有与R34相同的定义,并且

IIc是IId,IIc'是IId',IIe是IIf并且IIe'是IIf',

在另一个优选的实施方式中,所述第一前体电荷传输聚合物和/或 所述第二前体电荷传输聚合物还包含通式III、IV和/或VI的结构单元

其中Ar15-Ar19和Ar35-Ar36独立地选自C6-C18亚芳基,其任选地被烷 基或环烷基基团取代,所述烷基或环烷基基团可任选地部分或完全被 卤素原子取代,其中所述的C原子数目包括取代基的C原子数目,并且 其中在Ar18-Ar19和Ar35-Ar36的情况下,所述亚芳基基团是邻亚芳基基 团,其与第二亚芳基以及与同一结构单元的环脂族碳原子或氮原子形 成五元环,并且可由所述亚芳基基团的任何其它可能的位置实现与所 述聚合物的任何相邻结构单元的键合,

R19-R21独立地选自上文关于R14-R15所限定的基团,

并且R35选自H,C1-C22烷基,C3-C22环烷基,C6-C25芳基,C7-C22芳基烷基,和具有至多三个独立地选自氧、氮和硫的杂原子的C2-C13杂芳基,

其中C1-C22烷基、C3-C22环烷基、C6-C25芳基、C7-C22芳基烷基和 C2-C13杂芳基可任选地被烷基、环烷基、芳基、杂芳基、芳基烷基取代, 其条件是所述的C原子数目包括取代基的C原子数目,并且所述基团可 任选地部分或完全被卤素原子取代。

在又一个优选的实施方式中,Ar15-Ar17是1,4-亚苯基,

IV是IVa

R19、R22和R23独立地选自C1-C10烷基,并且

R19可通过醚桥连基任选地键合至Ar17

关于上式,优选的是,X5、X7、X9和X10优选是-(CH2)4-,X6、X8、 X11和X12优选是-OCH2-,R19优选是1-甲基丙基,并且R22和R23优选是1- 乙基戊基。

此外优选的是,所述互补的可交联部分A和B中的至少一个至少部 分地由具有其平均官能度的化合物表示,所述平均官能度定义为每个 分子的反应性叠氮和/或亚烷基可交联基团的平均数目,其选自2、3或4。 在这个实施方式中,所述可交联部分可为聚合物,例如具有反应性叠 氮或炔端基的直链聚合物,或在每个臂(arm)的末端具有一个叠氮或炔 反应性端基的三臂或四臂星形聚合物。当然,如果所述互补可交联部 分A和B中的一个具有平均官能度2,则互补组分的平均官能度必须高于 2以使得这种混合物的交联在理论上是可行的。实际上,几乎不可避免 的是,一些二价可交联部分通过与其互补多价对应物(counterpart)反应而 形成环状或大环结构。它通常可导致在样品表面上起始的交联部分的 链在达到相对侧之前封端。这意味着,如果一个可交联部分具有恰好 等于2的平均官能度并且互补可交联部分的平均官能度高于2,则实际 上仍不足以使这种混合物胶凝化。因此,有必要的是,两个互补可交 联部分都具有高于2的平均官能度。在一个优选的实施方式中,两个互 补可交联部分都具有高于2.05、更优选高于2.1的平均官能度。

另一方面,显然,如果所述可交联组分A和B中的任一种的平均官 能度高于2,则并非所有的可用反应性叠氮和炔基都必然转化为交联三 唑基团以实现所期望的无限交联网状物。

优选的是,所述电荷传输前体聚合物的聚合度(定义为聚合物链中 的结构单元的平均数目)在10-10,000范围内,更优选在100-1,000范围 内。

所述前体电荷传输聚合物中的构造单元的优选组合是A和C、A和 D、A和E、B和C、B和D、B和E、A和C和D、B和C和D、A和D和E、B 和D和E,其中A型构造单元选自结构IIa、IIb、IIc和IIe,B型构造单元 选自结构IIa'、IIb'、IIc'和IIe',C型构造单元是结构III,D型构造单元是 式IV的结构并且E型构造单元是式VI的结构。

在另一个优选的实施方式中,所述交联剂选自Va、Vb、Vc、Va'、 Vb'和Vc'

其中Q或Q'是二价单元,Y或Y'是三价单元并且Z或Z'是四价单元,

X13-X30是独立选择的共价间隔基单元或表示直接键合,并且

R24-R32独立地选自如权利要求1中关于R或R'所限定的基团。

四价单元是能够建立四个稳定的共价键的分子单元或原子。以相 同的方式,二价或三价单元分别是能够形成两个或三个稳定的共价键 的单元。

优选地,Q和Q'是二价原子或二价C6-C18芳烃单元,Y和Y'是三价 原子或三价C6-C18芳烃单元,并且Z和Z'是四价原子或四价C6-C18芳烃单 元,其中所述芳烃单元任选地被烷基或环烷基取代,所述的C原子数目 包括取代基的C原子数目,并且所述芳烃单元以及所述取代基可任选地 部分或完全被卤素原子取代。

甚至更优选地,X13-X30独立地选自C1-C10烷-α,ω-二基,其中至少 一个亚甲基基团可任选地被氧原子代替,其条件是所述氧原子通过至 少两个碳原子与各自的叠氮或炔基隔开,并且在Q或Q'是二价硫族原子 或者Y或Y'是三价氮的情况下,所述氧原子不直接键合至各自的中心原 子。

此外优选地,Q和Q'独立地选自O、S、Se和Te,Y和Y'独立地选自 B、N、P、As和Sb,并且Z和Z'独立地选自C和Si。

优选地,R24-R32是H,Q'是二价苯单元,Y'是四价苯单元,Z是四 价苯单元,并且X13-X30独立地选自COOCH2、OCO、(CH2)m或O(CH2)m, 其中m是1-3的整数。

所述交联的电荷传输聚合物一被制备就以连续的聚合物网状物形 式包含在所述电荷传输半导体材料中。

由先前描述的优选前体聚合物形成的交联的电荷传输聚合物包含 以下结构单元中的至少一种

a)IIa″、IIb″、IIc″和/或IIe″,

b)任选地III、IV和/或VI

其中Ar15-Ar26和Ar33-Ar36独立地选自C6-C18亚芳基,其任选地被烷 基或环烷基基团取代,所述烷基或环烷基基团可任选地部分或完全被 卤素原子取代,其中所述的C原子数目包括取代基的C原子数目,并且 其中在Ar18-Ar26和Ar33-Ar36的情况下,所述亚芳基基团是邻亚芳基基 团,其与第二亚芳基以及与同一构造单元的环脂族碳原子或氮原子形 成环戊二烯环,并且可由所述亚芳基基团的任何其它可能的位置实现 与相邻构造单元的键合,

X31、X32、X33、X34和X37是独立选择的间隔基单元或表示所述Pol 基团与所述1,2,3-三唑环的直接键合,

R33独立地选自H,C1-C22烷基,C3-C22环烷基,C6-C25芳基,C7-C22芳基烷基,C1-C20烷氧基,C6-C18芳氧基,C1-C20烷基硫基,C6-C18芳基 硫基,C12-C24二芳基氨基,和具有至多三个独立地选自氧、氮和硫的 杂原子的C2-C13杂芳基,

其中,在R33选自烷基、芳基烷基、芳基、环烷基或杂芳基的情况 下,所述基团可任选地被烷基、环烷基、芳基、杂芳基、芳基烷基取 代,其中所述的C原子数目包括取代基的C原子数目,并且所述基团可 任选地部分或完全被卤素原子取代,

R19-R21和R35如上文所限定的,并且

T表示三唑交联单元Ia和Ib中的一个的1,2,3-三唑环,其中与所述三 唑环的键合可为键合至所述氮原子或键合至所述碳原子。

在另一个优选的实施方式中,所述交联的电荷传输聚合物可包含 如上文所限定的结构单元IIa″、IIb″、IIc″和/或IId″,和任选地III″和/或 IV″,

其中Ar15、Ar16、Ar17、Ar20、Ar21和Ar22是1,4-亚苯基,

X31-X34和X37独立地选自C1-C10烷-α,ω-二基桥连基,其中直接地或 通过另外的氧原子实现与所述亚芳基基团或与所述五元环的环脂族碳 原子的连接,并且

IIc″是IId″并且IIe″是IIf″

其中X39-X40具有与X33-X34相同的定义,X38具有与X37相同的定义 并且T是如上文所限定的。

在这方面,在X键合至所述三唑环的碳原子的情况下,X31-X34优 选是-OCH2;或者在X键合至所述三唑环的氮原子的情况下,X31-X34优 选是-(CH2)-4

在另一个优选的实施方式中,Ar15、Ar16、Ar17、Ar20、Ar21和Ar22是1,4-亚苯基,结构单元IV是构造单元IVa,

其中R22和R23是独立选择的C1-C10烷基,并且

R19可通过另外的氧原子任选地键合至Ar17

在这方面,R19优选是1-甲基丙基并且R22和R23优选是1-乙基戊基。

在由优选的电荷传输聚合物形成的交联聚合物中,可存在不同量 的含有未反应的可交联叠氮和炔基的结构单元,其由相应前体电荷传 输聚合物的未改变的构造单元IIa、IIb、IIc、IIe或IIa'、IIb'、IIc'、IId' 表示。

显然,如果任何式Va、Va'、Vb、Vb'、Vc、Vc'的化合物用于制备 根据本发明的交联的电荷传输聚合物,则这种起始“低分子交联剂”' 的已反应的反应性基团变成1,2,3-三唑交联基团的一部分,并且其余分 子变成相应式Ia或Ib中的间隔基的一部分。类似地,前体聚合物的构造 单元的结构将保留在交联聚合物的相应结构单元中,条件仅是已反应 的叠氮和炔基将变成三唑交联单元。更特别地,式IIa、IIa'、IIb、IIb'、 IIc、IIc'、IId、IId'、IIe、IIe'、III、IV、VI中的任一个的结构将保留在 相应交联聚合物的相应结构单元IIa″、IIb″、IIc″、IId″、IIe″、III、IV、 VI中,只有与其互补基团反应的叠氮和炔基变成相应的1,2,3-三唑交联 基团。

因此,交联剂Va如果一键合在交联聚合物中,则将形成结构单元 Va″1

其中X13、X14和Q具有与式Va中相同的含义,至少一个T1是如上文 所限定的T,而其它T1是T或未反应的叠氮基团。

类似地,交联剂Va'如果一键合在交联聚合物中,则将形成结构单 元Va″2

其中X15、X16和Q'具有与式Va'中相同的含义,T2是T或未反应的炔 基-CC-R24,并且T3是T或未反应的炔基-CC-R25,其如上文所限定的, 其条件是T2和T3中的至少一个是T。

交联剂Vb如果一键合在交联聚合物中,则将形成结构单元Vb″1

其中X17、X18、X19和Y具有与式Vb中相同的含义,至少一个T4是 如上文所限定的T,而其它T4独立地是T或未反应的叠氮基团。

交联剂Vb'如果一键合在交联聚合物中,则将形成结构单元Vb″2

其中X20、X21、X22和Y'具有与式Vb'中相同的含义,T5是T或未反 应的炔基-CC-R28,T6是T或未反应的炔基-CC-R26,并且T7是T或未反应 的炔基-CC-R27,其如上文所限定的,其条件是T5、T6和T7中的至少一 个是T。

交联剂Vc如果一键合在交联聚合物中,则将形成结构单元Vc″1

其中X23、X24、X25、X26和Z具有与式Vc中相同的含义,至少一个 T8是如上文所限定的T,而其它T8独立地是T或未反应的叠氮基团。

交联剂Vc'如果一键合在交联聚合物中,则将形成结构单元Vc″2

其中X27、X28、X29、X30和Z'具有与式Vc'中相同的含义,T9是T或 未反应的炔基-CC-R29,T10是T或未反应的炔基-CC-R30,T11是T或未反 应的炔基-CC-R31,并且T12是T或未反应的炔基-CC-R32,其如上文所限 定的,其条件是T9、T10、T11和T12中的至少一个是T。

在氧化还原p型掺杂的情况下,由于电子从主体(空穴传输材料)的 HOMO转移至掺杂剂的LUMO而提供电导率。合适的p型电掺杂剂一般 是LUMO能级等于或低于主体HOMO的分子或自由基。在一些情况下, LUMO能级略高于主体HOMO能级的p型电掺杂剂也可适用,但在这些 情况下的前沿轨道能量的差异应不高于0.5eV,优选不高于0.3eV。所 述掺杂剂可为中性或带电荷的。

一类优选的p型掺杂剂是六氮杂苯并菲化合物。用于p型掺杂有机 半导体材料中的非常理想的化合物是HAT-1。

另一合适种类的优选的p型掺杂剂是氰基苯醌二甲烷和氰基苯醌 二亚胺的氟化衍生物,例如EP1912268、WO2007/071450和 US20060250076中所描述的那些。氰基苯醌二甲烷和氰基苯醌二亚胺的 氟化衍生物的具体实例包括:

另一类优选的p型掺杂剂是轴烯(radialene),例如US20080265216; Iyoda等,Organic Letters(有机快报),6(25),4667-4670(2004); JP3960131;Enomoto等,Bull.Chem.Soc.Jap.(日本化学会志),73(9), 2109-2114(2000);Enomoto等,Tet.Let.(四面体快报),38(15), 2693-2696(1997);和Iyoda等,JCS,Chem.Comm.(JCS化学通讯),(21), 1690-1692(1989)中所述的那些。

更优选地,所述电掺杂剂选自[3]-轴烯化合物,其中每个桥头碳原 子被腈基团、C6-C14全氟化芳基或C2-C14全氟化杂芳基取代,其中所述 全氟化取代基中的至多三个氟原子可任选地被独立选自腈或三氟甲基 的基团代替。

优选的[3]-轴烯的一些示例性实例包括:

另一类合适的掺杂剂代表具有高氧化态的金属的络合物,例如:

另外通过本发明的第一前体电荷传输聚合物来实现所述目的,其 包含至少一个共价连接的叠氮基团和任选地至少一个炔基,如上文所 限定的。

此外,通过本发明的第二前体电荷传输聚合物来实现所述目的, 其包含至少一个共价连接的炔基和任选地至少一个叠氮基团,如上文 所限定的。

此外,通过如上文所限定的本发明交联电荷传输聚合物来实现所 述目的。

另外通过用于制备本发明电荷传输半导体材料的方法来实现所述 目的,所述方法包括:

i)提供溶液,其含有

a)第一前体电荷传输聚合物,其包含至少一个共价连接的叠氮基 团和任选地至少一个炔基;和/或第二前体电荷传输聚合物,其包含至 少一个共价连接的炔基和任选地一个叠氮基团;和任选地至少一种交 联剂,其包含至少两个选自叠氮和/或炔基的官能团,

b)任选地至少一种电掺杂剂,

c)至少一种溶剂,

ii)将所述溶液沉积在基底上,

iii)除去所述溶剂,和

iv)优选通过加热,使所述叠氮与炔基反应以实现交联。

优选地,步骤iii)中所述材料在达到凝胶点之前将以在步骤iv)中交 联之前的固体或粘弹性材料形式存在。同样优选地,所述材料形成均 匀薄层。最优选地,非交联的以及交联的聚合物的层是无定形的。

术语“粘性材料”与在25℃下具有高于1Pa.s.的粘性的液体有关。 粘弹性材料是在足够短的时间尺度内显示可塑性以及弹性变形特性的 粘性液体。

可存在一种包含互补可交联部分A和B的起始聚合物,但优选地, 所述互补部分A和B包含于在步骤i)期间混合在一起的两种不同组分 中。在一个实施方式中,这些分离的组分之一是提供可交联部分A的聚 合物前体并且另一种提供可交联部分B。在另一个实施方式中,可交联 部分B是聚合物前体并且可交联部分A表示第二组分。优选地,可交联 部分A和B都是电荷传输前体聚合物。

在另一个优选的实施方式中,电荷传输聚合物前体表示一种交联 部分(A或B),并且互补部分以低分子交联剂形式,优选上述式V化合物 之一的形式,或以多种式V化合物的混合物形式使用。

本发明方法步骤iv)中的环加成是[2+3]环加成,也称为Huisgen反 应,其中可交联部分A的叠氮基团与可交联部分B的炔基反应,形成 1,2,3-三唑环。

优选地,步骤ii)中的基底是用于有机电子器件中的层,更优选是 基极、空穴注入层、空穴传输层。

可选择能够至少部分地溶解第一前体电荷传输聚合物、第二前体 电荷传输聚合物、交联剂以及电掺杂剂的基本上任何合适的溶剂。最 小溶解性组分的溶解度应为至少0.5mg/ml。对于优选的含有如上文所 限定结构单元IIa、IIa'、IIb、IIb'、IIc、IIc'、IId、IId'、III和/或IV的前 体电荷传输聚合物,卤化和/或芳族烃溶剂如二氯甲烷、二氯乙烷、四 氯乙烷、氯苯、甲苯、二甲苯或苯甲醚是合适的。

在一个优选的实施方式中,步骤iv)中的加热是加热至在60-160℃、 优选80-140℃、最优选100-120℃范围内的温度。

另外通过包含半导体层的半导体器件来实现所述目的,该半导体 层包含本发明的电荷传输半导体材料。包含本发明电荷传输半导体材 料的层可通过任何常规技术如旋涂或通过适当的印刷技术如喷墨印 刷、丝网印刷或平版印刷来制造。

最后,通过由本发明方法的步骤i)的溶液所代表的喷墨印刷用油墨 来实现所述目的。

令人惊讶的是,已发现本发明的电荷传输半导体材料由于可通过 在不存在照射、另外的引发剂或催化剂的温和条件下交联且同时保持 其高电导率、特别是在低交联温度下获得而解决本发明的问题。

在下文中,将通过实施例更详细地描述本发明。

附图说明

附图显示:

图1:由包含叠氮基团的可交联部分(A)和包含炔基的可交联部分 (B)形成网状物的略图(scheme);

图2a:在未引入掺杂剂的情况下形成交联的电荷传输聚合物的略 图;线条表示电荷传输前体聚合物,圆圈表示小分子交联剂,字母示 出可交联部分中反应性基团的类型;

图2b:通过将掺杂剂引入交联的电荷传输聚合物中来形成电荷传 输半导体材料的略图;线条表示电荷传输前体聚合物,圆圈表示小分 子交联剂,字母示出可交联部分中反应性基团的类型;

图3:交联[2+3]环加成的略图;

图4:根据本发明方法步骤iv)的非交联层在将由PP1a和SC1形成的 层加热至120℃之前(实线)和之后持续1小时(虚线)的ATR-IR谱的截图 (cut)。在2.096cm-1处的峰的降低显示叠氮基团的高转化率;

图5a:示出包含掺杂有TCNQ-7的交联聚合物PP1-SC1的半导体材 料的电导率在120℃下随加热持续时间变化的图;

图5b:示出包含掺杂有Mo(tfd)3的交联聚合物PP1-SC1的半导体材 料的电导率在120℃下随加热持续时间变化的图;

图5c:示出包含掺杂有PR-1的交联聚合物PP1-SC1的半导体材料的 电导率在120℃下随加热持续时间变化的图;

图5d:示出包含掺杂有PR-5的交联聚合物PP1-SC1的半导体材料的 电导率在120℃下随加热持续时间变化的图;

图5e:示出包含掺杂有PR-1的交联聚合物PP3-SC1的半导体材料的 电导率在120℃下随加热持续时间变化的图;

图6a:示出由掺杂有TCNQ-7的PP1-SC1制造的半导体交联层在用 甲苯冲洗之前和之后的相对厚度的图。条柱显示所示值的实验不确定 度;

图6b:示出由掺杂有Mo(tfd)3的PP1-SC1制造的半导体交联层在用 甲苯冲洗之前和之后的相对厚度的图;

图6c:示出由掺杂有PR-1的PP1-SC1制造的半导体交联层在用甲苯 冲洗之前和之后的相对厚度的图;

图6d:示出由掺杂有PR-5的PP1-SC1制造的半导体交联层在用甲苯 冲洗之前和之后的相对厚度的图;

图6e:示出由掺杂有PR-1的PP3-SC1制造的半导体交联层在用甲苯 冲洗之前和之后的相对厚度的图;

图7:红色OLED的亮度随电压变化的曲线图;

图8:红色OLED的效率随电流密度变化的曲线图;

图9:蓝色OLED的亮度随电压变化的曲线图;

图10:红色OLED的效率随电流密度变化的曲线图;

图11:实施例J的喷墨印刷图案的照片。

具体实施方式

实施例

制备表1中所列的数种前体电荷传输聚合物和小分子交联剂,并且 将其用于制备本发明的电荷传输半导体材料。

表1

一般方法

在配备有折射率检测器和一个柱PL Gel MIXED-B(英国聚合物实 验室)的Agilent 1100系列(美国安捷伦)常温尺寸排阻色谱仪上进行聚合 物分子量的凝胶渗透色谱(GPC)测量;洗脱剂是四氢呋喃(THF),并且 流速是1mL/分钟。基于用获自Polymer Standards Service(德国PSS)的聚 苯乙烯标准物校准,测定所得聚合物的数均分子量(Mn)和多分散性指数 (PDI)。

用于聚合物制备的原料

2-{4-[双(4-溴苯基)氨基]苯基}丁-2-醇(1)

在氩气下将三(4-溴苯基)胺(12.05g,25mmol)溶解于250ml干燥 THF中并在丙酮-干冰浴上冷却至-78℃。在15分钟期间逐滴加入n-BuLi (2.5M溶液,己烷中,10ml,1当量)。将混合物在-78℃下再搅拌15分 钟并用过量的甲基乙基酮(5ml)淬灭。

将溶剂减压蒸发,将残余物溶解于乙酸乙酯(100ml)中,随后用1% 盐酸、饱和碳酸氢钠水溶液和盐水洗涤,并经MgSO4干燥。在溶剂蒸 发后,获得呈粘性无色液体形式的粗产物。通过柱色谱法(SiO2,乙醚) 纯化,得到呈白色固体状的9.2g(1)。(产率为理论值的约79%,以三(4- 溴-苯基)胺计)。

4-溴-N-(4-溴苯基)-N-[4-(丁-2-基)苯基]苯胺(2)

将(1)(8.77g,18.5mmol)和NaBH4(1.406g,37mmol)放置在配备 有磁力搅拌棒的圆底烧瓶中,用橡胶隔片密封所述烧瓶并用氩气置换 空气。通过注射器加入干燥乙醚(100ml),并且在丙酮-干冰浴上将混合 物冷却至-78℃。在这个温度下在1小时期间逐滴加入三氟甲烷磺酸(6 g,40mmol)。使混合物升温至室温过夜。在冰浴上冷却溶液并以小份 加入水(10ml)。用10%NaOH水溶液中和酸,并且用乙醚萃取产物三次。 将合并的乙醚部分用盐水洗涤并经MgSO4干燥。减压除去溶剂后,获 得呈非常粘稠液体形式的粗产物。通过柱色谱法(SiO2,己烷-CH2Cl22:1) 进行纯化。产率6.9g(81%)。

4-[双(4-溴苯基)氨基]苯酚(3)

在氩气下将三(4-溴苯基)胺(12.05g,25mmol)溶解于250ml干燥 THF中并在丙酮-干冰浴上冷却至-78℃。在这个温度下在30分钟期间逐 滴加入n-BuLi(2.5M溶液,己烷中,10ml,1当量)。将混合物在-78℃ 下再搅拌15分钟并且在这个温度下以整份加入硼酸三异丙酯(8.6ml, 1.5当量)。移去冷却浴并且使混合物在约1小时内达到室温。将溶液再 次冷却至-10℃,加入乙酸(1.9ml,1.3当量)并且将混合物在室温下搅拌 30分钟。然后,向混合物中加入过氧化氢水溶液(2.83g的30%溶液,用 20ml水稀释),保持温度低于0℃(盐-冰浴)。在过氧化物添加完成后, 将混合物搅拌过夜,用Na2S2O3水溶液淬灭并用乙醚萃取。分离有机层, 用盐水洗涤并经硫酸镁干燥。通过柱色谱法(SiO2,洗脱剂CH2Cl2)纯化 在溶剂蒸发后获得的粗产物。产率:7.7g(73%)。

4-溴-N-(4-(4-溴丁氧基)苯基)-N-(4-溴苯基)苯胺(4)

将无水THF(10ml)加入(3)(0.418g,1mmol)、无水碳酸钾(1.5当 量,0.207g,1.5mmol)和催化量(5mol%)18-冠-6的混合物中。将混合 物加热回流1小时,然后以整份加入1,4-二溴丁烷(5当量,5mmol,1.080 g)。将反应混合物在回流下加热过夜,倒入水中并用醚萃取。将有机相 用盐水洗涤,经硫酸镁干燥并过滤。通过柱色谱法(己烷:乙酸乙酯1:1) 纯化在溶剂蒸发后获得的粗产物,得到0.51g(95%)呈非常粘稠的透明 油状的标题化合物。

2-(4-(双(4-溴苯基)甲基)苯氧基)四氢-2H-吡喃(5)

在0℃下向(3)(2.1g,5mmol)于干燥二氯甲烷中的溶液中加入二 氢吡喃(1mL,11mmol)和催化量的樟脑磺酸(14mg,0.06mmol)。将 溶液在室温下搅拌过夜,倒入饱和碳酸氢钠溶液中,用乙醚萃取,用 盐水洗涤,经硫酸镁干燥。减压除去溶剂并且通过柱色谱法(SiO2,己 烷:乙醚1:1)纯化残余物。产率2.4g(理论值的96%)。

3,6-二溴-9-(2-乙基己基)-9H-咔唑(6)

向配备有磁力搅拌棒和氩气入口的经火焰干燥的500mL双颈圆 底烧瓶中装入氢氧化钾(5.61g,100mmol)和3,6-二溴-9H-咔唑(6.5g, 20mmol),用氩气冲洗并用橡胶隔片密封。在氩气下经由插管(cannula) 加入100mL干燥DMF并且在室温下将混合物搅拌30分钟。通过注射 器逐滴加入1-溴-2-乙基己烷(5.79g,30mmol)并且将所得混合物在室 温下搅拌过夜,然后将其倒入300mL水中,通过加入浓HCl(35重量 %水溶液)酸化至pH<7并用CHCl3(每份50mL)萃取四次。将合并的 有机相用饱和NaHCO3水溶液(1×)、盐水(5×)洗涤,经MgSO4干燥并蒸 发至干。通过柱色谱法(SiO2,己烷-乙酸乙酯3:1v/v)纯化粗产物。

产率:8.3g(95%)。

3,6-二溴-9-(4-溴丁基)-9H-咔唑(7)

向配备有磁力搅拌棒和氩气入口的经火焰干燥的500mL双颈圆 底烧瓶中装入咔唑(11.37g,35mmol)和氢氧化钾(2.36g,42mmol,1.2 当量),用氩气冲洗,用橡胶隔片密封。在氩气下经由插管加入200mL 干燥DMF并且将混合物在室温下搅拌30分钟。利用注射器以整份加 入16.5g 1,4-二溴丁烷(76.4mmol,约2.2当量),将所得混合物在室温 下搅拌过夜,倒入约500mL水中并用氯仿(4×150mL)萃取。将合并的 有机层以水(2×)、盐水(2×)洗涤,经硫酸镁干燥并过滤。通过真空蒸馏 除去溶剂和其它挥发性残余物并且通过SiO2柱色谱法利用己烷:乙酸乙 酯(3:1v/v)作为洗脱剂来纯化残余物。

产率:约8.8g(54.4%)。

2,7-二溴-9,9-二(丙-2-炔-1-基)-9H-芴(8)

为100mL三颈圆底烧瓶配备搅拌棒、滴液漏斗、温度计和氩气入 口。向所述烧瓶中装入2,7-二溴-9H-芴(3.24g,10mmol)、6mL甲苯、 50mL DMSO、5mL 50重量%NaOH水溶液和50mg四丁基氯化铵 (TBAC),用惰性气体冲洗并密封。在低于20℃的温度下(在用水-冰浴 冷却下)向溶液中逐滴加入6g 3-溴丙-1-炔(5当量,50mmol)。将混合 物在惰性气体下在室温下搅拌过夜。减压除去挥发物(甲苯、过量溴丙 炔)。将残余物用水稀释,通过过滤分离产物并用水(5×10mL)和甲醇 (3×5mL)洗涤。通过从EtOH中结晶来纯化粗产物。

产率2.7g(63%)。

((2,7-二溴-9H-芴-9,9-二基)双(丙-1-炔-3,1-二基))双(三异丙基硅烷) (9)

在氩气下将2,7-二溴-9,9-二(丙-2-炔-1-基)-9H-芴(1.69g,4mmol) 溶解于40mL干燥THF中并冷却至-78℃。在这个温度下在15分钟期 间逐滴加入6.4mL二异丙基胺基锂(LDA)于环己烷中1.5M的溶液(9.6 mmol,2.4当量)。将混合物在-78℃下搅拌1小时,然后逐滴加入氯三 异丙基硅烷(9.6mmol,1.85g,2.4当量)。使混合物达到室温过夜,然 后用冰浴再冷却至0℃并通过加入饱和NH4Cl水溶液(1mL)淬灭。将混 合物转移至装有50mL乙醚和300mL水的分液漏斗中。分离有机相并 且用乙醚(3×30mL)反复萃取水相。将合并的有机层用盐水洗涤并经硫 酸镁干燥。通过柱色谱法纯化在溶剂蒸发后获得的粗产物。

产率2.27g(80%)。

三-叔丁基膦基二氯化钯(II)(10)

在氩气箱中进行合成。向配备有磁力搅拌棒的经火焰干燥的50 mL单颈圆底烧瓶中装入双(乙腈)二氯化钯(II)络合物(0.52g,2mmol)、 乙醚(25ml)和三-叔丁基膦(0.61g,3mmol,1.5当量)。将混合物在氩 气下在室温下搅拌过夜。加入25ml己烷,通过过滤分离沉淀的产物, 用己烷洗涤并在室温下在真空中干燥。

产率:1.13g(74%)。

典型的共聚步骤

1.熊田(Kumada)催化剂转移缩聚(KCTP)

a)单体溶液的制备

将二溴-单体前体(1mmol)放置在配备有磁力搅拌棒的圆底烧瓶 中,将所述烧瓶密封并用氩气置换空气。经由注射器加入10mL干燥 THF并且使用干冰-丙酮浴将溶液冷却至-78℃。在这个温度下在15分 钟期间加入n-BuLi溶液(1当量)并且将混合物搅拌15分钟。接着加入 MgBr2(1.1mmol,0.202g)于THF中的溶液。使反应物经30分钟达到 室温。

b)聚合步骤

在氩气下将由不同的二溴-单体前体分别制备的单体溶液以所期 望的比例混合在一起,然后通过注射器经由隔片加入催化剂悬浮液(通 常是于THF中的0.01当量的[1,3-双(二苯基膦基)丙烷]二氯镍(II))。使 聚合在室温下进行过夜并通过加入甲醇终止。通过在甲醇过量的情况 下沉淀来获得粗聚合物。通过从甲苯溶液中再次沉淀于甲醇中三次来 进行所述聚合物的纯化。

2.根岸(Negishi)催化剂转移缩聚(NCTP)

a)单体溶液的制备

将二溴-单体前体(1mmol)放置在配备有磁力搅拌棒的圆底烧瓶 中,将所述烧瓶密封并用氩气置换空气。通过注射器加入干燥THF(10 ml)并且使用干冰-丙酮浴将溶液冷却至-78℃。在这个温度下在15分钟 期间加入n-BuLi溶液(1当量)并且将混合物搅拌15分钟。接着加入 ZnCl2(1.1mmol,1.1当量)于THF中的溶液。使反应物经30分钟达到 室温。

b)聚合步骤

在氩气下将由不同的二溴-单体前体分别制备的单体溶液以所期 望的比例混合在一起,然后通过注射器经由隔片加入催化剂悬浮液(通 常是于THF中的0.01当量的三-叔丁基膦基二氯化钯(II)(10))。使聚合 在室温下进行15分钟并通过加入甲醇终止。通过在过量甲醇中沉淀来 获得粗聚合物。以如下方式进行聚合物从Pd残余物中的纯化。将粗物 质溶解于40mL甲苯中并用5mL的1%(重量)二乙基二硫代氨基甲酸 钠水溶液处理过夜。分离有机层,用盐水洗涤,经MgSO4干燥并蒸发 至其初始体积的一半。通过用十倍过量的甲醇使这种溶液沉淀,获得 呈浅黄色固体状的粗聚合物。

共聚步骤的实例

a)单体溶液的制备

将二溴-单体前体(4)(1mmol,0.544g)放置在配备有磁力搅拌棒的 圆底烧瓶中,将所述烧瓶密封并用氩气置换空气。通过注射器加入干 燥THF(10ml)并且使用干冰-丙酮浴将溶液冷却至-78℃。在这个温度下 在15分钟期间加入n-BuLi于己烷中的溶液(1当量),将混合物搅拌15分 钟。接着加入MgBr2(1.1mmol,0.202g)于5mL THF中的溶液。使反应 混合物经30分钟达到室温。

将2,7-二溴-9,9-双(2-乙基己基)-9H-芴(1mmol,0.548g)放置在配 备有磁力搅拌棒的圆底烧瓶中,将所述烧瓶密封并用氩气置换空气。 通过注射器加入干燥THF(10ml)并且使用干冰-丙酮浴将溶液冷却至 -78℃。在这个温度下在15分钟期间加入n-BuLi溶液(1当量),将混合物 搅拌15分钟。接着加入MgBr2(1.1mmol,0.202g)于THF中的溶液。使 反应混合物经30分钟达到室温。

b)聚合(聚合中间体PI1)

在氩气下将所制备的溶液混合在一起,然后通过注射器经由隔片 加入催化剂悬浮液(通常是于THF中的0.01当量的[1,3-双(二苯基膦基) 丙烷]二氯镍(II))。使聚合在室温下进行过夜并通过加入甲醇终止。通 过在过量甲醇中沉淀来获得粗聚合物。通过从甲苯溶液中再次沉淀于 甲醇中三次来进行所述聚合物的纯化。

模型(model)聚合物

聚[(9,9-二(2-乙基己-1-基)-9H-芴-2,7-二基)-共-(4-4'-4″-(4-(丁-2- 基))-N,N-二苯基苯胺)](P2)

根据先前关于NCTP的一般步骤从2.34g(4.36mmol)的二溴-9,9- 双(2-乙基己基)-9H-芴和2g(4.36mmol)4-溴-N-(4-溴苯基)-N-[4-(丁-2- 基)苯基]苯胺来制备所述聚合物。

产率2.71g(90%),呈浅黄色固体状。

Mn=18800,PDI=3.45。

聚(9-(2-乙基己基)-9H-咔唑-3,6-二基)(P3)

根据先前关于NCTP的一般步骤从6.23g(14.25mmol)3,6-二溴 -9-(2-乙基己基)-9H-咔唑来制备所述聚合物。

产率3.6g(80.8%),呈白色固体状。

Mn=6000;PDI=1.77。

功能聚合物

聚[(9,9-二(2-乙基己-1-基)-9H-芴-2,7-二基)-共-(4-4'-4″-(4-叠氮基 丁基)-N,N-二苯基苯胺)](含叠氮化物的聚合物PP3)

将根据先前一般KCTP步骤从0.145g 2,7-二溴-9,9-双(2-乙基己 基)-9H-芴和0.150g 4-溴-N-(4-溴苯基)-N-(4-(4-溴丁氧基)苯基)苯胺(4) 与[1,3-双(二苯基膦基)丙烷]二氯-镍(II)催化剂制备的200mg含有带4- 溴丁基-基团的单元的聚合物PI1,溶解于10ml THF中。在室温下以 整份加入溶解于2ml干燥DMF中的叠氮化锂(5当量,以聚合物中的 烷基-溴化物基团计,通常为25mg)。将溶液在室温下搅拌2天,过滤 出固体并且将滤液倒入十倍过量的甲醇中。通过过滤分离沉淀的粗聚 合物并且通过从甲苯溶液中再次沉淀至甲醇中来纯化。产率几乎是定 量的。

Mn=15239,PDI=2.09。

聚[(9,9-二(2-乙基己-1-基)-9H-芴-2,7-二基)-共-(4-4'-N,N-二苯基 -4″-羟基苯胺)]

(含羟基-基团的聚合中间体PI3)

将根据先前一般KCTP步骤从0.145g 2,7-二溴-9,9-双(2-乙基己 基)-9H-芴和从0.145g 2-(4-(双(4-溴苯基)甲基)苯氧基)四氢-2H-吡喃制 备的400mg聚合中间体PI2,溶解于40ml干燥THF中。在室温下加 入呈于2ml干燥MeOH中的溶液形式的20mg对甲苯磺酸和3mL干 燥甲醇。将反应混合物在室温下搅拌3天并倒入甲醇中。通过过滤分 离沉淀的粗聚合物并通过从甲苯溶液中用甲醇再次沉淀来纯化。

Mn=14059,PDI=1.77。

聚[(9,9-二(2-乙基己-1-基)-9H-芴-2,7-二基)-共-(4-4'-4″-(丙-2-炔 -1-基氧基)-N,N-二苯基苯胺)](含炔聚合物PP4)

将如上文所述获得的200mg含羟基-基团的聚合中间体PI3溶解 于10ml无水THF中。加入无水碳酸钾(70mg,约5当量)和催化量的 18-冠-6并且将混合物加热至回流持续1小时,然后以整份加入溴丙炔 (149mg,约5当量)。将反应混合物回流加热过夜,然后倒入水中并用 甲苯萃取。将有机相用盐水洗涤,经硫酸镁干燥并过滤。将溶液浓缩 并倒入十倍过量的甲醇中。通过过滤分离沉淀的粗聚合物并通过从甲 苯溶液中用甲醇再次沉淀来纯化。

聚(9-(2-乙基己基)-9H-咔唑-3,6-二基-共-(9-(4-溴丁基)-9H-咔唑 -3,6-二基))(含4-溴丁基基团的聚合中间体PI4)

根据先前关于NCTP的一般步骤从1.38g(3mmol)3,6-二溴-9-(4- 溴丁基)-9H-咔唑(7)和1.31g(3mmol)3,6-二溴-9-(2-乙基己基)-9H-咔 唑来制备所述聚合物。

产率1.23g(71%)。

Mn=3000;PDI=1.43。

聚(9-(2-乙基己基)-9H-咔唑-3,6-二基)-共-(9-(4-叠氮基丁基)-9H- 咔唑-3,6-二基))(PP5)

将288.5mg聚(N-(2-乙基己基)咔唑-3,6-二基-共-(N-(4-溴丁基)咔 唑-3,6-二基))(PI4)溶解于10mL THF中。在室温下以整份加入溶解于 2ml无水DMF中的13mg叠氮化锂(5当量,以聚合物中的烷基-溴化 物基团计)。将溶液在室温下搅拌2天,过滤出固体并且将滤液倒入十 倍过量的甲醇中。通过过滤分离沉淀的聚合物并通过从甲苯溶液中再 次沉淀至甲醇中来纯化。

产率210mg(78%)。

Mn=3400;PDI=1.43。

聚(9-(2-乙基己基)-9H-咔唑-3,6-二基)-共-(9-(丙-2-炔-1-基)-9H-咔 唑-3,6-二基)(PP6)

1.(6-溴-9-(三甲基甲硅烷基)-9H-咔唑-3-基)氯化锌(II)溶液

将3,6-二溴-9H-咔唑(0.975g,3mmol)放置在配备有磁力搅拌棒的 圆底烧瓶中,将所述烧瓶密封并用氩气置换空气。通过注射器加入干 燥THF(30ml),接着逐滴加入乙基溴化镁于乙醚中的溶液(1ml, 3mmol)。在室温下搅拌混合物,直至气体逸出停止(约20分钟)。逐滴 加入0.38mL(3mmol,1当量)氯三甲基硅烷,并且将所得溶液在室温 下再搅拌1小时并使用干冰-丙酮浴冷却至-78℃。在这个温度下在15 分钟期间加入n-BuLi溶液(1.2ml,2.5M,于正己烷中,3mmol),将 混合物搅拌15分钟。接着加入ZnCl2(1.1mmol,0.202g)于THF中的 溶液。使反应物经30分钟达到室温。

2.聚(9-(2-乙基己基)-9H-咔唑-3,6-二基)-共-(9-(三甲氧基甲硅烷 基)-9H-咔唑-3,6-二基)(PI5)

在氩气下将如上文所述制备的(6-溴-9-(三甲基甲硅烷基)-9H-咔唑 -3-基)氯化锌(II)溶液与根据关于NCTP聚合的一般步骤从1.31g(3 mmol)3,6-二溴-9-(2-乙基己基)-9H-咔唑制备的单体溶液混合。然后, 通过注射器经由隔片加入催化剂悬浮液(0.005当量PdCl2P(tBu)3,THF 中)。使聚合在室温下进行15分钟并通过加入甲醇来终止。根据上文所 述的步骤来纯化粗聚合物。

产率0.93g(60%)。

3.聚(9-(2-乙基己基)-9H-咔唑-3,6-二基)-共-(9-(丙-2-炔-1-基)-9H- 咔唑-3,6-二基)(PP6)

在氩气气氛下将928mg聚(9-己基-9H-咔唑-3,6-二基)-共-(9-(三甲 氧基甲硅烷基)-9H-咔唑-3,6-二基)(PI5,约3mmol NH-基团,基于 1H-NMR测定法)溶解于50mL干燥THF中。在室温下以整份加入3ml 80重量%丙炔溴的甲苯溶液。然后,以如下速率加入四丁基氢氧化铵 (TBAH,1.94g,约3mmol)的甲醇溶液,所述速率使得在溶液的前一 个液滴消耗完后加入下一个液滴(如通过在每次碱加入(base addition)后 立即出现的溶液的橙红色的漂白来判断)。在约4小时后完成氢氧化物 添加,将混合物再搅拌1小时,经由200nm注射器膜滤器过滤,浓缩 至约15mL并倒入十倍过量的甲醇中。在过滤并在室温下在真空中干 燥后获得呈白色固体状的聚合物。

聚((9-(2-乙基己基)-9H-咔唑-3,6-二基)-共-(9,9-双(3-(三异丙基甲 硅烷基)-丙-2-炔-1-基)-9H-芴-2,7-二基)(PP7)

根据先前关于NCTP的一般步骤从274mg(0.63mmol)3,6-二溴 -9-(2-乙基己基)-9H-咔唑和446mg(0.63mmol)((2,7-二溴-9H-芴-9,9-二 基)双(丙-1-炔-3,1-二基))双(三异-丙基硅烷)(9)来制备所述聚合物。

产率440mg(84%),呈浅黄色固体状。

聚((9-(2-乙基己基)-9H-咔唑-3,6-二基)-共-(9,9-双(丙-2-炔-1- 基)-9H-芴-2,7-二基)(PP8)

向配备有搅拌棒的25mL单颈圆底烧瓶中装入聚((9-(2-乙基己 基)-9H-咔唑-3,6-二基)-共-(9,9-双(3-(三异丙基甲硅烷基)-丙-2-炔-1- 基)-9H-芴-2,7-二基)(440mg)并用橡胶隔片密封。经由注射器通过隔片 加入10mL无水THF并且在室温下搅拌混合物直至获得均质溶液。经 由注射器将1.2ml 1M四丁基氟化铵(TBAF,于THF中的溶液)加入聚 合物溶液中并且在室温下搅拌所得混合物过夜。

通过使溶液沉淀于十倍过量的甲醇中,过滤并在室温下在真空中 干燥,来获得所述聚合物。

产率250mg(76%)。

Mn=6000,PDI=8.05。

掺杂的交联层的电导率和稳定性

制备含有1.74%聚合物前体PP3、0.09%p型掺杂剂PR-1和0.17%小 分子交联剂SC1的苯甲醚溶液并在1000rpm下在ITO基底上旋涂30秒。 在氮气气氛中在热板上烘烤0、3、15和30分钟后,测量膜的电导率和 厚度。

在旋转前在10秒浸泡时间后,用甲苯旋转冲洗所形成的膜。在80 ℃下干燥30分钟后,再次测量厚度和电导率。

红色OLED

在玻璃基底上制造的90nm厚氧化铟锡(ITO)层上,通过从2重量% 甲苯溶液旋涂来浇铸(cast)由掺杂有PR1的PP3和SC1形成的50nm厚交 联空穴传输层(组分的重量比率如上文)。在惰性气氛中在120℃下干燥 并烘烤30分钟后,获得具有厚度50nm的掺杂交联层。通过真空沉积在 交联层之上制备下列层:10nm未掺杂的电子阻挡层,由N4,N4,N4″,N4″- 四([1,1'-联苯]-4-基)-[1,1':4,4'-三联苯基]-4,4″-二胺构成;40nm发光层, 由重量比为70:29:1的3,9-二(萘-2-基)苝和3,10-二(萘-2-基)苝混合物 (DNP)、喹啉铝(Alq3)和4-二氰基亚甲基-2-叔丁基-6-(1,1,7,7-四甲基久洛 尼定-4-基-乙烯基)-4H-吡喃(DCJTB)构成;10nm空穴阻挡层,由4-(萘 -1-基)-2,7,9-三苯基吡啶并[3,2-h]喹唑啉构成;10nm电子传输层,由重 量比为9:1的4-(萘-1-基)-2,7,9-三苯基吡啶并[3,2-h]喹唑啉和四 (1,3,4,6,7,8-六氢-2H-嘧啶并[1,2-a]嘧啶根基)二钨(II)(W(hpp)4)构成;和 100nm厚的Al阴极。所述OLED在630nm下具有最大强度,量子效率为 7.2%,电流效率为10.9cd/A并且在10mA/cm2下的功率效率为13.6lm/W (同样参见图7和图8)。

蓝色OLED

在玻璃基底上制造的90nm厚氧化铟锡(ITO)层上,通过从2重量% 甲苯-苯甲醚溶液旋涂来浇铸由以总聚合物重量计掺杂有20重量%PR1 的PP5和PP9(聚(9-丁基-9H-咔唑-3,6-二基)-共-(9-(丙-2-炔-1-基)-9H-咔 唑-3,6-二基,丁基与炔丙基单元的比率为19:1,与PP6类似地制备)形成 的50nm厚交联空穴传输层。在惰性气氛中在120℃下干燥和烘烤120分 钟后,获得具有厚度40nm的掺杂交联层。通过真空沉积在交联层之上 制备下列层:90nm未掺杂的电子阻挡层,由N4,N4″-二(萘-1- 基)-N4,N4″-二苯基-[1,1':4,4'-三联苯]-4,4″-二胺构成;20nm蓝色荧光发 光层,由掺杂有NUBD370(获自韩国Sun Fine Chem(SFC),主体:发光 体比率以重量计为95:5)的ABH113(也来自SFC)构成;30nm电子传输 层,由重量比为1:1的2-(4-(9,10-二(萘-2-基)蒽-2-基)苯基)-1-苯基-1H-苯 并[d]咪唑(CAS 561064-11-7)和8-羟基喹啉锂(CAS 850918-68-2)构成; 和100nm厚的Al阴极。所述OLED的电压为5.0V,量子效率为5.9%, 电流效率为5.5cd/A并且在15mA/cm2下的功率效率为3.4lm/W(同样参 见图9和图10)。以LT97表示的OLED的寿命(亮度降至其初始值的97% 所需的时间)为53小时。

实施例J(喷墨印刷)

使用含PR1的PP3和SC1(与上文相同的比率)的苯甲醚溶液作为油 墨和喷墨印刷机PiXDRO LP50,来产生喷墨印刷图案。图9示出具有喷 墨印刷的交联p-HTL的蓝色“混合”OLED,其中,a)OLED测试布局, b)像素,喷墨印刷未优化,c)在用1重量%浓度的聚合物最佳喷墨印刷 下的像素,分辨率为300dpi和印刷速度为400mm/s。

结果

图5a-5e示出分别包含PP1a和SC1、PP3和SC1和不同掺杂剂的层在 加热至120℃持续3至20分钟期间的电导率。已表明,交联层的电导率 保持在足以满足实际应用性的范围内并且基本实际上与交联无关。

图6a-6e示出用不同掺杂剂掺杂的交联层在用甲苯冲洗之前和之 后的厚度。所述层的所测量厚度在实验误差范围内保持恒定。所述层 针对甲苯(它是非交联材料的良好溶剂)的抗性显示所制备层的成功交 联。

所掺杂层在交联后维持为空穴传输层所需的10-6-10-5S/cm的电导 率。如果掺杂剂在环加成反应期间被破坏,则将获得约10-10S/cm的显 著较低的电导率。

因此,有明确的证据表明,本发明的电荷传输半导体材料以及本 发明的方法提供了在温和条件下从溶液建立交联电荷传输层的可行 性。

成功交联的进一步证据由图4中所示的ATR-IR谱提供。

谱1(实线),对应于交联之前的聚合物,其特征为在2.096cm-1处 的明显吸收带,这是叠氮基团N3的特征。

谱2(虚线),对应于交联之后的聚合物,其特征为这个吸收带显著 降低。

红色和蓝色OLED证实,包含本发明半导体材料的交联电荷传输层 可成功地用于有机电子器件中。

喷墨印刷实施例J显示,本发明能够通过印刷技术制备有机电子器 件如OLED。

在上文的说明书中和在权利要求书中公开的特征可单独地和以其 任何组合的形式成为用于以其各种形式实现本发明的素材(material)。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号