首页> 中国专利> 含铁沸石、制备含铁沸石的方法以及催化还原氮氧化物的方法

含铁沸石、制备含铁沸石的方法以及催化还原氮氧化物的方法

摘要

本发明涉及一种含铁沸石,其中相对于该沸石的铁中心数量大于该沸石的阳离子位置数量。本发明进一步涉及一种可通过气相反应用五羰基铁制备的含铁沸石,其中所述沸石具有比由离子交换制备的类似含铁沸石更大的比表面积和/或比由离子交换制备的类似含铁沸石更水热稳定。本发明进一步涉及一种可通过气相反应用五羰基铁制备的BETA结构的含铁沸石,其中大于10nm的铁簇数量基于铁的总量为小于15重量%。本发明进一步涉及一种制备含铁沸石材料的方法,其特征在于借助使用五羰基铁的气相反应用铁掺杂。本发明进一步涉及一种通过添加氨并使用包含所述含铁沸石的催化剂催化还原氮氧化物的方法。

著录项

  • 公开/公告号CN102655933A

    专利类型发明专利

  • 公开/公告日2012-09-05

    原文格式PDF

  • 申请/专利权人 巴斯夫欧洲公司;

    申请/专利号CN201080056974.1

  • 申请日2010-12-13

  • 分类号B01J29/76(20060101);B01J29/072(20060101);B01D53/94(20060101);B01J37/02(20060101);

  • 代理机构11247 北京市中咨律师事务所;

  • 代理人肖威;刘金辉

  • 地址 德国路德维希港

  • 入库时间 2023-12-18 06:20:22

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2016-01-13

    授权

    授权

  • 2013-01-30

    实质审查的生效 IPC(主分类):B01J29/76 申请日:20101213

    实质审查的生效

  • 2012-09-05

    公开

    公开

说明书

本发明涉及一种含铁沸石,其中铁位点的数量以该沸石计大于该沸石中的阳离子位置数量。本发明进一步涉及一种可由气相反应用五羰基铁的制备的含铁沸石,其中所述沸石具有比由离子交换类似制备的含铁沸石更大的比表面积和/或比由离子交换类似制备的含铁沸石更水热稳定。

本发明进一步涉及一种BETA结构的含铁沸石,其可通过气相反应用五羰基铁制备,其中大于10nm的铁簇数量基于铁的总量为小于15重量%。本发明进一步涉及一种制备含铁沸石材料的方法,其包括借助使用五羰基铁的气相反应用铁掺杂。本发明进一步涉及一种催化还原氮氧化物的方法,其中添加氨并使用包含所述含铁沸石材料的催化剂。

现有技术包括大量关于含金属沸石材料作为催化剂或者作为吸附剂的用途的文献。例如,将金属掺杂的沸石材料用作在排放控制技术中将氮氧化物选择性还原(SCR)成氮气和水的催化剂。

例如,US4,961,917描述了铁或铜掺杂的沸石在氨和氧气存在下还原氮氧化物的催化方法中的用途。所述催化剂为二氧化硅与氧化铝之比至少为10的沸石。该沸石具有在所有三个晶体学方向上均被平均动态孔径为至少的孔连接的孔结构。铁和/或铜助催化剂以占助催化剂加沸石总重的0.1-30重量%的量存在。所述沸石选自USY、β沸石和ZSM-20。所用铁或铜源为硫酸盐。

由于氮氧化物排放物对环境具有有害影响,重点关注进一步减少这些排放物。在不远的将来,对来自静态系统和机动车辆的废气的NOx限制将显著低于目前已订立的标准。

从燃烧气体中除去氮也称为脱NOx。在汽车技术中,选择性催化还原(SCR)是一项最重要的除NOx技术。所用还原剂通常为烃(HCSCR)或氨(NH3-SCR)、或者NH3前体如脲就此而言,已发现金属掺杂的沸石是可用于宽温度范围的极其活性的SCR催化剂。

用金属掺杂沸石的常规方法包括例如如下方法,液体离子交换法、固相离子交换法、气相离子交换法、力-化学法、浸渍法和所谓的脱骨架(Ex-Gerüst-Verfahren)法。

目前,掺杂主要通过液体离子交换进行。首先,以水热合成法制备沸石材料、结晶并煅烧。煅烧燃烧掉有机成分,通常获得H或Na型沸石材料。在煅烧后,使铵离子交换进沸石材料中,将该沸石再次煅烧,然后交换进所需的金属离子。

同样已知的还有通过固态离子交换用铁掺杂沸石(EP0955080B1),其中将所需沸石、金属化合物和铵化合物的混合物在保护性气氛下煅烧,从而获得具有提高的长期稳定性的含金属催化剂。

尤其在将掺杂金属掺杂或引入沸石的情况下,会发生问题,这是因为这些催化活性金属的不同氧化态通常彼此相邻存在,且不能总是获得所需的催化活性物,或者由于掺杂工艺的反应条件,催化活性物转化成非催化活性物。

然而,已发现几乎所有已知的现有技术方法均通过沸石内部的金属交换而形成催化活性金属的簇物种,其中所述簇物种不具有催化活性或者将催化活性降至极端程度。此外,所述簇还对沸石材料的稳定性具有不利影响。术语“簇”应理解为意指多核桥接或未桥接金属化合物,其包含至少三个相同或不同的金属原子。

此外,非活性金属簇降低孔体积并阻碍气体扩散,或者导致不希望的副反应。

WO2008/141823首次公开了其中在沸石骨架内部不存在可检测金属簇的含金属沸石。其声称所述金属交换的沸石不含非催化活性或更低催化活性的金属簇,从而使得孔结构中仅存在单体或二聚的高催化活性金属物种。这些沸石可通过如下方法制备:首先制备沸石的水淤浆或含水淤浆,然后a)优选使用NH4OH将所述淤浆的pH值提高至8-10的值,并将反应容器中的氧含量调节至<10%,b)将pH值降至1.5-6的值,c)添加金属盐并转化1-15小时,d)滤出并洗涤金属掺杂的沸石。

使用含水离子交换的另一问题是表面处的金属浓度通常比沸石材料内部高。因此,含水离子交换导致掺杂剂金属在沸石材料中的不均匀分布。

然而,所述沸石掺杂方法的缺点是待吸收的掺杂金属的特定最大量受到特定沸石的阳离子位置数量的限制。据此,对要求特定量掺杂剂金属的应用而言,并非所有沸石都是可行的,而是仅仅具有所需阳离子位置数量的那些。另一缺点是具有更高阳离子位置数量且因此吸收更大量掺杂剂金属的沸石不如具有较少阳离子位置数量的那些稳定。

所述沸石掺杂方法的另一缺点是这些掺杂方法具有许多反应步骤,且各反应步骤均可能破坏沸石骨架,因此降低了比表面积,且由此降低了水热稳定性。

迄今位置,其中五羰基铁适于作为铁掺杂沸石制备中的铁源的现有除NOx SCR技术仍不令人满意。

US2,533,071已描述了金属铁催化剂的制备,包括加热处于载体上的五羰基铁,以使得五羰基铁分解为铁和CO,且铁沉积于载体上。所述催化剂用于由CO和H2合成烃。描述了合成尖晶石为优选的载体。此外,还提及由例如12.5%二氧化硅和87.5%氧化铝构成的组合物。

此外,US4,003,850描述了一种制备氧化铁催化剂的方法,其中合适的载体吸收五羰基铁,然后将五羰基铁氧化成氧化铁。所述载体包括沸石。描述了其在借助一氧化碳在大于或等于1巴的压力下从废气中还原氮氧化物的用途。在US4,003,850的实施例中,使用Alcoa H-151(活化氧化铝)、Harshaw AL-1602(具有91Al2O3和6SiO2的硅铝氧化物)、Alcoa F-14-10(活化氧化铝)、Linde 13X(具有Na2O·Al2O3·2.5SiO2的沸石)和HatshawFe-0301(活化的含铁氧化铝)。

CN101099932A描述了铁掺杂催化剂的制备,其中铁颗粒具有小于100nm的粒度。所述催化剂使用五羰基铁制备,所述五羰基铁原位分解成铁。所描述的这些铁掺杂催化剂的用途为煤转化的化学过程(例如煤液化)、石油精炼和氨合成。制备这些铁掺杂催化剂的方法包括数个步骤:(i)将催化剂载体转移至高压釜中,将其置于减压下或者用氮气或惰性气体置换高压釜中的空气;(ii)加入五羰基铁;(iii)加热至五羰基铁蒸发并渗进催化剂载体中的温度并保持在该温度下;(iv)进一步加热或者借助高压引入氮气或其他惰性气体,以使得存在于载体中的五羰基铁原位分解成纳米粒度的铁。可能的载体包括沸石、活性炭、γ-Al2O3、硅藻土和碳。

WO98/57743描述了铁掺杂沸石作为将合成气转化成烯烃,尤其是乙烯、丙烯和丁烯的催化剂的用途,所述沸石尤其使用羰基铁作为铁源制备。在实施例中使用了ZSM-5、SAPO-34和SAPO-17。

尽管在通过气相反应掺杂载体领域中存在许多文献,但是迄今为止未描述该SCR催化剂的制备方法。此外,还发现就掺杂剂金属的负载量而言,气相反应的潜力超出了由阳离子位置所限制的负载量。

因此,本发明的目的是提供一种能掺杂沸石的方法,其中掺杂剂金属的量独立于待掺杂的沸石,即其阳离子位置。本发明的另一目的是提供一种具有高比表面积且因此具有高水热稳定性的含铁沸石材料。本发明的另一目的是提供一种具有均匀分布的铁且沸石材料中不存在铁附聚体/铁簇的含铁沸石材料。本发明的另一目的是提供一种在孔外仅具有最低铁沉积的含铁沸石材料。本发明的又一目的是公开一种与含水离子交换相比廉价的方法。本发明的又一目的还为提供一种与现有技术相比具有改善的NOx转化率的SCR催化剂。

沸石:

令人惊讶地发现了含铁沸石,其中铁位点数量以沸石计大于该沸石中的阳离子位置的数量。

本发明还涉及一种可通过气相反应用五羰基铁制备的含铁沸石,所述沸石具有比由离子交换类似制备的含铁沸石更大的比表面积和/或比由离子交换类似制备的含铁沸石更水热稳定。

BETA结构的含铁沸石:

本发明还涉及一种可通过气相反应用五羰基铁制备的BETA结构的含铁沸石,其中大于10nm的铁簇数量基于铁的总量为小于15重量%。

铁簇数量有利地小于10重量%,优选小于5重量%,甚至更优选小于2重量%,尤其是小于1重量%,基于铁的总量。铁簇数量可例如借助UV-VIS测量法(例如,Capek等,Mircoporous and Mesoporous Materials,80(2005),279-289)测定。

本发明BETA结构的含铁沸石有利地具有基于该BETA重量为0.01-20重量%,优选为0.1-10重量%,尤其为0.5-5重量%的铁含量。

所述BETA结构的沸石的孔径有利地为铁有利地存在于沸石的孔中。

制备沸石材料的方法:

本发明进一步涉及一种制备含铁沸石材料的方法(例如,含铁BETA或CHA结构的沸石),所述方法包括借助使用五羰基铁的气相反应用铁掺杂。

在本发明上下文中,根据国际矿物学协会(D.S.Coornbs等,Can.Mineralogist,35,1997,1571),术语“沸石”应理解为意指选自具有三维网络结构且具有如下通式的铝硅酸盐的结晶物质:

Mn+n[(AlO2)x(SiO2)y]itH2O,

其由SiO4/AlO4四面体构成,所述四面体通过共用氧原子连接以形成规整三维网络。其他结构可例如参见WO2008/141823第5-6页。

原则上,在本发明中可使用任何沸石材料。根据本发明,优选具有BETA、BEA、CHA、LEV(例如RUB-50或ZSM-45)、ZSM拓扑结构的沸石材料。非常特别优选具有BETA和CHA拓扑结构的沸石材料。有利地排除沸石Linde 13X、ZSM-5、SAPO-34和SAPO-17。

此外,根据本发明可使用所谓的磷酸硅铝(SAPO),其由同晶交换的磷酸铝形成。

所述沸石材料有利地具有10-1000g/m2,优选150-800g/m2,尤其为300-700g/m2BET比表面积。

在包含硅和铝的沸石材料中,二氧化硅与氧化铝之比有利地大于1,优选为3-500,尤其为6-60。

所述沸石有利地具有0.2-2nm,优选0.3-1nm,尤其是0.35-0.8nm的平均孔径。

本发明方法有利地以两个构成步骤进行:(i)气相负载和(ii)热分解。

气相方法(i)优选如下进行:

在第一步(i)中,使气态五羰基铁流过所述沸石材料。五羰基铁可有利地存在于载气中。所用载气有利地为惰性其他如一氧化碳、二氧化碳、氮气、氦气或氩气或其混合物。特别优选使用一氧化碳或氮气。

气流中的五羰基铁浓度有利地为0.1-100体积%,优选0.5-20体积%,尤其为1-5体积%。

工艺步骤(i)的温度有利地为10-250°C,优选为20-200°C,尤其为50-150°C。

工艺步骤(i)的压力有利地为0.1-10巴,优选为0.5-2巴,尤其为0.9-1.2巴,其中压力在沸石床的下游测定。

工艺步骤(i)的反应时间有利地为0.1分钟至10小时,优选为0.5分钟至5小时,尤其为1-120分钟。

在第二步骤(ii)中,使热载气流过负载有五羰基铁的沸石材料。所用载气有利地为空气或惰性其他如氮气或氩气或其混合物。特别优选使用氮气或空气。

工艺步骤(ii)的载体温度有利地为10-500°C,优选为50-400°C,尤其为100-350°C。

工艺步骤(ii)的压力(沸石床下游的压力)有利地为0.1-10巴,优选为0.5-2巴,尤其为0.9-1.2巴。

工艺步骤(i)的反应时间有利地为0.1分钟至10小时,优选为0.5分钟至5小时,尤其为1-120分钟。

对于孔径为小于0.5nm至0.7nm的沸石材料,有利地进行第三步骤(iii),其中使温度高于步骤(ii)的热载气流过所述沸石材料。这驱使沉积在孔外的铁进入孔中。

所用载气为蒸汽、空气或惰性气体如氮气、氦气或氩气或其混合物。优选使用蒸汽、空气或氮气。

工艺步骤(iii)的温度有利地为500-1000°C,优选为600-900°C,尤其为650-850°C。

工艺步骤(iii)的压力(沸石床下游的压力)有利地为0.1-10巴,优选为0.5-2巴,尤其为0.9-1.2巴。

工艺步骤(i)的反应时间有利地为1分钟至240小时。如果使用500-750°C的低温,则反应时间优选为1-240小时,尤其为2-150小时。如果使用750-1000°C的高温,则反应时间优选为1分钟至150小时,尤其为10分钟至100小时。

所述沸石材料的用途:

本发明还涉及根据本发明制备的含铁沸石材料作为烃转化反应、氧化反应、费-托反应和氮氧化物选择性催化还原中的催化剂的用途。

氮氧化物选择性催化还原有利地在添加氨或氨前体如脲下进行。有利地将BETA结构的含铁沸石用作SCR催化剂。

优点:

由于本发明方法的缘故,可制备铁含量高于受限于阳离子位置的铁含量的含铁沸石材料。此外,可制备具有比由离子交换类似制备的含铁沸石更大比表面积的含铁沸石材料。因此,本发明含铁沸石具有更高的水热稳定性。此外,可制备金属铁均匀且选择性分布于孔中的含铁沸石材料。此外,获得铁未沉积在孔外的沸石。此外,与常规湿化学法相比,该制备可更廉价地在气相负载和热分解这两个构成步骤中进行。此外,本发明含铁沸石材料的特征在于在除NOx法中具有高废气降解活性。

实施例

1.含铁沸石材料的制备

实施例1用2.4重量%Fe负载β沸石

在115°C和稍微减压(-15毫巴)下,使处于一氧化碳中的1.2体积%五羰基铁的气流流过15g β沸石达31分钟。然后,将包含所述沸石床的容器外部加热至200°C,并稍微减压(-15毫巴)下使200°C的氩气流过达25分钟。在TEM(透射电子显微镜)分析中,所得催化剂显示出不存在沉积在孔外的铁。EDX X射线光谱法分析显示铁均匀分布于沸石载体上。

实施例2用1.6重量%Fe负载β沸石

在稍微减压(-15毫巴)下,使150°C的由处于氩气中的1.2体积%五羰基铁构成的气流流过14g β沸石达31分钟。在该试验中,将包含所述沸石床的容器由起始外部加热至200°C。然后,在稍微减压(-15毫巴)下,使200°C氩气流过直接流过该床达28分钟。

实施例3用5重量%Fe负载β沸石

在115°C和稍微减压(-15毫巴)下,使处于一氧化碳中的1.2体积%五羰基铁的气流流过12g β沸石达27分钟。然后,将包含所述沸石床的容器外部加热至200°C,并在稍微减压(-15毫巴)下使200°C氩气流过达22分钟。

实施例4用1.4重量%Fe负载菱沸石SSZ-13

在115°C和稍微减压(-15毫巴)下,使处于一氧化碳中的1.2体积%五羰基铁的气流流过11g β沸石达31分钟。然后,将包含所述沸石床的容器外部加热至200°C,并在稍微减压(-15毫巴)下使200°C氩气流过达22分钟。随后在700°C下用蒸汽处理该催化剂达48小时。

2.催化剂测试

转化率借助处于He中的500ppm NO、500ppm NH3、10%O2、5%H2O的气体混合物在烘箱中以基于体积为80000h-1气体小时空速下通过粉末床测定。所用对照催化剂为通过标准方法离子交换制备的β沸石,其具有1.4重量%Fe和0.15重量%CeO2。结果示于表1中。

表1:

3.含铁沸石材料的稳定性对比

在750°C下用10%蒸汽陈化24小时后,测定(i)通过气相反应制备的含铁β沸石(1.2重量%Fe)和(ii)通过离子交换反应制备的含铁β沸石(1.5重量%Fe)的比表面积(DIN 66135)。

  陈化后朗缪尔比表面积[m2/g](i)通过气相反应制备的含铁β沸石  714.3(ii)通过离子交换反应制备的含铁β沸石  610.6

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号