首页> 中国专利> 陶瓷碳复合材及其制造方法与陶瓷包覆陶瓷碳复合材及其制造方法

陶瓷碳复合材及其制造方法与陶瓷包覆陶瓷碳复合材及其制造方法

摘要

得到比陶瓷轻量,且耐氧化性、耐发尘性、导热性、导电性、强度、致密性等中的至少一种特性优异的陶瓷碳复合材以及陶瓷包覆陶瓷碳复合材。该陶瓷碳复合材的特征在于,在石墨或含有石墨的碳颗粒彼此之间形成有陶瓷界面层,该陶瓷碳复合材能够通过使在石墨或含有石墨的碳颗粒的表面包覆有陶瓷层的陶瓷包覆粉末成型,并烧结该成型体而制造。

著录项

  • 公开/公告号CN102482164A

    专利类型发明专利

  • 公开/公告日2012-05-30

    原文格式PDF

  • 申请/专利权人 东洋炭素株式会社;

    申请/专利号CN201080039131.0

  • 申请日2010-09-01

  • 分类号C04B35/52;C04B41/87;C01B31/04;

  • 代理机构北京尚诚知识产权代理有限公司;

  • 代理人龙淳

  • 地址 日本大阪府

  • 入库时间 2023-12-18 05:30:07

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2020-08-18

    未缴年费专利权终止 IPC(主分类):C04B35/52 授权公告日:20140618 终止日期:20190901 申请日:20100901

    专利权的终止

  • 2014-06-18

    授权

    授权

  • 2012-07-11

    实质审查的生效 IPC(主分类):C04B35/52 申请日:20100901

    实质审查的生效

  • 2012-05-30

    公开

    公开

说明书

技术领域

本发明涉及作为石墨与陶瓷的复合材的陶瓷碳复合材及其制造方法与陶瓷包覆陶瓷碳复合材及其制造方法。

背景技术

一直以来,碳材为低比重且耐热性、耐腐蚀性、滑动性、导电性、导热性、加工性优异,在半导体、冶金、机械、电子、原子力等广泛的领域中利用。

然而,碳材一般有在耐氧化性和强度上差的问题。为了解决该问题,研究了与陶瓷等其他材料的复合化。

作为将碳材与陶瓷材复合化的例子,在石墨基材上将SiC或TaC由气相反应或熔融反应包覆的SiC包覆石墨复合材,作为由化学蒸镀法得到的化合物半导体制造用的基座利用。这些制品具有耐热性和化学稳定性,防止石墨颗粒的发尘,但是由于不会带来强度提高,且制造成本也较高,因而局限于基座等的用途。另外,三维地在复杂形状的石墨基材上均匀包覆存在技术上的困难。

另一方面,正在开发SiC/碳复合材,该复合材是通过使熔融硅在高温下含浸于多孔质碳中而激发燃烧合成反应,将多孔质碳的气孔内部SiC化而得到的(参照专利文献1)。该复合材能够以加工成螺栓或螺帽这样比较简单的三维形状的多孔质碳材为基础形成近净品,但缺乏含浸材特有的致密性,表面粗糙且成本也高,从而在实际中无法利用。

另外,最近开发了C-SiC烧结体,该烧结体是将平均粒径为10~100nm的SiC超微粉末与石墨颗粒混合,通过等离子体放电烧结而高密度地致密化而得到(参照专利文献2)。有报告该复合材含有1~95重量%的SiC,相对密度为70~99.5%,弯曲强度为100~350MPa的较高值。但是,其是将SiC颗粒与碳颗粒均匀混合的复合结构,并不是根据将碳颗粒彼此的界面由陶瓷分离而形成的概念而得到的。另外,陶瓷局限于SiC。

在碳复合材中,广泛利用在碳纤维的织物中含浸沥青而烧制得到的C/C复合物、或含浸有树脂的复合材,尽管强度优异,但是耐氧化性却均未改善,在空气中高温下的使用受到限制。另外,表面粗糙,加工也较难,在制造上需要长时间。

现有技术文献

专利文献

专利文献1:日本特开昭60-25569号公报

专利文献2:日本特开2004-339048号公报

发明内容

发明所要解决的课题

本发明的目的在于提供比陶瓷轻量,且耐氧化性、耐发尘性、导热性、导电性、强度、致密性等中的至少任一种特性优异的陶瓷碳复合材及其制造方法与陶瓷包覆陶瓷碳复合材及其制造方法。

用于解决课题的方法

本发明的陶瓷碳复合材的特征在于,在石墨或含有石墨的碳颗粒彼此之间形成有陶瓷界面层。

本发明的陶瓷碳复合材由于是石墨或含有石墨的碳颗粒与陶瓷的复合材,所以比陶瓷材料轻量。另外,由于以覆盖石墨或含有石墨的碳颗粒的表面的方式形成陶瓷界面层,所以在耐氧化性、耐发尘性、导热性、导电性、强度、致密性等中的至少任意一种特性上,比仅将碳和陶瓷混合得到的复合材优异。

在本发明中,优选陶瓷界面层在石墨或含有石墨的碳颗粒之间具有连续的三维网孔结构。通过陶瓷界面层具有连续的三维的网孔结构,在耐氧化性、耐发尘性、导热性、导电性、强度、致密性等中能够发挥更优异的特性。

在本发明中,陶瓷界面层例如能够由选自AlN、Al2O3、SiC、Si3N4、B4C、TaC、NbC、ZrC、ZnO、SiO2和ZrO2中的至少1种形成。

本发明的陶瓷界面层的厚度例如能够设为100nm~10μm。

本发明的陶瓷碳复合材的制造方法是能够制造上述本发明的陶瓷碳复合材的方法,该制造方法的特征在于,包括:制作在石墨或含有石墨的碳颗粒的表面包覆有由陶瓷构成的陶瓷层的陶瓷包覆粉末的工序;由陶瓷包覆粉末成型为成型体,并烧结该成型体,制作陶瓷碳复合材的工序。

通过烧结由陶瓷包覆粉末构成的成型体,陶瓷包覆粉末的表面的陶瓷彼此烧结,在陶瓷碳复合材中形成陶瓷界面层。

根据本发明的制造方法,能够高效地制造上述本发明的陶瓷碳复合材。

作为在碳颗粒的表面形成陶瓷层的方法,可以列举气相法、液相法、机械混合法或将这些组合的方法。

另外,作为形成陶瓷包覆粉末的其他方法,可以列举通过在陶瓷颗粒的浆料中添加碳颗粒,在碳颗粒的表面附着陶瓷颗粒,形成陶瓷层的方法。

本发明的陶瓷包覆陶瓷碳复合材的特征在于,在上述本发明的陶瓷碳复合材的表面的至少一部分上形成陶瓷包覆层。

作为陶瓷包覆层,可以列举例如由选自AlN、Al2O3、MgO、SiC、Si3N4、B4C、TaC、NbC、ZrC、ZnO、SiO2和ZrO2中的至少1种所形成的包覆层。

当陶瓷碳复合材中形成陶瓷界面层的陶瓷材料与形成陶瓷包覆层的陶瓷材料不同时,陶瓷包覆层的组成可以从内部向外部而逐渐变化。例如,可以具有如下组成的梯度结构:在接近陶瓷碳复合材的内部,设为形成陶瓷界面层的陶瓷材料多的组成,随着向外部而使形成陶瓷界面层的陶瓷材料的成分逐渐减少。

本发明的陶瓷包覆陶瓷碳复合材的制造方法,是能够制造上述本发明的陶瓷包覆陶瓷碳复合材的方法,该制造方法的特征在于,包括:将烧结前的陶瓷碳复合材成型为成型体的工序;在成型体的表面的至少一部分上,设置用于形成陶瓷包覆层的陶瓷粉末层的工序;和将形成有陶瓷粉末层的陶瓷碳复合材的成型体一体烧结的工序。

在本发明的制造方法中,由陶瓷粉末层形成陶瓷包覆层。形成陶瓷包覆层的陶瓷粉末层可以是将多个层叠层得到的叠层结构。在形成这样的叠层结构时,能够以使陶瓷层的组成从内部向外部而逐渐变化的方式使各层的组成变化而叠层。

另外,也可以将陶瓷碳复合材中形成陶瓷界面层的陶瓷材料的粉末混合在形成陶瓷包覆层的陶瓷粉末中。即,作为形成陶瓷包覆层的陶瓷粉末,也可以将形成陶瓷层的界面层的陶瓷材料的粉末与其他陶瓷材料混合使用。

在按照本发明的制造陶瓷包覆陶瓷碳复合材的另一个方面的方法中,其特征在于,包括:制造陶瓷碳复合体的烧结体的工序;和通过在陶瓷碳复合体的烧结体的表面的至少一部分上配置并接合陶瓷烧结板或单晶板,形成陶瓷包覆层的工序。

在本制造方法中,使用陶瓷烧结体或单晶板形成陶瓷包覆层。通过将这样的陶瓷烧结板或单晶板与陶瓷碳复合材的烧结体接合,在陶瓷碳复合材的表面上形成陶瓷包覆层。

发明的效果

根据本发明,能够制得比陶瓷轻量,且耐氧化性、耐发尘性、导热性、导电性、强度、致密性等中的至少任意一种特性优异的陶瓷碳复合材以及陶瓷包覆陶瓷碳复合材。

根据本发明的制造方法,能够高效地制造上述本发明的陶瓷碳复合材或陶瓷包覆陶瓷碳复合材。

附图说明

图1是表示按照本发明的一个实施方式的陶瓷碳复合材的截面示意图。

图2是表示按照本发明的一个实施方式中的陶瓷包覆粉末的截面示意图。

图3是表示按照本发明的一个实施方式中的陶瓷包覆陶瓷碳复合材的截面示意图。

图4是表示按照本发明的实施例中的Al2O3包覆石墨颗粒的扫描电子显微镜照片。

图5是表示按照本发明的实施例中的陶瓷碳复合材的截面的扫描电子显微镜照片。

具体实施方式

以下,通过具体的实施方式说明本发明,但本发明并不局限于以下的实施方式。

图1是表示按照本发明的实施方式中的陶瓷碳复合材的截面示意图。

如图1所示,陶瓷碳复合材1通过在石墨或含有石墨的碳颗粒2彼此之间配置陶瓷界面层3而形成。陶瓷界面层3在碳颗粒2之间形成连续的三维网孔结构。构成陶瓷界面层3的陶瓷材料由于在耐氧化性、耐热性、耐摩耗性、强度等方面优异,所以通过陶瓷界面层3形成连续的三维网孔结构,能够提高陶瓷碳复合材1中的这些特性。

另外,通过控制碳颗粒2的种类、形状和尺寸、形成陶瓷界面层3的陶瓷材料的种类、和陶瓷界面层的厚度以及三维的连续性,能够使陶瓷碳复合材1的耐氧化性、耐摩耗性、强度、体积密度等提高,并能够将导电性、导热性等特性控制得比所希望的高或低。

作为构成陶瓷界面层3的陶瓷材料,使用具有电绝缘性的AlN、Al2O3、Si3N4、SiO2、ZrO2等材料,形成将碳颗粒2由陶瓷界面层3完全包覆的连续的三维网孔结构,由此,能够将陶瓷碳复合材1制成电绝缘体。另外,作为形成陶瓷界面层3的陶瓷材料,使用SiC或ZnO,并将陶瓷界面层3的厚度设为数100nm的薄的状态,由此,若施加一定以上的电压,则在陶瓷界面层3发生隧道电流或肖特基(Schottky)电流,从而能够赋予陶瓷碳复合材1非线形电流-电压特性的压敏效应。

图1所示的陶瓷碳复合材1能够通过使由陶瓷包覆粉末构成的成型体成型,并将该成型体进行烧结而制造,其中,该陶瓷包覆粉末在碳颗粒2上包覆有由构成陶瓷界面层3的陶瓷材料形成的陶瓷层。

图2是表示陶瓷包覆粉末12的截面示意图。如图2所示,通过在石墨或含有石墨的碳颗粒10的表面包覆由陶瓷形成的陶瓷层11而构成。

作为碳颗粒10,只要是石墨或含有石墨的碳颗粒就没有特别限定,但例如能够使用人造石墨、天然石墨、中间相(mesophase)、玻璃状碳等。这些颗粒形状优选为球形,但也可以为板状或柱状。碳颗粒10的尺寸虽然没有特别限定,但可以列举例如平均粒径为1~30μm的碳颗粒。

作为形成陶瓷层11的陶瓷材料,可以列举如上所述的氧化物、碳化物、氮化物等。陶瓷层11的厚度能够考虑烧结陶瓷包覆粉末12而形成的陶瓷碳复合材中陶瓷界面层的厚度而进行各种选择。

另外,陶瓷层11可以将多个层叠层而形成。例如,为了碳颗粒10的热应力、与碳颗粒10的接合性、确保电气绝缘性、其他的功能控制,也可以将不同的陶瓷叠层而形成陶瓷层11。

作为在碳颗粒10的表面上形成陶瓷层11的方法,如上所述,可以列举气相法、液相法、机械混合法、或将这些组合的方法。

作为气相法,可以列举通过气相反应使陶瓷沉积的化学气相蒸镀法(CVD)法,或通过将碳颗粒10的表面的碳作为反应源与其他成分反应而形成陶瓷材料的转化法(CVR法)等。

例如,通过气相法在碳颗粒的表面形成陶瓷覆膜时,在反应气体的供给源上配置碳颗粒层,在真空中或在Ar气等不活泼气体的气氛下进行加热,由此能够由CVD法或CVR法在碳颗粒的表面以例如100nm~10μm的范围内的厚度形成陶瓷层。

作为液相法,可以列举下述方法,即,在陶瓷的前体物质(例如,Al(OH)3)的溶液中添加混合碳颗粒,并使碳颗粒干燥,使碳颗粒的表面附着前体物质后,对其进行热处理,由此将在表面附着的前体物质变换为规定的陶瓷材料。

作为通过液相法在碳颗粒的表面形成陶瓷的具体例,例如,可以列举以下的例子。

作为碳颗粒,使用中间相石墨粉末(平均粒径5~25μm),在该中间相石墨粉末中添加并混合少量的水后,滴加NH3H2O,将pH调整为11左右,使中间相石墨粉末的表面带正电。然后,滴加Al(NO3)3溶液,进行混合制成浆料。再滴加使Al(OH)3全部沉淀的充分量的NH3H2O后,进行水洗,甲醇清洗。然后,在110℃干燥半日,将得到的粉末在1500℃氮气氛下热处理2小时。通过该热处理,发生碳热还原和氮化反应,在中间相石墨粉末的表面形成AlN的陶瓷层。

作为机械混合法,可以列举将陶瓷的微颗粒与碳颗粒机械混合进行包覆的方法。作为包覆的陶瓷颗粒的尺寸,优选比碳颗粒小的尺寸,例如,可以列举200nm~1μm的平均粒径。通过在碳颗粒的表面附着陶瓷微颗粒,能够在碳颗粒的表面形成陶瓷层。

作为通过机械混合法使陶瓷层附着在碳颗粒的表面的具体例,能够列举以下的例子。

例如,在平均粒径为5~20μm的中间相石墨颗粒中添加少量的粘合剂,使用自转-公转混合器与平均粒径为170nm的Al2O3颗粒混合,由此形成均匀包覆有氧化铝颗粒的中间相石墨颗粒。

另外,作为制作陶瓷包覆粉末的方法,可以使用浆料法。浆料法是通过在陶瓷颗粒的浆料中添加碳颗粒,在碳颗粒的表面附着陶瓷颗粒而形成陶瓷层的方法。为了使陶瓷颗粒附着在碳颗粒上,也可以在陶瓷颗粒的浆料中添加粘合剂。

作为浆料法的具体例,例如,可以列举在含有AlN的纳米颗粒和粘合剂的浆料中添加碳颗粒,进行混合后干燥的方法。

考虑陶瓷与碳颗粒的反应性、陶瓷颗粒的尺寸和形状、陶瓷和碳颗粒的热膨张率差等,能够选择气相法、液相法、机械混合法、浆料法之内的适当的手段形成陶瓷包覆粉末。另外,也可以考虑陶瓷层和碳颗粒的反应性或热膨张率差而在碳颗粒上形成叠层有不同陶瓷层的陶瓷层。

由如上操作得到的陶瓷包覆粉末成型为成型体,并烧结该成型体,由此能够制作陶瓷碳复合材。作为烧结的方法,能够使用常压烧结法、热压烧结法、放电等离子体烧结法等。其中,放电等离子体烧结法能够在2分钟~60分钟的短时间高密度烧结,所以很便利。另外,也能够将根据需要选择的适于陶瓷的烧结助剂以全体的0.5~20重量%的比例混合在陶瓷包覆粉末中,进行烧结。

图3是表示本发明的陶瓷包覆陶瓷碳复合材的截面示意图。

如图3所示,本实施方式的陶瓷包覆陶瓷碳复合材5,通过在陶瓷碳复合材1的表面上设置陶瓷包覆层4而构成。在本实施方式中,虽然在陶瓷碳复合材1的全部表面上设置陶瓷包覆层4,但在本发明中,陶瓷包覆层4并不必须在全部表面上设置,也可以在陶瓷碳复合材1的至少一部分表面上设置。例如,也可以在陶瓷碳复合材1的上面、下面、和侧面的任意一个面上设置。

陶瓷包覆层4,如上所述,能够由氧化物、碳化物、氮化物等的陶瓷形成。形成陶瓷包覆层4的陶瓷材料可以是与在陶瓷碳复合材1中形成陶瓷界面层3的陶瓷材料相同的陶瓷材料,也可以是不同种类的陶瓷材料。当陶瓷包覆层4的组成与陶瓷界面层3的组成不同时,如上所述,可以使陶瓷包覆层4的组成从内部向外部逐渐变化。此时,能够将陶瓷包覆层4的内部的组成设为与陶瓷界面层3接近的组成,并使组成从内部向外部而逐渐不同。

作为形成陶瓷包覆层4的方法,如上所述,可以列举使烧制前的陶瓷碳复合材1成型为成型体,在该成型体的表面的至少一部分上设置用于形成陶瓷包覆层4的陶瓷粉末层,在该状态下将陶瓷碳复合材1与陶瓷包覆层4一体烧结的方法。

此时,如上所述,也可以由多个层形成陶瓷包覆层4,使组成在陶瓷包覆层4的厚度方向上变化。由此,能够提高陶瓷碳复合材1与陶瓷包覆层4的粘接性,并能够提高整体强度等特性。

另外,作为用于形成陶瓷包覆层4的陶瓷粉末,也可以使用将形成陶瓷界面层3的陶瓷材料的粉末与其他粉末混合的陶瓷粉末。由此,能够提高陶瓷包覆层4与陶瓷界面层3的粘接性,并能够使强度等特性提高。

另外,作为形成陶瓷包覆层4的其他方法,可以列举下述方法,即,制造陶瓷碳复合材1的烧结体,在该烧结体的表面的至少一部分上配置陶瓷烧结板或陶瓷单晶板,将该陶瓷烧结板或单晶板接合于陶瓷碳复合材1的表面上。作为接合的具体的方法,可以列举热压法、放电等离子体烧结法、压接加热法等。

此外,当然也可以将陶瓷碳复合材的烧结体作为基板,由通常的CVD法或反应性溅射法包覆陶瓷。

实施例

以下,列举具体的实施例更加详细地说明本发明,但本发明并不局限于以下的实施例。

对于在以下的各实施例和各比较例中得到的陶瓷碳复合材和陶瓷包覆陶瓷碳复合材,通过以下的评价方法评价其特性。

〔烧结性的评价〕

对于烧结后的陶瓷碳复合材和陶瓷包覆陶瓷碳复合材,通过目测,评价破裂或陶瓷表面的剥落和变形。

另外,测定体积密度,计算气孔率。

〔耐氧化性试验〕

使用烧结的陶瓷碳复合材和陶瓷包覆陶瓷碳复合材的小片,通过热重量试验,以升温速度10℃/分钟进行升温,测定重量减少开始温度,设为氧化开始温度。

〔强度试验〕

将烧结的陶瓷碳复合材和陶瓷包覆陶瓷碳复合材切成4mm×2mm×20mm的大小,通过3点弯曲强度试验测定弯曲强度。将跨长设为15mm,将十字头速度设为0.5mm/分钟。

〔导热率的测定〕

制作直径10mm、厚度2mm的陶瓷碳复合材和陶瓷包覆陶瓷碳复合材,由激光闪光法测定导热率。

〔电阻率的测定〕

由直流四探针法测定所烧结的陶瓷碳复合材和陶瓷包覆陶瓷碳复合材的表面的电阻率。

〔耐发尘性的评价〕

将所烧结的陶瓷碳复合材和陶瓷包覆陶瓷碳复合材在白纸上以一定的负荷摩擦,由目测观察白纸的变色,按照以下的基准进行评价。

○:白纸无变色

△:变成略微的淡灰色

×:容易变黑且有碳附着

(实施例1)

在中间相石墨粉末(10g,粒径:5~20μm)中加入水(5体积%)混合得到的浆料中,滴加NH3H2O将pH值调整到约11后,添加混合Al(NO3)3溶液(20重量%),再滴加NH3H2O(28重量%)。NH3H2O比Al(OH3)全部沉淀的假定量多10倍。然后,将浆料水洗,甲醇清洗后,在110℃干燥。接着,在氮气氛中,在1500℃进行碳热还原和氮化处理2小时。通过X射线粉末衍射和SEM观察,发现Al(OH3)几乎全部转化为AlN,将中间相石墨颗粒表面几乎均匀地包覆。由X射线衍射的标准曲线求出的AlN包覆量约为20体积%。若包覆量在其以上,则多观察到覆膜剥落或破裂。将该AlN包覆中间相石墨粉末填充在石墨模具中,通过放电等离子体烧结法在1600℃、30MPa烧结5分钟。对得到的陶瓷碳复合材如上所述评价特性。将评价试验的结果表示在表1中。

(实施例2)

在塑料容器中加入与实施例1相同的中间相石墨粉末(5g)和羟乙基纤维素水溶液(5重量%,1.5g),通过自转-公转混合器(型号:AR-310,株式会社THINKY制)机械混合30秒钟。接着,添加Al2O3粉末(平均粒径:100nm,级别TM-D,大明化学工业株式会社,2.3g)混合2分钟后,进行干燥。Al2O3颗粒如图4所示均匀地包覆在中间相石墨粉末表面。Al2O3量约为20体积%。将该Al2O3包覆粉末填充在石墨模具中,在温度2000℃、压力40MPa的条件下加压20分钟,进行放电等离子体烧结。将试验结果表示在表1中。另外,将烧结的Al2O3碳复合材的组织表示在图5中。

(实施例3)

在将丙烯酰胺(8g)和N,N’-亚甲基双丙烯酰胺(1g)溶解在异丙醇(45g)中得到的粘合剂溶液6.23g中,加入球状天然石墨粉末(25g),离心1分钟进行混合,接着添加AlN粉末(平均粒径:0.6μm,级别:H,株式会社Tokuyama制,9.35g),混合3分钟制作浆料。然后,将该浆料流入塑料制模具中,在90℃干燥12小时。将该成型体在与实施例1相同的条件下进行放电等离子体烧结。将试验结果表示在表1中。作为球状天然石墨颗粒,使用平均粒径20μm的颗粒。

(实施例4)

将在实施例2中制作得到的Al2O3包覆中间相石墨粉末填充在石墨模具中,将添加有烧结助剂Y2O3(5重量%)的AlN粉末在其上叠层,在与实施例2相同的条件下进行放电等离子体烧结。能够包覆致密的AlN层(厚度1mm),没有发生破裂和剥落。另外,也制作了将全部表面由AlN层包覆的样品,但没有破裂等。

(比较例1)

将在实施例3中使用的球状天然石墨粉末(10g)和SiC微粉末(SERA-A06,平均粒径:600nm,信浓电气精炼公司制,12g)由磨机充分混合后,填充在石墨模具中,通过放电等离子体烧结法在与实施例1相同的条件下进行烧结。将评价试验的结果表示在表1中。

(比较例2)

将在实施例3中使用的球状天然石墨粉末不包覆陶瓷颗粒而填充在石墨模具中,通过放电等离子体烧结法在与实施例1相同的条件下进行烧结。将评价试验的结果表示在表1中。

(比较例3)

将在实施例3中使用的球状天然石墨粉末(10g)和AlN粉末(平均粒径0.6μm:3.74g,Tokuyama公司制)由通常的旋转磨混合半日后,填充在石墨模具中,在与实施例1相同的条件下进行放电等离子体烧结。将试验结果表示在表1中。

(比较例4)

将在实施例1中使用的中间相石墨粉末不包覆陶瓷颗粒而填充在石墨模具中,通过放电等离子体烧结法在与实施例1相同的条件下进行烧结。该石墨粉末不能烧结而没有成块。

[表1]

由表1所示的结果可知,按照本发明的实施例1~3的陶瓷碳复合材和实施例4的陶瓷包覆陶瓷碳复合材比陶瓷轻量,且耐氧化性、耐发尘性、导热性、导电性、强度、致密性优异。此外,对于实施例的陶瓷包覆陶瓷碳复合材的氧化开始温度,在表1中记为“未测定”,但其表示由于由陶瓷包覆层包覆,所以在测定温度域几乎没有进行氧化。

符号说明

1…陶瓷碳复合材

2…碳颗粒

3…陶瓷界面层

4…陶瓷包覆层

5…陶瓷包覆陶瓷碳复合材

10…碳颗粒

11…陶瓷层

12…陶瓷包覆粉末

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号