首页> 中国专利> 利用湿化学法精细合成三元ZnO-Nb

利用湿化学法精细合成三元ZnO-Nb

摘要

本发明属于电子陶瓷制备与应用技术领域,尤其涉及一种利用湿化学法精细合成三元ZnO-Nb

著录项

  • 公开/公告号CN102775141A

    专利类型发明专利

  • 公开/公告日2012-11-14

    原文格式PDF

  • 申请/专利权人 济南大学;

    申请/专利号CN201210290899.6

  • 申请日2012-08-16

  • 分类号C04B35/453;C04B35/622;

  • 代理机构济南日新专利代理事务所;

  • 代理人谢省法

  • 地址 250022 山东省济南市济微路106号济南大学西校区材料科学与工程学院

  • 入库时间 2023-12-18 07:11:56

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2017-10-10

    未缴年费专利权终止 IPC(主分类):C04B35/453 授权公告日:20131030 终止日期:20160816 申请日:20120816

    专利权的终止

  • 2013-10-30

    授权

    授权

  • 2013-01-09

    实质审查的生效 IPC(主分类):C04B35/453 申请日:20120816

    实质审查的生效

  • 2012-11-14

    公开

    公开

说明书

技术领域

本发明属于电子陶瓷制备与应用技术领域,尤其涉及一种利用湿化学法精细合成三元ZnO-Nb2O5-TiO2体系微波介质陶瓷方法。

背景技术

LTCC(Low Temperature Co-fired Ceramic )低温共烧陶瓷技术是于1982年由休斯公司开发的新型材料技术,它采用厚膜材料,根据预先设计的结构,将电极材料、基板、电子器件等一次性烧成,是一种可以实现高集成度、高性能电路封装的技术,其主要应用领域有:高频无线通讯领域(如移动电话,全球卫星定位系统以及蓝牙技术等)、航空航天工业与军事领域(如通讯卫星,探测和跟踪雷达系统等)、微机电系统与传感技术、汽车电子等。

LTCC技术是一种多层布线的低温共烧技术,选用的微波介质陶瓷材料应具备烧结温度小于1000℃。ZnTiNb2O8陶瓷其晶胞参数为:a=4.677?, b=5.666?,c=5.016?,正交晶系结构。由于其特定的晶体结构,呈现出良好烧结特性与较好的微波性能。国内外目前关于该体系研究,例如华中科技大学、台湾成功大学及天津大学等单位,均以传统固相法工艺为主,烧结ZnTiNb2O8陶瓷温度范围保持在1050-1150℃,微波介电性能为εr ~35, Q·?~40,000 GHz。为了实现LTCC应用需求,广大研究人员尝试通过在该体系中实施材料复合思路制备固溶体或者添加第二相玻璃作为助熔剂,降低烧结温度,工艺复杂难以控制,且往往以牺牲其微波介电性能为代价。

发明内容

本发明的目的是基于未来LTCC低温共烧陶瓷技术应用需求,克服传统固相合成粉体温度偏高、合成粉体粒度较大,不利于后续陶瓷烧结的缺点;提供了一种利用湿化学法精细合成三元ZnO-Nb2O5-TiO2体系微波介质陶瓷方法,采用湿化学法精细合成ZnTiNb2O8陶瓷粉体,具有合成温度低、陶瓷颗粒均匀、分散性好、物相纯、粉体具有纳米粒度并具有高比表面能,呈现出较高活性等显著优势,能够实现低温烧结,并保持其良好微波介电性能,满足LTCC应用需求。

为解决上述技术问题,本发明的技术方案为:

利用湿化学法精细合成三元ZnO-Nb2O5-TiO2体系微波介质陶瓷方法,包括以下步骤:

1)配制Zn离子的柠檬酸水溶液 ;

2)配制Ti与Nb离子的柠檬酸水溶液 ;

3)三元ZnO-Nb2O5-TiO2体系微波介质陶瓷纳米前驱体的合成及陶瓷制备;

 (a)将步骤(1)、(2)制备的Zn柠檬酸水溶液、Ti与Nb离子柠檬酸水溶液混合均匀,然后加入乙二醇进行酯化,乙二醇加入的摩尔量为柠檬酸的4-6倍;加热搅拌均匀,获得Zn-Ti-Nb前驱体溶胶;

(b)将步骤 (a)制备的Zn-Ti-Nb前驱体溶液置于烘箱内烘干,缩水形成干凝胶;

(c)将步骤 (b)的干凝胶置于高温炉中700-900℃煅烧处理,即可获得颗粒均匀的纳米级ZnTiNb2O8粉体;

(d)将上述ZnTiNb2O8粉体进行炒蜡、过筛、造粒、成型;实现其低温烧结并测试其微波性能。

本发明更进一步的湿化学法制备铌酸镁微波陶瓷粉体的制备方法,具有以下步骤:

1)配制Zn离子的柠檬酸水溶液 

 (a) 根据ZnTiNb2O8微波陶瓷物相的化学计量比,调整ZnO /TiO2/Nb2O5摩尔配比为1+x/1/1(0<x<0.1);首先称取硝酸锌,溶于适量去离子水;或者称量对应化学计量比氧化锌作为原料,加入硝酸进行溶解,形成无色透明溶液;

(b) 称取柠檬酸,其摩尔比为硝酸锌或者氧化锌4-6倍,加入上述溶液中,促使柠檬酸与Zn离子形成络合物,制成无色透明Zn离子柠檬酸水溶液; 

2)配制Ti与Nb离子的柠檬酸水溶液 

(a)根据ZnTiNb2O8微波陶瓷物相的化学计量比,称取二氧化钛与五氧化二铌,置于陶瓷介质反应釜,加入氢氟酸后密封,然后利用烘箱进行高温(100-170℃)处理1-3小时加速溶解,形成无色透明Ti与Nb离子的共溶HF酸溶液

(b)上述Ti与Nb离子的HF酸溶液中,加入氨水调整PH值为8-10,促使Ti与Nb离子以钛酸与铌酸的形式完成沉淀;

(c)过滤上述沉淀,反复清洗数次后置于柠檬酸的水溶液中进行磁力搅拌,形成分散均匀白色柠檬酸悬浊液,其中加入柠檬酸摩尔量为金属离子总量6-10倍; 

(d)将上述白色柠檬酸悬浊液置于陶瓷介质高压反应釜密封,然后利用烘箱进行高温(100-170℃)处理3-6小时促使发生水热反应,促使柠檬酸与Ti与Nb离子进行反应形成络合物溶解,最后形成无色透明Ti与Nb离子的混合柠檬酸水溶液; 

3)三元ZnO-Nb2O5-TiO2体系微波介质陶瓷纳米前驱体的合成及陶瓷制备

(a)将步骤(1)、(2)制备的Zn柠檬酸水溶液、Ti与Nb离子柠檬酸水溶液混合均匀,然后加入乙二醇进行酯化,乙二醇加入的摩尔量为柠檬酸用量总量的4-6倍;通过水浴60-90℃加热10-24小时,并不断搅拌,保证均匀,获得Zn-Ti-Nb前驱体溶胶;

(b)将步骤(3)(a)制备的Zn-Ti-Nb前驱体溶液置于烘箱内烘干(100-150℃),缩水形成干凝胶;

(c)将步骤(3)(b)的干凝胶置于马弗炉中于700-900℃煅烧1-2小时,即可获得颗粒均匀的纳米级ZnTiNb2O8粉体;

(d) 将上述ZnTiNb2O8粉体进行炒蜡、过筛、造粒、成型,其中炒蜡环节中石蜡加入量重量百分比为12-15%,过筛为60-80目标准筛,成型压力为4-10MPa;采用中温马弗炉以升温速度3-10/min,于950-1000℃保温2-4小时可实现其烧结成瓷。

本发明的有益效果是:本发明采用价格低廉的氧化锌,五氧化二铌,二氧化钛作为原料,替代昂贵的金属有机物醇盐,以无机酸进行溶解处理,基于溶胶凝胶原理,结合水热工艺的优势,实现超低温合成纳米尺度的三元ZnTiNb2O8陶瓷粉体。该技术合成的微波陶瓷粉体颗粒细小、均匀,合成温度低,形成ZnTiNb2O8陶瓷粉体具有较好的烧结特性,可以实现在1000℃内烧结,同时具有良好的微波介电性能,能够满足LTCC领域微波介质陶瓷应用需求。

利用湿化学工艺在较低温度下制备出的纳米级三元稳定ZnTiNb2O8陶瓷体系粉体。该技术合成的微波陶瓷粉体颗粒细小、均匀,分散性好,具有纳米级别的尺度,具有良好的烧结特性,物相纯度高,没有任何杂质,易烧结并具有良好微波介电性能,有望成为LTCC应用的候选材料。

采用原料为无机金属氧化物或者硝酸盐,价格低廉,可以有效替代昂贵有机物以及金属醇盐;湿化学工艺过程化学计量比控制精确,工艺简单,重复性好;合成三元ZnTiNb2O8介质陶瓷物相稳定单一,无杂相干扰;合成三元ZnTiNb2O8介质陶瓷粉体为纳米尺度,具有高比表面积、高比表面能,活性高,易烧结,能够满足LTCC应用需求。

附图说明

 图1为本发明湿化学工艺制备ZnTiNb2O8陶瓷工艺流程图,

   图2为本发明Zn-Ti-Nb不同温度煅烧后XRD结果,

   图3为本发明干凝胶700℃煅烧后TEM形貌图。

下面结合附图与具体实施方式对本发明作进一步详细说明。

具体实施方式

实施例1

根据图1湿化学工艺制备ZnTiNb2O8陶瓷工艺流程图,湿化学法制备铌酸镁微波陶瓷粉体的制备方法,具有以下步骤:

1)配制Zn离子的柠檬酸水溶液 

 (a) 根据ZnTiNb2O8微波陶瓷物相的化学计量比,调整ZnO /TiO2/Nb2O5摩尔配比为1+x/1/1(0<x<0.1);首先精密天平称取Zn(NO3)2.6H2O共27.1克,溶于100ml离子水,磁力搅拌,形成无色透明溶液;

(b) 称取柠檬酸85克,加入上述溶液中进行搅拌,促使柠檬酸与Zn离子形成络合物,制成无色透明Zn离子柠檬酸水溶液; 

2)配制Ti与Nb离子的柠檬酸水溶液 

(a)根据ZnTiNb2O8微波陶瓷物相的化学计量比,分别称取二氧化钛7.99克与五氧化二铌2.6581克,置于陶瓷介质反应釜,加入100ml氢氟酸后密封,然后利用烘箱进行高温170℃水热处理1小时加速溶解,形成无色透明Ti与Nb离子的共溶HF酸溶液

(b)上述Ti与Nb离子的HF酸溶液中,加入氨水250ml调整PH值为10,促使Ti与Nb离子以钛酸与铌酸的形式完成沉淀;

(c)过滤上述沉淀,反复清洗数次后置于柠檬酸的水溶液中进行磁力搅拌,形成分散均匀白色柠檬酸悬浊液,其中加入柠檬酸摩尔量为230克; 

(d)将上述白色柠檬酸悬浊液置于陶瓷介质高压反应釜密封,然后利用烘箱进行高温170℃处理3小时促使发生水热反应,促使柠檬酸与Ti与Nb离子进行反应形成络合物溶解,最后形成无色透明Ti与Nb离子的混合柠檬酸水溶液; 

3)三元ZnO-Nb2O5-TiO2体系微波介质陶瓷纳米前驱体的合成及陶瓷制备

(a)将步骤(1)、(2)制备的Zn柠檬酸水溶液、Ti与Nb离子柠檬酸水溶液混合均匀,然后加入乙二醇进行酯化,乙二醇加量为150ml;通过水浴90℃加热10小时,并不断搅拌,保证均匀,获得Zn-Ti-Nb前驱体溶胶;

(b)将步骤(3)(a)制备的Zn-Ti-Nb前驱体溶液置于烘箱内烘干150℃,缩水形成干凝胶;

(c)将步骤(3)(b)的干凝胶置于马弗炉中于900℃煅烧1小时,即可获得颗粒均匀的纳米级ZnTiNb2O8粉体;见图2为本发明Zn-Ti-Nb不同温度煅烧后XRD结果,图中900℃下XRD曲线已经充分表明ZnTiNb2O8结晶良好。

(d) 将上述ZnTiNb2O8前驱粉体进行炒蜡、过筛、造粒、成型,其中炒蜡环节中石蜡加入量重量百分比为15%,过筛80目进行造粒,成型压力为10MPa;采用中温马弗炉以升温速度10/min,于1000℃保温2小时可实现其烧结成瓷;经测试其微波性能为εr~34.1,Qf~43,200GHz,τ~ -52.32×10-6/℃

实施例2

根据图1湿化学工艺制备ZnTiNb2O8陶瓷工艺流程图,湿化学法制备铌酸镁微波陶瓷粉体的制备方法,具有以下步骤:

1)配制Zn离子的柠檬酸水溶液 

 (a) 根据ZnTiNb2O8微波陶瓷物相的化学计量比,调整ZnO /TiO2/Nb2O5摩尔配比为1+x/1/1(0<x<0.1);首先精密天平称取Zn(NO3)2.6H2O共29.8克,溶于100ml离子水,磁力搅拌,形成无色透明溶液;

(b) 称取柠檬酸95克,加入上述溶液中进行搅拌,促使柠檬酸与Zn离子形成络合物,制成无色透明Zn离子柠檬酸水溶液; 

2)配制Ti与Nb离子的柠檬酸水溶液 

(a)根据ZnTiNb2O8微波陶瓷物相的化学计量比,分别称取二氧化钛7.99克与五氧化二铌2.6581克,置于陶瓷介质反应釜,加入90ml氢氟酸后密封,然后利用烘箱进行高温100℃水热处理3小时加速溶解,形成无色透明Ti与Nb离子的共溶HF酸溶液

(b)上述Ti与Nb离子的HF酸溶液中,加入氨水200ml调整PH值为8,促使Ti与Nb离子以钛酸与铌酸的形式完成沉淀;

(c)过滤上述沉淀,反复清洗数次后置于柠檬酸的水溶液中进行磁力搅拌,形成分散均匀白色柠檬酸悬浊液,其中加入柠檬酸摩尔量为280克; 

(d)将上述白色柠檬酸悬浊液置于陶瓷介质高压反应釜密封,然后利用烘箱进行高温100℃处理6小时促使发生水热反应,促使柠檬酸与Ti与Nb离子进行反应形成络合物溶解,最后形成无色透明Ti与Nb离子的混合柠檬酸水溶液; 

3)三元ZnO-Nb2O5-TiO2体系微波介质陶瓷纳米前驱体的合成及陶瓷制备

(a)将步骤(1)、(2)制备的Zn柠檬酸水溶液、Ti与Nb离子柠檬酸水溶液混合均匀,然后加入乙二醇进行酯化,乙二醇加量为200ml;通过水浴60℃加热15小时,并不断搅拌,保证均匀,获得Zn-Ti-Nb前驱体溶胶;

(b)将步骤(3)(a)制备的Zn-Ti-Nb前驱体溶液置于烘箱内烘干100℃,缩水形成干凝胶;

(c)将步骤(3)(b)的干凝胶置于马弗炉中于700℃煅烧1小时,即可获得颗粒均匀的纳米级ZnTiNb2O8粉体;参见:附图3为本发明干凝胶700℃煅烧后TEM形貌图,图2为本发明Zn-Ti-Nb不同温度煅烧后XRD结果,图中700℃下XRD曲线已经充分表明ZnTiNb2O8结晶良好。

(d) 将上述ZnTiNb2O8前驱粉体进行炒蜡、过筛、造粒、成型,其中炒蜡环节中石蜡加入量重量百分比为12%,过筛60目进行造粒,成型压力为5MPa;采用中温马弗炉以升温速度3/min,于950℃保温4小时可实现其烧结成瓷;经测试其微波性能为εr~33.8,Qf~47,800GHz,τ~ -57.95×10-6/℃

实施例3

根据图1湿化学工艺制备ZnTiNb2O8陶瓷工艺流程图,湿化学法制备铌酸镁微波陶瓷粉体的制备方法,具有以下步骤:

1)配制Zn离子的柠檬酸水溶液 

 (a) 根据ZnTiNb2O8微波陶瓷物相的化学计量比,调整ZnO /TiO2/Nb2O5摩尔配比为1+x/1/1(0<x<0.1);首先精密天平称取Zn(NO3)2.6H2O共29.1克,溶于100ml离子水,磁力搅拌,形成无色透明溶液;

(b) 称取柠檬酸100克,加入上述溶液中进行搅拌,促使柠檬酸与Zn离子形成络合物,制成无色透明Zn离子柠檬酸水溶液; 

2)配制Ti与Nb离子的柠檬酸水溶液 

(a)根据ZnTiNb2O8微波陶瓷物相的化学计量比,分别称取二氧化钛7.99克与五氧化二铌2.6581克,置于陶瓷介质反应釜,加入80ml氢氟酸后密封,然后利用烘箱进行高温130℃水热处理2小时加速溶解,形成无色透明Ti与Nb离子的共溶HF酸溶液

(b)上述Ti与Nb离子的HF酸溶液中,加入氨水190ml调整PH值为9,促使Ti与Nb离子以钛酸与铌酸的形式完成沉淀;

(c)过滤上述沉淀,反复清洗数次后置于柠檬酸的水溶液中进行磁力搅拌,形成分散均匀白色柠檬酸悬浊液,其中加入柠檬酸摩尔量为300克; 

(d)将上述白色柠檬酸悬浊液置于陶瓷介质高压反应釜密封,然后利用烘箱进行高温130℃处理4小时促使发生水热反应,促使柠檬酸与Ti与Nb离子进行反应形成络合物溶解,最后形成无色透明Ti与Nb离子的混合柠檬酸水溶液; 

3)三元ZnO-Nb2O5-TiO2体系微波介质陶瓷纳米前驱体的合成及陶瓷制备

(a)将步骤(1)、(2)制备的Zn柠檬酸水溶液、Ti与Nb离子柠檬酸水溶液混合均匀,然后加入乙二醇进行酯化,乙二醇加量为220ml;通过水浴80℃加热12小时,并不断搅拌,保证均匀,获得Zn-Ti-Nb前驱体溶胶;

(b)将步骤(3)(a)制备的Zn-Ti-Nb前驱体溶液置于烘箱内烘干120℃,缩水形成干凝胶;

(c)将步骤(3)(b)的干凝胶置于马弗炉中于800℃煅烧1小时,即可获得颗粒均匀的纳米级ZnTiNb2O8粉体;见图2为本发明Zn-Ti-Nb不同温度煅烧后XRD结果,图中800℃下XRD曲线已经充分表明ZnTiNb2O8结晶良好。

(d) 将上述ZnTiNb2O8前驱粉体进行炒蜡、过筛、造粒、成型,其中炒蜡环节中石蜡加入量重量百分比为13%,过筛60目进行造粒,成型压力为4MPa;采用中温马弗炉以升温速度5/min,于980℃保温3小时可实现其烧结成瓷;经测试其微波性能为εr~34.5,Qf ~52,080GHz,τf ~ -50.3×10-6/℃

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号