首页> 中国专利> 一种八面体结构铂纳米粒子及其合成方法和应用

一种八面体结构铂纳米粒子及其合成方法和应用

摘要

本发明公开了一种合成八面体结构的铂纳米粒子的电化学技术方法,采用CHI660D电化学工作站,以玻碳电极作为工作电极,Ag/AgCl电极作为参比电极,铂丝电极作为对电极,用安培I-t曲线方法,以沉积电位-0.2V和沉积时间500s的条件,进行电化学沉积氯铂酸混合溶液,合成了八面体结构铂纳米粒子。本发明的优点是操作简单,重现性好,制备的纳米颗粒稳定,对甲醇催化活性高。

著录项

  • 公开/公告号CN104451782A

    专利类型发明专利

  • 公开/公告日2015-03-25

    原文格式PDF

  • 申请/专利权人 上海师范大学;

    申请/专利号CN201410719673.2

  • 发明设计人 杨海峰;梁银华;

    申请日2014-12-01

  • 分类号C25C5/02(20060101);H01M4/92(20060101);B82Y30/00(20110101);B82Y40/00(20110101);

  • 代理机构31272 上海申新律师事务所;

  • 代理人周云

  • 地址 200234 上海市徐汇区桂林路100号

  • 入库时间 2023-12-18 08:00:51

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2017-08-25

    授权

    授权

  • 2015-04-22

    实质审查的生效 IPC(主分类):C25C5/02 申请日:20141201

    实质审查的生效

  • 2015-03-25

    公开

    公开

说明书

技术领域

本发明属于燃料电池领域,具体是一种采用操作简单,重现性高的电化学技术方法合成八面体结构的铂纳米粒子,用于催化甲醇氧化反应。

背景技术

燃料电池具有能量转化率高、污染小、适用范围广、负荷响应快等特点,在用作汽车动力电源、通讯基站电源、备用电源和手提电脑电源领域具有良好的发展前景。

燃料电池中,铂催化剂是应用最为广泛的电催化剂材料。但是其高昂的成本和资源的稀缺性被普遍视为燃料电池商业化的最大障碍。因此,亟需研究新型高性能、低成本的电催化剂。性能与电催化材料组成和分散度密切相关,在过去10年中,人们在纳米催化剂材料组成和粒径控制方面取得了重要进展。此外,催化性能还与粒子的形貌(即表面晶面或表面原子排列)密切相关。最近几年来,设计开发新型特殊形貌的电催化剂及其相关基础研究成为了燃料电池电催化剂的研究重点。八面体结构的铂纳米粒子对甲醇的催化具有很高的活性。

金属铂纳米材料的制备从大的方面来说可以分为物理制备方法和化学制备方法。物理制备方法是采用光、电等技术使材料在真空或惰性气氛中蒸发,然后使原子或分子形成纳米尺度的超微颗粒。化学制备方法是通过金属原子的成核、生长来制备金属纳米粒子。例如,化学还原法、电化学还原法、热分解法、光化学分解法、声化学分解法、有机金属化合物的配体还原和置换法等。通常物理制备方法得到的金属纳米颗粒的尺寸分布比较宽,而化学制备方法则可以通过改变还原剂和金属盐的摩尔比例、还原剂和表面活性剂的种类、反应温度、溶液的pH值等条件来比较有效地控制金属纳米粒子的尺寸和形状。因此化学制备方法是制备金属纳米粒子的主要方法。

迄今为止,国内外尚未有采用操作简单,重现性好的电化学技术方法合成八面体结构的铂纳米粒子。所以发明一种具有操作简单,重现性好,纳米颗粒稳定的铂纳米粒子制备方法是一个迫切需要解决的重要技术问题。

发明内容

本发明的目的是通过操作简单,重现性好的电化学技术制备纳米颗粒稳定,对甲醇催化活性高的八面体结构的铂纳米粒子。

本发明的目的是这样实现的:

一种八面体结构铂纳米粒子电化学合成方法及其甲醇催化应用,包括以下步骤:

(1)配制氯铂酸混合溶液:取18.0~20.0mmol/L氯铂酸(H2PtCl6),向其中加入氯化钾(KCl)固体,使氯铂酸混合溶液浓度达到19.0~25.0mmol/L,再加入Brij58表面活性剂至其质量分数为0.7%~1.2%,搅拌均匀,静置,放入冰箱中4℃保存;

(2)将玻碳电极先后分别用0.3微米和0.05微米的氧化铝粉末进行打磨抛光,然后分别用去离子水,乙醇和去离子水对玻碳电极进行清洗;

(3)采用CHI660D电化学工作站和三电极体系进行电化学沉积合成铂纳米粒子:以玻碳电极作为工作电极,Ag/AgCl电极作为参比电极,铂丝电极作为对电极,采用安培i-t曲线方法,以沉积电位-0.2V和沉积时间500s的条件,进行电化学沉积上述氯铂酸混合溶液,合成铂纳米粒子,而后滴加10微升的1%的Nafion溶液,室温下晾干备用。

八面体结构的铂纳米粒子对甲醇和甲酸的催化都有较高的活性。采用操作简单,重复性好的电化学技术制备纳米颗粒稳定,对甲醇催化活性高的八面体结构铂纳米粒子。通过场发射扫描电镜(SEM)观察不同反应条件下纳米粒子的形貌,并考察了不同形貌的铂纳米粒子对甲醇的催化活性。实验结果表明,采用I-t曲线电化学方法,在沉积电位-0.2V,沉积时间500s条件下,得到八面体结构的铂纳米粒子,并与其他条件下制备的铂纳米粒子相比,对甲醇的催化活性最高。

附图说明

图1不同沉积时间合成的铂纳米粒子修饰电极在0.5M H2SO4,1.0M甲醇溶液中的循环伏安曲线图。

图2不同沉积时间合成的铂纳米粒子的SEM图,A-100s,B-200s,C-300s,D-400s,E-500s,F-600s(沉积时间)。

图3不同沉积电位合成的铂纳米粒子修饰电极在0.5M H2SO4,1.0M甲醇溶液中的循环伏安曲线图。

图4八面体结构修饰玻碳电极和商用铂纳米粒子修饰玻碳电极在0.5M H2SO4,1.0M甲醇溶液中的循环伏安曲线图。

图5八面体结构修饰玻碳电极和商用铂纳米粒子修饰玻碳电极在0.5M H2SO4溶液中的循环伏安曲线图。

具体实施方式

本发明实验是在电化学CHI 660D型电化学工作站(上海辰华仪器有限公司)上进行;场发射扫描电子显微镜谱采用Hitachi S–4800(东京,日本)场发射扫描电子显微镜,SK2200H超声仪(上海科导超声仪器有限公司)。

下面通过实施例对本发明做进一步说明。

量取18.0~20.0mmol/L氯铂酸(H2PtCl6)3.0~5.0mL,往氯铂酸溶液中加入氯化钾(KCl)固体,使其浓度达到19.0~25.0mmol/L。往此混合溶液中加入Brij58表面活性剂至其质量分数是0.7%~1.2%,搅拌使其均匀,然后静置一定时间,然后放置在4℃冰箱中保存,备用。将直径为3毫米的玻碳电极先后分别用0.3微米和0.05微米的氧化铝粉末进行打磨抛光,然后分别用去离子水,乙醇和去离子水对玻碳电极进行清洗。采用CHI660D电化学工作站和三电极体系进行电化学沉积合成铂纳米粒子。以玻碳电极作为工作电极,Ag/AgCl电极作为参比电极,铂丝电极作为对电极。采用安培i-t曲线方法,以沉积电位-0.2V和沉积时间500s的条件,进行电化学沉积上述氯铂酸混合溶液,合成八面体结构铂纳米粒子。而后滴加10微升的1%的Nafion溶液,室温下晾干备用。

不同的沉积时间条件下合成的铂纳米粒子对甲醇的催化性能的影响:

图1是在0.5M的H2SO4,1.0M甲醇中,在沉积电位-0.2V和不同沉积时间合成的铂纳米粒子修饰玻碳电极对甲醇的催化循环伏安曲线图。由图1可以明显看出,在-0.2V沉积电位下,沉积时间500s合成的铂纳米粒子对甲醇的催化性能最高。同时,为了观察不同沉积时间合成的铂纳米粒子的形貌对甲醇催化性能的影响,实验过程中,采用场发射扫描电镜(SEM)对铂纳米粒子修饰电极进行形貌表征。

图2 A-F是不同沉积时间条件下合成的铂纳米粒子SEM形貌表征图,从图中可以看出,当沉积时间是100s时,纳米粒子的形状大部分是圆球型且粒子尺寸较小,存在小部分的纳米粒子是八面体结构,但形成的八面体体积较大(直径约为1μm)。沉积时间从100s~400s,形成的纳米结构大部分都是圆球形,只有100s和300s沉积时间条件下才会出现八面体结构的铂纳米粒子。当沉积时间为500s和600s条件下,合成的纳米粒子形状几乎是八面体结构,而且粒子直径大约500nm。在500s条件下合成的铂纳米粒子表面比较粗糙,边缘有缺陷。在600s条件下合成的铂纳米粒子有部分粒子堆叠在一起,可能会减少活性表面积。

由图1数据可以推测,表面较粗糙,边缘有缺陷的八面体结构的铂纳米粒子显示对甲醇的催化性能更高。实验数据表明,八面体结构的铂纳米粒子比球形铂纳米粒子对甲醇的催化性能更高。

不同沉积电位合成的铂纳米粒子对甲醇催化性能的影响:

安培I-t曲线法是一种恒电位还原沉积金属离子的方法。

图3是在0.5M的H2SO4,1.0M甲醇中,不同沉积电位合成的铂纳米粒子修饰玻碳电极对甲醇的催化循环伏安曲线图,从图3中明显表明,在沉积电位-0.2V条件下,合成的铂纳米粒子修饰电极对甲醇的催化性能最高。

图4与图5是对比实验。

图4是八面体结构铂纳米粒子修饰玻碳电极和商用铂纳米粒子修饰玻碳电极在0.5M H2SO4,1.0M甲醇中进行循环伏安实验,明显看出,八面体结构的铂纳米粒子对甲醇的催化活性高与商用的铂纳米粒子。

图5是两种不同修饰电极在0.5M H2SO4进行循环伏安实验,从实验结果可以看出,八面体结构铂纳米粒子修饰的玻碳电极的活性表面积要高于商用铂纳米粒子修饰的玻碳电极。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号