首页> 中国专利> 一种基于局部区域小波变换的GIS设备特征值提取方法

一种基于局部区域小波变换的GIS设备特征值提取方法

摘要

本发明公开了一种基于局部区域小波变换的GIS设备特征值提取方法,首先获得传感器等采样设备所采样到的GIS设备分闸时间-电流曲线。然后对曲线进行基于特征点的分区,只对分区内部进行区域小波去噪,避免对整条曲线其他冗余数据进行小波去噪以提高算法的效率。之后再对该曲线进行特征值提取,后与正常运行状态下GIS设备分闸时间-电流曲线的基准运行曲线的经验特征值进行对比,以判定所监测设备的运行状态,进而决定是否进行检修。本发明在不降低所提取特征值精度的前提下,减少了运算量,高效实用。

著录项

  • 公开/公告号CN104636746A

    专利类型发明专利

  • 公开/公告日2015-05-20

    原文格式PDF

  • 申请/专利权人 华南理工大学;

    申请/专利号CN201510057983.7

  • 发明设计人 刘宇新;王智东;盛建兰;朱革兰;

    申请日2015-02-04

  • 分类号G06K9/46;

  • 代理机构广州市华学知识产权代理有限公司;

  • 代理人刘巧霞

  • 地址 510640 广东省广州市天河区五山路381号

  • 入库时间 2023-12-18 08:44:53

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2023-01-17

    未缴年费专利权终止 IPC(主分类):G06K 9/46 专利号:ZL2015100579837 申请日:20150204 授权公告日:20180116

    专利权的终止

  • 2018-01-16

    授权

    授权

  • 2015-06-17

    实质审查的生效 IPC(主分类):G06K9/46 申请日:20150204

    实质审查的生效

  • 2015-05-20

    公开

    公开

说明书

技术领域

本发明属于电力系统中GIS设备在线监测数据处理领域,具体涉及一种基 于局部区域小波变换的GIS设备特征值提取方法。

背景技术

相对于敞开式电器设备,GIS(Gas Insulted Switchgear,六氟化硫气体全封 闭组合电器)具有体积较小、设备运行安全可靠等技术上的先进性和经济上的 优越性,已在我国各电压等级电网中得到广泛应用。不过一旦GIS发生故障, 其所引起的停电时间较长,会产生破坏设备、影响整个电网的安全稳定运行等 不利影响。

目前,针对可靠性不高且易产生规律性故障的设备,多是通过定期检修的 预防性检修方式来排查故障。而随着GIS设备生产制造质量日益上升,可靠性 大大提升,且使用数量日益增多,若采取定期检修策略,不仅消耗大量人力和 时间,引起较大范围停电,而且可能因检修不当引入新故障。因此,GIS等电力 设备现逐步采用状态检修等方法。状态检修是一个综合性的决策过程,利用预 防性实验、在线监测、历史记录以及同类设备家族缺陷等全过程的数据资料, 通过状态评价和最佳策略的选择等多种技术手段和经济手段来综合评估设备当 前状态,预测事态发展,从而动态地制定设备检修计划。

状态检修依赖于实时采样数据,其决策过程中所需数据资料均由在线监测 得到。在线监测负责实时对设备电气量或非电气量进行采样,通过对采样值进 行数据处理和判定,为状态检修过程提供具体操作依据。

GIS设备分/合闸线圈电流的波形中包含反映GIS状态的信息,线圈电流曲 线波形具有一定的变化趋势,其关键位置的特征点(如电流极大值、极小值点) 在GIS处于正常运行状态时,其时间坐标以及电流坐标位于一定数据范围之内。 当GIS状态异常或发生故障时,其分/合闸线圈时间-电流曲线总体变化趋势不变, 但其关键位置的特征点位置会发生漂移。通过捕捉曲线在关键位置的特征点, 提取相关特征值,分析其在时间轴和电流轴上的位移等变化量,可以作为判定 GIS状态的依据,用于定量分析GIS机械操动机构的变动情况。

在对采样值的数据处理过程中,核心步骤在于实时、准确地提取特征值。 但是由于GIS处于高干扰、高噪声的电力环境,智能电子单元对GIS采样值进 行数模转换时会产生噪声干扰,还有其他种种外界条件因素的影响使得GIS在 线检测采集到的数据会无可避免带有扰动和毛刺,给正确提取特征值带来较大 困难。所以如何从海量原始采样数据中排除干扰,并且高效、准确地提取特征 值,成为GIS状态判断的关键。

发明内容

本发明的目的在于克服现有技术的缺点与不足,提供一种基于局部区域小 波变换的GIS设备特征值提取方法,该方法针对GIS设备分/合闸线圈电流曲线, 依据曲线经验特征值进行筛选分区,仅对所分区域进行局部小波去噪,对去噪 后的曲线数据进行特征值提取,具有计算量少、高效实用的优点。

为了达到上述目的,本发明采用的技术方案是:一种基于局部区域小波变 换的GIS设备特征值提取方法,包括以下步骤:

(1)获取当前GIS设备分闸时间-电流曲线,以及正常运行状态下GIS设 备分闸时间-电流曲线的基准运行曲线的经验特征值;

(2)对当前GIS设备分闸时间-电流曲线进行基于特征点的分区,得到若 干个特征区域;

(3)对上述特征区域内的曲线数据进行小波去噪;

(4)对去噪后的曲线数据进行特征值提取;

(5)将提取的特征值与步骤(1)所述的经验特征值进行对比,判定所监 测设备当前的运行状态,进而决定是否进行检修。

具体的,所述步骤(2)中,对当前GIS设备分闸时间-电流曲线,以时间 轴为顺序依次选取以下5个特征点:起始电流、铁心启动电流、铁心停止电流、 线圈最大工作电流和终止电流。

具体的,所述步骤(2)中,基于特征点进行分区的步骤如下:

(2-1)获取第一特征区域:以基准运行曲线起始电流时间坐标为中心, T=1ms为半径,前后延伸,截取该时间段上采样点作为第一特征区域;

(2-2)获取第二特征区域:以基准运行曲线铁心启动电流与铁心停止电流 中点时间坐标为中心,T=5ms为半径,前后延伸,截取该时间段上采样点作为 第二特征区域;

(2-3)获取第三特征区域:以基准运行曲线线圈最大工作电流与终止电流 的中点时间坐标为中心,T=10ms为半径,前后延伸,截取该时间段上的采样点 作为第三特征区域。采用以上分区方法后,只需处理分区内数据,即可有效判 断断路器状态,从而避免对整个曲线进行数据分析,减少数据处理计算工作量, 准确前提下不失高效。

具体的,所述步骤(3),进行小波去噪时,选取哈尔小波作为小波基。使 计算量能尽量小。

由于已知在去噪后的曲线上,起始电流与终止电流为最小值,铁心启动电 流与线圈最大工作电流为极大值,铁心停止电流为极小值,因此,所述步骤(4), 对去噪后的曲线数据进行特征值提取的步骤如下:

(4-1)设去噪后的曲线上有A、B和C三点,对三点进行电流幅值的比较;

(4-2)提取极值:若满足条件A<B同时C<B,则取B作为特征点;

若满足条件A>B同时C>B,则取B作为特征点;

若A、B、C三点不符合以上条件,则在C后间隔一定时间步长取点D,将 原A点舍弃,将原B点的电流幅值赋给A点,将原C点的电流幅值赋给B点, 将D点的电流幅值赋给C点,然后进行新一轮的比较,以此类推;

(4-3)提取最小值:筛选完极值后,以采样时间为序,依次取A、B、C 三点,筛选采样点所组成电流曲线上首个满足A<B<C的A点与最后一个满足 A>B>C的C点,分别将A点、C点作为特征点。

具体的,所述步骤(5)中,将提取的特征值与步骤(1)所述的经验特征 值进行对比,同时比较其电流幅值和时间上的偏移量。从而能够更加准确地判 定GIS设备运行状态,提高判定精度,避免误判错判。

优选的,所述步骤(1)中,当前GIS设备分闸时间-电流曲线与正常运行 状态下GIS设备分闸时间-电流曲线具有可对照性,即采样开始时间、采样频率、 采样结束时间相同。

本发明与现有技术相比,具有如下优点和有益效果:

(1)传统去噪方法对所有采样数据皆是无选择性地进行处理和分析,计算 量大,耗时久。本发明采用局部区域小波去噪法,通过对采样数据进行基于特 征值的数据分区,有选择性地对采样数据进行分区和筛选,只对筛选区域数据 进行小波去噪,有效弥补传统去噪方法的不足之处。该算法在不降低所提取特 征值精度的前提下,减少了运算量,高效实用。

(2)为了保证特征点关键信息提取的准确性,本发明采取了小波去噪法对 采样曲线进行平滑。小波去噪法对数据去噪效果较好,但是GIS大量的采样值 带来的小波运算的大计算量导致耗时过长。本发明在使用小波去噪法的基础上, 采取了以基准曲线的特征值的时间轴位置为中心的分区法。分区法将需要分析 的GIS设备电流曲线划分为3个区域,只提取包含特征点的区域,而暂时忽略 区域外的其他冗余采样值。然后再将获取数据组成新的条件序列再进行小波分 析。由于筛选避免了对不能提供所需信息的其他数据进行小波去噪,使得在不 降低特征值精度的同时减少计算量,提高运算效率。

(3)本发明将所提取的设备5个特征点的关键信息与典型正常运行状态下 GIS设备的特征点的经验数据进行二维比较,同时比较其电流幅值和时间上的偏 移量,能够更加准确地判定GIS设备运行状态,提高判定精度,避免误判错判。

附图说明

图1是本发明方法流程图。

图2是GIS设备分闸时间-电流基准曲线波形图。

具体实施方式

下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方 式不限于此。

实施例1

参见图2,一般GIS设备分闸时间-电流基准曲线中包括5个特征点,以时 间轴为顺序依次为:起始电流、铁心启动电流、铁心停止电流、线圈最大工作 电流和终止电流。其中起始电流与终止电流为最小值,即零值,铁心启动电流 I1与线圈最大工作电流I3为极大值,铁心停止电流I2为极小值。

I1为铁心启动电流,是T0段和T1段的最大电流,该值可反映走完空程或没 有空程时的阻力大小;I2为铁心停止工作电流,该值是T1段和T2段的最小电流, 该值可反映做超程运动时阻力大小;I3为线圈最大工作电流,该值是T2和T3之 间的最大电流,是铁心运动时线圈的最大工作电流,该值可反映线圈的直流电 阻大小和机构脱扣的最大阻力的大小,还可以反映线圈是否存在匝间短路和接 头松动故障以及半扣入深度。T0为铁心启动时间,该段是从线圈通电到铁心开 始运动的一段时间,可反映线圈本身的绕组特性。结合以上各个特征值可以考 察GIS设备工作状态。

参见图1,根据上述5个特征点,对本实施例所述一种基于局部区域小波变 换的GIS设备特征值提取方法详细说明如下。

1)基于时间坐标的分区依据

对于不同型号的GIS,均有其基准运行曲线,即正常运行状态下的分/合闸 电流曲线,其特征值会有所区别。并且当线圈工作在不同工作状态下时,特征 值也会相应地发生变化。因此需要了解各种GIS可能的工作状态,如电压不足、 闸间短路等,找出每种状态下的特征值,建立分、合闸线圈电流的特征信息库, 用于和实际的线圈电流波形进行比较。注意基准曲线与待分析曲线应具有可对 照性,即采样开始时间、采样频率、采样结束时间等应相同,以方便比对。根 据GIS出厂时的基准数据,可取得GIS设备在正常运行状态下的5个特征值的 时间坐标。

2)在当前被测GIS设备分闸时间-电流曲线上进行基于特征值位置的分区

结合图2,以基准曲线特征点时间轴坐标为参考,截取测量曲线上的特征点 的原理为:GIS设备在潜在故障时其5个关键特征点依然存在,只是其位置略有 漂移,但时间和电流幅值误差不会很大,只要数据窗大小选择合适,所截取到 的5个局部采样点区域就能包含相应5个关键特征点。利用此特性,可以更快 定位特征点,减少数据特征值提取计算量。

实时取得GIS设备分闸时间-电流波形后,进行数据处理。典型正常运行下 GIS设备分闸时间-电流波形基准运行曲线共有5个关键特征点,其时间坐标一 定。根据经验值,可知铁心启动电流与铁心停止电流特征点相距较近,线圈最 大工作电流与终止电流特征点相距较近。因此决定最后将曲线分为3个分区, 即分区1、分区2和分区3。依次包含:

分区1:起始电流;

分区2:铁心启动电流和铁心停止电流;

分区3:线圈最大工作电流和终止电流。

用于截取数据窗口大小选择准则如下:

分区1以基准曲线起始电流时间坐标为中心,T=1ms为半径,前后延伸, 截取该时间段上采样点作为分区1;分区2以基准曲线铁心启动电流与铁心停止 电流中点时间坐标,即t=T0+T1/2为中心,T=5ms为半径,前后延伸,截取该 时间段上采样点作为分区2;分区3以基准曲线线圈最大工作电流与终止电流的 中点时间坐标,即t=T0+T1+T2+T3/2为中心,T=10ms为半径,前后延伸,截取 该时间段上的采样点作为分区3。在窗口半径选取上已考虑裕度和实际测量曲线 与基准曲线的误差问题,可根据实际情况重新调整窗口半径大小。

3)对采样值进行小波去噪

由于设备制造工艺、GIS设备运行环境等因素,所获取时间-电流曲线上有 很多毛刺。这些毛刺将影响关键特征值的筛选,因此必须对所筛选局部采样点 区域进行数据去噪。所以,将所获取到的5个局部采样点区域内采样点数据组 成新的条件序列,以最简单的哈尔小波作为小波基,进行小波去噪。

4)提取特征值

根据相应关键特征点的特征,对去噪后的数据进行关键特征点筛选。根据 五个特征点:2个最小值、1个极小值和2个极大值的特征,可以按照以下思路 筛选。假设有相互距离一定的三点A、B和C。若符合条件A<B同时C<B,或 A>B同时C>B,则将B点筛选出来,作为特征点。若不符合以上条件,则按一 定距离新取一点作为新的C点,原来的A点则舍弃,原来B点变为新的A点, 原来C点作为新的B点。筛选完极值后,以采样时间为序,依次取A、B、C 三点,筛选采样点所组成电流曲线上首个满足A<B<C的A点与最后一个满足 A>B>C的C点。以此类推,直到曲线上所有的采样点都被筛选完毕。

铁心启动电流与线圈最大工作电流为极大值,分别满足A<B同时C<B的筛 选条件,可被筛选为特征点;铁心停止工作电流为极小值,满足A>B同时C>B 的筛选条件,可被筛选为特征点。起始电流与终止电流为最小值,分别满足 A<B<C和A>B>C的筛选条件,同样可被筛选为特征点。

由于小波去噪后,消除了毛刺抖动对极值与最值的影响,以上筛选方法具 有直观的可靠性。

5)判定GIS设备运行状态

将筛选后的特征点与典型正常运行下GIS设备分闸时间-电流波形图的特征 点进行一一比对,从时间轴和电流幅值轴两方面计算其偏移量,进而获得GIS 设备运行状况相关信息,包括GIS设备所处的运行状态(正常/非正常/故障)、 若发生故障探明为何种故障以及故障的严重程度、若处于非正常状态是否需要 立即停运检修等信息。

上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实 施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、 替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号