首页> 中国专利> 控制静子叶片角度位置的系统和优化所述角度位置的方法

控制静子叶片角度位置的系统和优化所述角度位置的方法

摘要

本发明涉及一种控制静子叶片角度位置的系统,其包括根据其中一个转速(N1,N2)计算叶片设定角度位置(VSV

著录项

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2015-04-01

    授权

    授权

  • 2012-11-14

    实质审查的生效 IPC(主分类):F01D17/16 申请日:20100923

    实质审查的生效

  • 2012-10-03

    公开

    公开

说明书

本发明涉及燃气涡轮发动机领域,所述发动机包括至少两个转子,而且包括一 个或多个静子级,在这些级中,叶片为变螺距叶片。

本发明的目的是优化所述静子叶片的角度位置,以便当涡轮发动机以稳定转速 运行时,可降低燃油消耗。“稳定转速”是指发动机转速,在该转速下由发动机所提 供的推力始终大体不变。

例如,双转子燃气涡轮发动机的每个转子包括至少一个压气机和一个安装在所 述压气机下游的涡轮。按照惯例,在本申请中,术语“上游”和“下游”的定义是相对 于涡轮发动机中空气的流动方向。传统上,压气机包括几个转子级,目的是加速和 压缩发动机内从上游到下游移动的空气流。为了在加速后对空气流整流,静子级直 接布置在每个转子级的出口位置。

静子级的形状为固定轮形式,轴向延伸,径向静子叶片安装在静子轮的周缘。 为了通过转子级下游的静子级对空气流的整流进行优化,可以对静子叶片的角度方 向进行修正,所述叶片称之为变螺距叶片。为此,涡轮发动机包括一个控制压气机 静子叶片角度位置的系统。

传统上,参照示意图1A,双转子涡轮发动机M的静子叶片角度位置主要取决 于高压转子的转速N2和压气机入口位置的温度T25。为此,针对转子的给定转速 N2,控制系统设有计算每个静子轮上叶片角度位置设定值VSVCAL的装置20。所计 算出的设定值VSVCAL发送到传动装置6,后者用来修正涡轮发动机M静子叶片的 当前角度位置。

计算装置20根据以前确定的数学定律进行编程,目的是适合“平均寿命(average)” 发动机,既不是太新(刚出厂的新发动机),也不是太“旧(worn)”(准备大修)。

实际上,实际的发动机都不符合针对其所计算的数学定律的“平均寿命”发动机。 当前系统的数学定律考虑了发动机的裕度要求(老化的鲁棒性裕度、发动机与发动 机的差异裕度(margins of dispersion)、污垢裕度等)。结果,叶片的角度位置并没有 针对实际的发动机进行优化,而是对新发动机或降性能发动机都是固定的。

一种解决方案是修正数学定律,以便考虑到发动机的磨损和发动机之间差异的 参数。然而,这个解决方案很难实施,所述参数很多,难于模拟。

为了解决这些缺陷,申请者提出了一种可控制涡轮发动机压气机变螺距静子叶 片角度位置的系统,所述压气机包括至少两个转子,每个转子以转速(分别为N1 和N2)旋转,适用于以稳定转速运行的涡轮发动机,所述系统包括:

-根据其中一个转速(N1,N2)计算叶片角度设定位置的装置,以及

-修正设定位置的模块,该模块包括:

○确定叶片角度位置的装置;

○测量涡轮发动机燃油流量的装置;

○存贮器,其中,叶片连续角度位置与在所述角度位置测量的涡轮发动机燃油流 量相联系;以及

○确定修正角的装置,所述装置可根据叶片的连续两个角度位置之间测量的燃油 流量之间的差来计算修正角。

根据本发明的系统可有利地确定叶片的角度位置,以优化涡轮发动机的燃油消 耗。申请者已经确定,涡轮发动机在给定稳定转速时,其燃油流量是叶片角度位置 的函数,而且,该函数具有局部的最小值。换句话说,通过局部改变叶片的角度位 置,可以确定叶片当前角度位置必须修正的范围,以限定燃油流量。本发明的修正 模块可以对控制叶片角度位置的传统系统进行补充,改善发动机给定稳定转速时的 性能。

不同于现有技术,在现有技术中,确定叶片角度位置的定律对于所有发动机来 讲都是固定不变的,不考虑发动机参数差异或其磨损参数,根据本发明的系统允许 根据发动机状态来调整叶片的角度位置。申请者并不是列出发动机磨损或差异的所 有参数和获得多个复杂数学定律,而是直接测量角度变化对燃油消耗的影响。

根据本发明,在对应于“平均寿命”发动机的数学模型的基础上计算出的理论设 定位置得到了修正。这种系统可以直接装入目前的涡轮发动机中。而由此需要解决 的新的问题是确定叶片角度位置的最佳值。

优选地,该系统包括了一种加法器(adder),将修正角补充到设定角度位置上,以 计算优化的设定位置。因此而修正设定值,以考虑燃油的消耗。

另外,优选地,该系统包括一个传动装置,根据优化的设定位置,控制叶片的 角度位置。这样,传动装置可对当前角度位置进行修正,以便“符合”优化的设定位 置。

另外,优选地,修正模块包括检查涡轮发动机状态的装置和抑制修正叶片当前 角度位置的装置,所述抑制装置只有在涡轮发动机状态不适合对叶片角度位置进行 修正时才启动。

如果涡轮发动机状态不适合对叶片角度位置进行修正时,所述抑制装置则启动。 根据检查装置的指令,抑制装置可以阻止对叶片角度位置的修正,因为此时修正会 危及涡轮发动机或不适合其工作状态。

优选地,修正模块包括限制修正角值的装置,所述装置用来限制修正角值,目 的是保持在无风险工作范围内。

本发明还涉及到包括上述控制系统的涡轮发动机。

另外,本发明还涉及到优化涡轮发动机压气机静子叶片当前角度位置的方法, 所述压气机包括至少两个转子,每个转子以转速(N1,N2)旋转,适用于以稳定转速 工作的涡轮发动机,所述方法包括:

a)在叶片参考角度位置处,确定涡轮发动机的参考燃油流量;

b)在叶片的当前角度位置处,确定涡轮发动机的当前燃油流量;

c)根据参考燃油流量和当前燃油流量之间的差,计算修正角,以便降低燃油流 量;

d)将所述修正角加到此前计算设定位置上,以便获得优化设定位置;

e)修正叶片的当前角度位置,从而使其与优化设定位置一致。

优选地,以前次迭代的步骤(b)的当前角度位置作为步骤(a)的参考角度位置,重 复实施步骤(a)到(e)。

有利的是,这样,可以“逐步”优化叶片的角度位置,确保精确优化,不会带来 任何有害的不利影响,诸如出现瞬变过程。

再者,优选地,采用最优化方法来计算修正角,优选地,采用燃油函数F的最 速下降法,确定相对于叶片角度位置的涡轮发动机的燃油流量。

燃油函数F允许局部最小值,确保最优化方法的收敛性。它也可以偶尔是凸的, 确保最佳角度位置的存在。

还优选地,修正角的值得到限制,以便保持在无风险运行范围内(超速、湍振、 温度升高,等等)。

根据本发明的另一个实施方式,检查发动机的状态,且如果涡轮发动机状态不 适合修正叶片角度位置时,可阻止对叶片当前角度位置的修正。

下面借助附图可以更好地理解本发明,附图如下:

-图1A示出了根据现有技术控制叶片角度位置的系统;

-图1B示出了采用本发明的修正角度位置的模块来控制叶片角度位置的系统;

-图2为涡轮发动机静子叶片角度控制系统第一个实施方式示意图,该系统用来 计算修正角;

-图3为控制系统第二个实施方式示意图,所示系统带有修正抑制装置;

-图4为控制系统第三个实施方式的示意图,所示系统带有限制修正角值的装 置,以及

-图5为发动机燃油流量变化示意曲线图,该流量随发动机静子叶片角度位置而 变化,适用于发动机的确定的稳定转速。

图1B所示为根据本发明的涡轮发动机高压压气机静子叶片角度位置控制系统, 所示为双转子发动机;低压转子的转速为N1,高压转子的转速为N2。借助于油门, 发动机通过向其指示所需推力而得到控制;推力与低压转子的转速直接联系。为此, 推力设定赋予了低压转子转速设定N1DMD。为了清晰起见,涉及低压转子转速的标 记N1同样也用于发动机推力,因为这两个参数之间是直接联系的。同样,标记N1 可对应于与发动机推力具有直接联系的其它参数,特别是对应于所属领域技术人员 所熟知的参数EPR“发动机压力比”。

传统上,涡轮发动机包括根据高压本体转速N2和高压转子温度T25计算静子叶 片设定角度位置VSVCAL的装置20。所述计算装置20采用所属领域技术人员所熟知 的数学定律来进行编程,从而可根据高压转子转速N2来计算设定角度位置VSVCAL

根据本发明的控制系统还包括修正发动机M静子叶片设定位置VSVCAL的模块 1。修正模块1可确定修正角VSVCORR,优化燃油消耗。控制系统还包括加法器S, 用来接收所计算的设定值VSVCAL和修正角VSVCORR,作为输入信息,以便将对应 于其两个输入参数(VSVCORR,VSVCAL)总和的优化设定值VSV作为输出信号来发 送。控制系统还包括传动装置6,该传动装置可根据优化的设定值VSV来对叶片 当前角度位置VSVCOU进行修改。

依然参照图1B,控制系统包括估算为保持转速N1所必需的燃油的模块31, 又称之为修正网,该模块将转速设定值N1DMD作为输入信息来接收,该转速设定值 对应于所期望转速,也就是说,对应于所期望的推力级。控制系统还包括燃油控制 装置30,该装置由修正网31控制,能够根据发动机有效转速N1EFF—例如,由转速 传感器所测的—来对燃油流量进行修正。

如果提供给发动机M的燃油流量不能达到所要求推力(N1EFF低于N1DMD),修 正网31会指示燃油控制装置30,增加给发动机M的燃油供给流量,从而弥补期望 转速N1DMD和有效转速N1EFF之间的差别。

参照图2,根据本发明第一个实施方式的修正模块1,包括测定叶片角度位置 VSV的装置2,所述装置本身已为人们所熟知,其形式如位置传感器,以及在叶片 给定角度位置VSV处测定涡轮发动机燃油流量WFM的装置3。测定流量的装置3 可以是直接的,例如可采用安装在涡轮发动机燃烧室喷油器上游的传感器的形式, 或者是间接的,例如,测量封闭涡轮发动机燃油管路通道截面的部件的线性位置, 而该截面的尺寸已知。一般来讲,这些测定装置2,3都会连续起动,目的是不断地 监视叶片的角度位置和燃油消耗情况。

修正模块1还包括一个储存器4,其中,叶片连续角度位置VSV都与在所述角 度位置VSV处所测的涡轮发动机的燃油流量WFM相关。随着时间的推移,修正模 块1的储存器4由所述测定装置2,3给予补充。实际上,储存器4仅容纳了一定数 量的数值对(VSV,WFM),最老的数值对总是被更新的数值对所取代。例如,储存器 4包括至少两对:一对是当前值(VSVCOU,WFMCOU),另一对是过去值,称之为参考 值(VSVREF,WFMREF)。

在本案例下,对发动机稳定转速运行有一定限制,发动机提供的推力始终为大 体恒定不变。例如,在稳定工作时,转速N1不变,或者,参数EPR不变。在稳定 转速时,通过分析离散函数,以下称之为燃油函数F,根据静子叶片的角度值 VSVCOU,可以很方便地监视燃油流量WFMCOU的变化,而所述函数则由控制系统1 中的储存器4的数值对来确定。

对于涡轮发动机以恒定转速N1运行来讲,又称之为“iso N1”,申请者已经研究 了燃油函数F,该函数确定了相对于叶片角度位置VSVCOU的燃油流量WFMCOU, 同时,确定了该燃油函数F为局部凸的,因此,存在燃油消耗最低的叶片角度位置, 这个最佳角度位置标记为VSVOPT。图5示出了发动机确定的稳定转速的燃油函数F 和最佳角度位置。

角度位置VSVOPT称之为发动机最佳位置有两个原因。首先,相对于发动机的确 定的稳定转速为最佳,最佳角度位置会随着给定转速的变化而变化。第二,相对于 发动机本身为最佳,通过显然考虑了发动机磨损状态和制造差异,所述角度位置 VSVOPT被确定为“适合”该发动机。换句话说,根据制造裕度和与安装相关的变化情 况,给定发动机并不具有与同一系列另一台发动机完全相同的特性,结果,每台发 动机有其特定的最佳角度位置VSVOPT

修正模块1还包括测定修正角VSVCORR的装置5,所述装置可根据在叶片连续 两次角度位置之间所测燃油流量之间的差来计算修正角VSVCORR。换句话说,修正 角VSVCORR并不是通过分析发动机固有参数来计算的,而是通过对所需结果的优化 来进行的,从而获得尽可能最低的燃油消耗WFMOPT

为此,测定修正角VSVCORR的装置5可在iso N1时测定燃油函数F的局部最小 值,且可通过了解该函数的仅仅几个值(最后的连续角度位置)来测定。在本示例 中,测定修正角VSVCORR的装置5是通过优化函数来编程的,其作用就是在限制其 值的同时可测定修正角VSVCORR。具体来讲,如果叶片当前角度位置VSVCOU通过 太高的修正角值VSVCORR来修改时,发动机会出现瞬变过程,这会对发动机带来损 坏。

优化的原则在于,局部具有叶片当前角度位置的变化,测量该角度变化对有效 燃油流量的影响,以便从中了解如何修正当前角度位置。

因此,根据本发明的优化功能可以通过限制瞬变过程的发生而安全地改善发动 机的效能。下面介绍最速下降法的优化功能,但是,其它优化方法也适用,诸如采 用最小平方法进行最优化等。最速下降法可非常简单地优化角度位置。

最速下降法采用储存器4内存储的数值对(VSVCOU,WFMCOU;VSVREF,WFMREF), 计算叶片当前角度位置VSVCOU时燃油函数F的梯度值,所述角度位置相对于其此 前的角度位置VSVREF。于是,从中可推断出燃油函数F的收敛性方向。通过线性 优化,根据当前角度位置VSVCOU梯度值和饱和增量SAT1和收敛性率μ,计算修正 角VSVCORR,选择收敛性率μ,从而在与最佳角度位置VSVOPT的快速收敛性和防止 涡轮发动机出现瞬变过程之间取得折中。

根据最优化功能,从中推断出修正角值VSVCORR,该值必须加到设定位置 VSVCAL,目的是获得优化设定值VSV。传动装置6可修正叶片当前角度位置 VSVCOU,以便对应于优化的设定位置VSV。优化的设定位置VSV不一定对应 于最佳角度位置VSVOPT,因为当前角度位置VSVCOU修正过大会造成压气机湍振。 优选地,最优化可重复地逐渐进行。

根据叶片角度位置的最优化情况,将发动机调整到以较低燃油流量运行的给定 转速上。参照图1B,燃油控制装置30指示修正网31保持相同转速N1,尽管因叶 片当前角度位置修正而对高压转子特性进行了修正。因此,节省了燃油。

优选地,参照图4,修正模块1包括限定修正角值VSVCORR的装置9,用来通过 梯度饱和阈值SAT2来限制修正角,以防止在对叶片当前角度位置VSVCOU进行修 正期间出现振动。另外,还可以检查最优化方法的收敛性速度。饱和函数SAT2和 饱和增量SAT1可以一起使用,也可单独使用。

例如,最速下降优化法可以遵循如下迭代的数学关系:

VSVCORR(t)=-SAT1[gradient F(VSVCOU)xμ]+VSVCORR(t-1)

VSVCORR’(t)=signVSVCORR(t))*min(|VSVCORR(t)|,SAT2)

VSV(t)=VSVCAL(t)+VSVCORR’(t)

为了启动最优化过程,必须对叶片当前角度位置进行非常轻微修正,目的是进 行优化和开始该程序。而后,通过“激活”系统来启动优化方法。另外,初始化也可 以从表示叶片角度位置VSV变化方向的数学模型中产生,从而减小燃油流量WFM。

根据本发明的优选实施方式,参照图3,修正模块1包括抑制装置7,用来通过 测定修正角的装置5来相抵消所计算的修正角值VSVCORR。这样,在发动机不以稳 定转速运行时,就可以阻止传动装置6对叶片角度位置的修正。

不言而喻,限制装置9和抑制装置7可以在同一控制系统1中使用。

在这个实施方式中,抑制装置7采用了“或”逻辑门的形式,连接到测量发动机 状态—也就是说,“其健康状态”—的装置8上。例如,测量发动机状态的装置8包 括:

-储存湍振类型事件的装置。如果在涡轮发动机使用寿命期间发现湍振现象,抑 制装置7就会抑制该逻辑程序。

-测量相对于预定裕度的排气温度裕度的装置,称之为EGT“排气温度”裕度参 数。如果发现裕度不足,抑制装置7就会抑制该逻辑程序。

-通过测量流量系数和高压压气机效能的传感器来估算涡轮发动机压气机状态 的装置。这些系数代表了发动机的状态,将其与相对于“健康”发动机(即,良好状 态下的发动机)预定阈值进行比较。如果超过阈值,抑制装置7就会抑制该逻辑程 序。

-测量发动机稳定性的装置,所述装置用来测量各个值,诸如低压转子转速 (N1EFF)、高压转子转速(N2)及其变化情况。如果出现瞬变过程,抑制装置7就会抑 制该逻辑程序。

同样,如果飞机驾驶员想操作油门来使发动机加速或减速,则会禁止修正,且 不再对叶片角度位置进行优化。这种检查通过监测发动机瞬变过程的装置(图中未 示)来进行。

另外,本发明还涉及到对涡轮发动机压气机静子叶片当前角度位置优化的方法, 所述压气机包括至少两个转子,每个转子都以一种速度旋转,适用于以稳定转速运 行的涡轮发动机,所述方法包括:

a)在叶片参考角度位置VSVREF处,确定涡轮发动机参考燃油流量WFMREF

b)在叶片当前角度位置VSVCOU处,确定涡轮发动机当前燃油流量WFMCOU

c)根据参考燃油流量WFMREF和当前燃油流量WFMCOU之间的差,计算修正 角VSVCORR,以便减小燃油流量;

d)将修正角VSVCORR加到设定位置VSVCAL上,以便计算优化设定位置VSV

e)修正叶片当前角度位置VSVCOU,从而使其与优化设定位置VSV一致。

优选地,以前次迭代的步骤(b)的当前角度位置VSVCOU作为步骤(a)的参考角度 位置VSVREF,重复实施步骤(a)到(e)。

如图5所示,叶片角度位置VSVCOU在每次重复(I1,I2,I3)后都会优化,从而将燃油 消耗降到最小。有利的是,这样会接近最佳角度位置VSVOPT,以优化给定转速时的 燃油消耗,同时,防止了瞬变过程的发生,瞬变过程在叶片角度位置突然改变的情 况下很可能会损坏发动机。

再者,优选地,测试发动机转速的稳定性,且如本发明控制系统上面所述,如 果稳定性测试失败时,叶片当前角度位置VSVCOU的修正就会被禁止。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号