首页> 中国专利> 将废弃物的热分解气体导入水泥分解炉的废弃物处理设备

将废弃物的热分解气体导入水泥分解炉的废弃物处理设备

摘要

本发明涉及将废弃物的热分解气体导入水泥分解炉的废弃物处理设备,其与具备水泥烧成炉(30)、对其烧成物进行冷却的熟料冷却器(40)、以及从该烧成炉和熟料冷却器中的任意一个流入高温废气的分解炉(20)的水泥制造设备(200)相邻设置。其中,具备:使废弃物气化发生热分解气体的气化炉(1)、以及将发生的热分解气体在保持所含碳和灰分原封不动的情况下输送到分解炉(20)的气体输送通道(6)。向分解炉(20)内,以热分解气体不直接与来自烧成炉(30)或熟料冷却器(40)的废气流的主流发生干涉的形态导入热分解气体,防止其刮过,使其充分燃烧。以此有效利用已有的水泥制造设备,以低成本实现废弃物的卫生处理。

著录项

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2014-04-02

    授权

    授权

  • 2012-07-04

    实质审查的生效 IPC(主分类):F23G5/027 申请日:20101105

    实质审查的生效

  • 2012-05-23

    公开

    公开

说明书

技术领域

本发明涉及邻近水泥制造设备设置,利用分解炉卫生地对废弃物进行处理用的废弃物处理设备,特别是涉及该废弃物热分解得到的气体的有效利用。

背景技术

近年来,随着生活水平的提高,也越来越需要对垃圾进行卫生处理,其焚烧处理量在增大也在预测之中,但是也存在建设一般的垃圾焚烧炉需要很大的费用,需要很长的工期的问题。而且也需要评价焚烧炉对周围环境的影响,对附近的居民公开信息,因此在开工之前需要有很长的时间来准备。而且在日本还存在掩埋焚烧炉发生的炉灰的掩埋处理场不足的问题,在设立新垃圾处理场的情况下,灰熔融炉的设置和灰的再利用方法的确立等是必要条件。

另一方面,水泥行业向来为了降低水泥制造成本,有将可燃性废弃物作为燃料的一部分利用的动向,提出了有效利用已有的水泥制造设备对废弃物进行卫生处理的方案。

但是,通常垃圾的发热量为1000~3000千卡/千克左右,比在水泥窑中通常使用的燃料(在使用媒的情况下,低等级媒的发热量为5000~7000千卡/千克)低,因此在将例如来自垃圾的热分解气体送往水泥窑混在一起燃烧时,窑内的温度偏低,从而也有燃费不理想的可能。

而且来自垃圾的热分解气体中包含的水蒸气对水泥熟料的性状可能有不良影响,热分解气体在水泥窑中燃烧时,有发生热点生成附着物的可能。

对此,本申请的发明人开发出将气化炉发生的热分解气体与碳和灰分一起提供给水泥制造设备的分解炉或烧成炉(窑)的技术。由于分解炉的温度比窑低,大约是900℃左右,所以在这里提供的热分解气体和碳作为燃料得到有效利用,灰分也成为水泥原料的一部分。

又,在分解炉中流入来自窑中的高温废气,作为喷射气流将水泥原料吹上去,因此在这里提供的热分解气体也一边燃烧一边向上吹,与水蒸气等一起被输送到预热器。因此,不担心在窑内发生水泥熟料性状恶化和附着物的问题。

发明内容

如上所述,废弃物的热分解气体发热量比较低,也含有比较多的水蒸气,因此不能够说是点火性能、燃烧性能好的燃料。因此在仅将热分解气体提供给分解炉的情况下,有可能热分解气体会跟着来自窑的废气流,没有充分燃烧就被排出到预热器。

而且,分解炉不仅形成高温的窑废气能够流入的结构,而且也能够流入熟料冷却器来的高温废气(空气),在这种情况下,热分解气体一旦跟上冷却器废气的主流,就会在没有充分燃烧的情况下掠过分解炉排出。

鉴于这样的情况,本发明的目的在于,改善热分解气体导入分解炉的方法,使热分解气体在分解炉内能够充分燃烧。这样能够有效利用已有的水泥制造设备,降低其运行成本,同时能够实现废弃物的卫生处理。

为了实现上述目的,本发明以与具备水泥烧成炉、对其烧成物进行冷却的熟料冷却器、以及从该烧成炉或熟料冷却器中的任意一个流入高温废气的分解炉的水泥制造设备相邻设置的废弃物处理设备为对象。而且具备使废弃物气化发生热分解气体的气化炉、将在所述气化炉发生的热分解气体在保持所含碳和灰分原封不动的情况下输送到所述分解炉的气体输送通道,以及以热分解气体的气流不直接与流入该分解炉内的来自所述烧成炉和熟料冷却器的高温废气的主流发生干涉的形态从所述气体输送通道向分解炉内引入热分解气体的气体导入单元。

在这样的结构中,在邻近水泥制造设备设置的废弃物处理设备的气化炉中废弃物热分解发生热分解气体时,将该热分解气体在保持所含碳和灰分原封不动的情况下导入水泥制造设备的分解炉。在分解炉中有来自水泥烧成炉和熟料冷却器的高温废气流入,水泥原料的输送过程中加热同时发生脱二氧化碳反应,但是如果在不直接与该强大的废气流的主流发生干涉的状态下导入热分解气体,则不会发生热分解气体随着废气流掠过分解炉的情况。从而,能够使热分解气体和碳在分解炉内充分燃烧。

作为一个例子,也可以是,所述分解炉具有筒状周壁,从其筒轴方向的一端向另一端,形成所述烧成炉或熟料冷却器来的废气流的主流的情况下,作为气体导入单元在所述周壁上指向周方向设置导入口,以便能够围绕所述筒轴的周围旋转地导入热分解气体。这样导入分解炉内的热分解气体,围绕来自所述烧成炉的废气流的主流旋转,不直接与该主流发生干涉。

通常所述分解炉的周壁在上下方向上延伸,其下端流入来自烧成炉或熟料冷却器的废气构成喷流,指向上方。与其相反,也可以从气体导入口以相对于水平面向下倾斜规定的倾斜角度导入热分解气体,这样一来,热分解气体就不容易跟随废气流流动。但是如果向下倾斜过大,则热分解气体流的旋转成分(水平方向的速度)小,因此气体导入口相对于水平面的倾斜最大也要小于40度,最好是30度以下。

而且由于从气化炉到水泥制造设备一侧的气体输送通道基本上是水平的,因此在气体导入口至少向下倾斜即可。

而且从所述气体导入口来的热分解气体的流速高则有防止上述堆积物造成堵塞的效果,如果流速太高,则在气体导入口的压力损失增大,因此也可以以5~30m/s的流速导入热分解气体。

但是在像上面所述的已有技术例那样,烧成炉来的废气流入分解炉的周壁下端情况下,通常在该周壁下部设置将燃烧用的空气引入的空气导入口,但是也可以利用该空气导入口将燃烧用的空气引入,并且使该气流与热分解气体同样方向旋转流动地将其引入。如果这样做,热分解气体的旋转气流与该燃烧用空气的旋转气流一边相互加强,一边通过充分混合提高热分解气体的点火性能和燃烧性能。

为此,最好是空气导入口也设置为相对于水平面向下倾斜规定角度地延伸,同时在该空气导入口上方的规定距离上设置气体导入口。空气导入口的倾斜角度与气体导入口的倾斜角度大致相同,或比其稍小即可。

于是,在热分解气体的旋流下方保持适当间隔形成燃烧用空气的旋流,向上流动通过分解炉内的废气流首先与燃烧用空气的旋流发生干涉。因此废气的主流与热分解气体的旋流的干涉受到抑制。而且被上升的废气主流向上推的燃烧用空气旋流将热分解气体的旋流向上推,两者通过分解炉内向上形成螺旋状旋流,同时相互混合。

又,在上述分解炉下端连接流通从烧成炉来的废气的管道,但是该管道通常向下方延伸后发生L字形弯折,转向烧成炉的入口。于是,通过该L字形管道内向上方改变方向的废气流受到管道内壁面来的力的作用,向烧成炉一侧偏转,因此气体导入口也可以设置于烧成炉一侧的相反侧的周壁上。

而且,也可以在上述烧成炉的周壁上,在气体导入口近旁设置微细碳粉和重油那样的通常使用的燃料供给口。这样一来,比热分解气体着火性更好的燃料先着火,成为火种,可以期待能够提高热分解气体的着火性。在这种情况下,也可以减少这些燃料的供应量,避免微细碳粉和重油等燃料消耗空气。

又,在上述废弃物处理设备中,气化炉设置两台以上的情况下,设置两个以上的气体输送通道以输送各气化炉来的热分解气体,也可以将各气体输送通道分别与上述分解炉的周壁的两个以上的气体导入口连通。在这种情况下,也可以两个以上的气体导入口相互在周方向上保持间隔配置。

如果改变看法,本发明是具有水泥烧成炉,对其烧成物进行冷却的熟料冷却器、以及来自该烧成炉或熟料冷却器任意一个的高温废气流入的分解炉的水泥制造设备,具备将废弃物的热分解气体在保持所含碳和灰分原封不动的情况下输送的气体输送通道、以及从该气体输送通道向分解炉内引入热分解气体,并且使该热分解气体的气流不与该分解炉内的来自上述烧成炉等废气流的主流发生干涉的气体导入单元。如果采用这种水泥制造设备,则能够以低成本实现废弃物的卫生处理。

如上所述,如果采用本发明,则能够防止从废弃物处理设备的气化炉输送出并引入水泥制造设备的分解炉的热分解气体随着来自烧成炉和熟料冷却器的废气流被吹走,能够在分解炉中使其充分燃烧。从而,能够有效利用已有的水泥制造设备,而且能够在降低运行成本的同时实现废弃物的卫生处理。

附图说明

图1是本发明第1实施形态的废弃物处理设备以及水泥制造设备的系统图。

图2A是在上述水泥制造设备中从右侧观察旋转窑所示的分解炉的正视图。

图2B是从旋转窑侧观察分解炉的右侧面图。

图3A是放大表示分解炉的下部的正视图。

图3B是放大表示分解炉的下部的右侧面图。

图3C是放大表示分解炉的下部的左侧面图。

图3D是放大表示分解炉的下部的俯视图,分解炉的一部分省略。

图4A是表示分解炉内的窑废气流的CFD模拟图。

图4B是表示燃烧用的空气流的与图4A相当的图。

图5A是表示设置两个气体导入口的变形例的与图3A相当的图。

图5B是表示设置两个气体导入口的变形例的与图3B相当的图。

图5C是表示设置两个气体导入口的变形例的与图3C相当的图。

图5D是表示设置两个气体导入口的变形例的与图3D相当的图。

图6是冷却器废气流入分解炉的第2实施形态的与图1相当的图。

图7是表示气体导入口的倾斜角度与水平方向的气体流速的关系的曲线图。

图8是表示从热分解气体导入口向高度方向的一氧化碳浓度的无因次标准偏差的变迁的曲线图。

符号说明:

100    废弃物处理设备;

1      气化炉;

6      气体输送管线(气体输送通道);

200    水泥制造设备;

10     悬挂式预热器;

20     分解炉;

21     下部管道;

23      侧壁部(筒状侧壁);

24      倾斜部;

25      空气供给口;

26      燃料供给口;

27     气体导入口(气体导入单元);

30     旋转窑(烧成炉);

40     空气淬火冷却器(熟料冷却器)。 

具体实施方式

下面参照附图对本发明的理想的实施形态进行说明。图1是第1实施形态的废弃物处理设备100以及与其相邻设置的水泥制造设备200的总体系统图。图中左侧表示的废弃物处理设备100在气化炉1中使废弃物热分解,将发生的气体(热分解气体)用在水泥的烧成工序中混合燃烧。

―废弃物处理设备―

在废弃物处理设备100中收集例如家庭来的一般废弃物、包含废塑料的工业废弃物等、以及包含可燃性物体的废弃物。这些废弃物通过陆上输送等运来,被投入槽2内的料斗2a,利用未图示的破碎机进行破碎。这样破碎过的废弃物利用吊车3输送,投入料斗和传送带等构成的输送装置4,借助于该输送装置4的动作送到气化炉1。

作为一个例子,图示的气化炉1是流动层式的气化炉,在炉内的下部形成的流动沙(流动介质)层借助于空气流动化。送往流动层的空气在图例中利用送风机5从废弃物的槽2吸出,利用供应管线5a提供给气化炉1。因此废弃物的槽2内保持于负压,异常臭味不容易泄漏到外部。流动层温度通常为500~600℃左右,废弃物一边在流动沙的作用下分散,一边热分解,废弃物的一部分燃烧也促进热分解。

然后,废弃物的热分解气体从气化炉1的上部排出,借助于气体输送管线6(气体输送通道)向水泥制造设备200输送。在该热分解气体中,作为未燃烧成分的碳和灰分作为小颗粒浮游着,与热分解气体一起被输送。还有,在气体输送管线中途设置开闭式的调节风门,在废气物处理设备100停止运行时可以关闭调节风门。

―水泥制造设备―

水泥制造设备200在图例中具备一般的NSP窑。水泥原料在作为预热器的悬挂式预热器10中预热后,用分解炉20加热到900℃左右(煅烧),在作为烧成炉的旋转窑30中,以1500℃左右的高温进行烧成。通过旋转窑30的烧成物在空气淬火冷却器40中骤冷,成为颗粒状的水泥熟料,然后送到图外的精制工序中。

上述悬挂式预热器10具有在上下方向并排左右锯齿状设置的多级旋流器11。旋流器11分别一边利用涡旋状气流输送水泥原料一边与从下一级吹入的高温废气进行热交换。该废气流如下所述,从旋转窑30来的高温废气(以下简称为“窑废气”)通过分解炉20内上升,被提供给最下一级的旋流器11。窑废气如图中虚线所示,通过旋流器逐级上升,到达最上一级的旋流器11,从该处向废气管线50流出。

如图所示,在废气管线50设置诱导窑废气将其往烟囱51送出用的大容量的诱导通风机52,在该诱导通风机52的更前一侧、即废气流的上游侧,介入设置气体冷却器53以及集尘机54。诱导通风机52具备通过悬挂式预热器10和分解炉20从旋转窑30引导出大量废气,同时还有从上述气化炉1诱导出热分解气体的功能。

另一方面,在悬挂式预热器10的各旋流器11中,如上所述水泥原料与高温窑废气进行热交换后,如图中实线所示,向下方降落,向下一级旋流器11移动。这样从最上一级的旋流器11依序逐级通过多个旋流器11时,水泥原料得到充分预热,从最下一级的上面一级旋流器11向分解炉20提供。

分解炉20在上下方向延伸地设置于旋转窑30的窑后部,详细情况将参照图2和图3下面叙述,向其下部流入来自旋转窑30的高温的窑废气,同时如上所述从旋流器11对其提供水泥原料。而且对分解炉20的下部提供来自上述气化炉的热分解气体和微细碳粉等,而且提供来自空气淬火冷却器40的高温的冷却器废气作为使其燃烧用的空气。

在分解炉20的下端连接大概为L字形的下部管道21,将其在与旋转窑30之间加以连接,该下部管道21从分解炉20下端向下方延伸后向旋转窑30一侧弯折,大致水平延伸。通过该下部管道21向分解炉20下端送入高温的窑废气,作为喷流向上方吹。利用该窑废气流将水泥原料向上吹送。

在这样向上吹送通过分解炉20内部上升时,水泥原料被加热到900℃左右,石灰成分的80%~90%发生脱二氧化碳反应。然后通过连接于分解炉20最上部的上部管道22,向悬挂式预热器10的最下一级旋流器输送。在这里,窑废气与水泥原料分离,向上一级旋流器11移动,另一方面,水泥原料从旋流器11的下端落下,到达旋转窑30的入口。

旋转窑30是将一个例如长达70~100m的横向长圆筒状的旋转窑从入口向出口稍微向下倾斜配置形成的。旋转窑围绕其轴心缓慢旋转,以此将水泥原料向出口侧输送。在该出口侧配设燃烧装置31,煤、天然气、重油等燃烧产生的高温燃烧气体向入口侧喷出。被燃烧气体包围的水泥原料发生化学反应(水泥烧成反应),其一部分烧成到半熔融状态。

该水泥烧成物在空气淬火冷却器40中受到冷风骤冷,形成颗粒状的水泥熟料。然后,水泥熟料储藏于熟料仓库后,添加石膏等进行成分调整,然后经过研磨粉碎为细粉(精加工工序)(图示和详细说明省略)。另一方面,从烧成物中取得热量升高到800℃左右的冷却器废气,如上所述,作为燃烧用的空气提供给分解炉20。也就是说,回收废热使分解炉20中的燃烧用空气升温,以此谋求提高热效率。

―分解炉的结构―

下面参照图2A、2B、图3A~3D对本实施形态的分解炉20的结构,特别是能够合适地引入热分解气体和燃烧用空气用的结构进行详细说明。图2A是从右侧观察旋转窑30所示的分解炉20的正视图,图2B是从旋转窑30一侧观察分解炉的右侧面图。而图3A~图3C分别是放大表示分解炉20的下部的正视图、右侧面图、左侧视图,图3D是放大表示分解炉20的下部的俯视图,分解炉的一部分省略。

如图2A、2B所示,分解炉20为上下延伸的圆筒状,从其上端到下部的大部分为大致相同直径的侧壁部23(筒状周壁),在其下方连接下面较窄的斜壁部24。在该斜壁部24的下端连接大致为L字形的下部管道21的上端部。如上所述,高温的窑废气作为喷流通过下部管道21从旋转窑30流入,在分解炉20内从其下端向上吹。

如在图3A中的灰色箭头所示,在下部管道21内流通的窑废气流从旋转窑30的侧面(右侧)流入大概为L字形的下部管道21的水平部分,在曲折部分转向上方。这样流动的方向改变时,由于从下部管道21的内壁面受到的力的作用,通过分解炉20下部的上升的窑废气主流向旋转窑30一侧偏(图中有夸张表示)。

其后,窑废气的主流通过分解炉20内部一边上升一边慢慢往中心靠,而且受到燃烧用空气的旋流的影响,变得具有旋转成分。这样的窑废气流一边将水泥原料向上吹一边来到分解炉20上端从该处流向上部管道22,上部管道22向上方延伸后,向与下部管道21相反一侧弯曲,到达最下一级的旋流器11(参照图1)。

对分解炉20的下部提供作为燃料的微细碳粉和燃烧用的空气,使其以这样的窑废气流适当相互干涉,适度混合升温。也就是说,像放大表示于图3A~3C那样,在分解炉20下端的斜壁部24,以相对于水平面向下倾斜的状态设置燃烧用空气的导入口25。对该空气导入口25提供如上所述从空气淬火冷却器40来的高温的冷却器废气。

空气导入口25如图A的跟前一侧所示,设置于分解炉20的侧壁部23中的正面侧,如图3D所示,从上方观察时,不是向着分解炉20的中心的上下轴线20a(筒轴线),而是与其相对指向30~45度左右的圆周方向。因此从空气导入口25向分解炉20内导入的燃烧用空气流如图3B的白箭头所示,沿着斜壁部24内周,围绕上下轴线20a周围旋转。

又,空气导入口25的剖面形状在图例中为上底比下底长的台型,斜边按照分别对应的斜壁部24的倾斜度倾斜。空气导入口25的流入截面积比下述燃料供给口26和气体导入口27大,因此其流量也较大。该流量较多的燃烧用空气的旋流与从下方来的窑废气主流适度相互干涉。而且如图4B所示,空气流一边旋转一边向上,另一方面,窑废气流如图4A所示,一边上升一边旋转。

图4A、4B是CFD模拟图,从旋转窑30一侧观察,分解炉20内的窑废气流与燃烧用空气流分别用流线模拟表示。从图4A可知,从其下端形成喷流流入分解炉20内的窑废气主流推压从左侧空气导入口25引入的燃料用空气流(用白色箭头表示),使其向图中右侧偏,其后,以旋转成分缓慢地盘旋并上升。

另一方面,从图4B可知,从空气导入口25来的燃烧用空气流,在分解炉20的下端的斜壁部24一边旋转一边借助于下方来的窑废气流(灰色箭头所示)向上推,流向上方。燃烧用空气流的一部分跟着窑废气流主流急剧上升,但是另一部分气流卷绕着窑废气主流向上盘旋。

在分解炉20的侧壁部23的最下部,设置燃料供给口26,以便能够与这样一边盘旋一边向上的空气流混合。向该燃料供给口26提供的燃料是例如微细碳粉、天然气、重油等,使用微细碳粉的情况下,利用空气流对其进行输送,从燃料供给口26将其向分解炉20内吹入即可。采用天然气或重油作为燃料的情况下,以规定的压力将其从燃料供给口26喷射即可。

如图3A~3C分别所示,两个燃料供给口26在侧壁部23的正面侧和背面侧分别大致水平延伸设置。又,从图3D可知,两个燃料供给口26在旋转窑30一侧和其相反侧偏开平行设置。换句话说,两个燃料供给口26在同一圆周上相互偏开大约180度相位在其圆周的切线方向上设置,以便能够分别沿着侧壁部23的内周吹入燃料。

而且这两个燃料供给口26中,侧壁部23的正面侧的燃料供给口的正上方附近设置热分解气体的导入口27,在其上方设置水泥原料投入口28。气体导入口27将如上所述利用气体输送管线6从废物处理设备100输送来的热分解气体以下面说明的规定的状态引入分解炉20内。又,从原料导入口28投入如上所述从旋流器11落下来的水泥原料。

如图3A~3C所示,气体导入口27在空气导入口25上方以规定的间隔(例如2~6m)设置,在图例中,与空气导入口25一样相对于水平面向下导入热分解气体。又,从图3D可知,气体导入口27在分解炉20的侧壁部23设置于旋转窑30一侧的相反侧,指向周方向,以便沿着该周壁部23的内周导入热分解气体。

从该气体导入口27导入的热分解气体沿着分解炉20的侧壁部23的内周流动,如图3B的黑箭头所示,在燃烧用空气的旋流(白箭头所示)上方并排着围绕上下轴线20a周围旋转。换句话说,从气体导入口27导入的热分解气体围绕通过分解炉20的大致中央向上吹的窑废气的主流周围旋转流动,与该主流不直接发生干涉。

又,在热分解气体旋流的下方形成更多流量的燃烧用空气的旋流以此抑制热分解气流与窑废气流的干涉。也就是说,参照图4A等,如上所述窑废气的主流在分解炉20下部受到燃烧用空气流的推压偏向空气导入口25的相反侧,因为这样能够将热分解气体引向窑废气主流偏向的一侧的相反侧。

而且,在本实施形态中,参照图3A等,如上所述,在L字形的下部管道21,弯折的窑废气主流在通过分解炉20下部上升时偏向旋转窑30一侧,而将热分解气体引向与其相反的一侧,借助于此,能够抑制热分解气流与窑废气流之间的干涉。

这样做,抑制了热分解气流与窑废气流之间的相互干涉,另一方面,参照图4B,如上所述,燃烧用空气的旋流与下方来的窑废气流相互干涉充分升温,同时被向上推。这样被向上推的燃烧用空气流与在其上方并排旋转的热分解气流充分混合并且上升时,热分解气体能够充分燃烧。

又,使将热分解气体导向分解炉20的方向不同以进行调查。例如,图3D所示,以旋转窑30一侧为基准,用角度θ1表示气体导入口27的水平面内的位置和方向;如图3C所示,用角度θ2表示相对于气体导入口27的水平面向下倾斜的角度。对于该向下倾斜的角度θ2,由于从气化炉1到旋转窑30一侧的气体输送管线6基本上是水平的,因此在气体导入口27至少向下倾斜(θ2>0)就特别没有问题。但是如图7所示,如果θ2过大,则热分解气流的旋转成分(水平方向的速度)小,因此θ2最大也只能在40度以下,30度以下是理想的。

还有,从热分解气体与窑废气或燃烧用空气的混合的考虑出发,可以说气体导入口27处的热分解气体的流速越高越好,但是如果流速高起来,则气体导入口27的压力损失变大,例如在气体的流速为30m/s的情况下为0.3~0.5kPa左右。因此,为了使在气体导入口27的压力损失不变得过大,热分解气体的流速在30m/s以下是理想的。另一方面,如果气体流速慢,则气体的旋转力小,过多伴随窑废气流,因此气体流速最好是与窑废气流速相同水平的5m/s以上。

而且,图8表示为调查热分解气体中的一氧化碳在分解炉20内的扩散状况而实施的模拟的结果。图8的横轴表示从热分解气体投入口起算的高度,纵轴表示一氧化碳浓度的无因次标准偏差,也就是说,一氧化碳浓度的无因次标准偏差越小,则被认为分解炉20内热分解气体的混合越好。在本模拟中没有考虑一氧化碳的燃烧。

从图8可知,在热分解气体投入口附近,一氧化碳浓度的无因次标准偏差大,热分解气体的混合不充分。可知从热分解气体投入口越是向上,一氧化碳浓度的无因次标准偏越是变小,热分解气体与空气的混合得到促进。

还有,该图中的情况A、情况C1、情况C2、情况D1、情况D2表示将热分解气体导入分解炉20的方向不同的5种情况。具体地说,方便使如图3D所示气体导入口27的水平面内的方向以旋转窑30一侧为基准表示的θ1有3种不同角度以及如图3C所示气体导入口27相对于水平面内向下倾斜的角度θ2有 2种不同角度。更具体地的表示见下表。

 情况A情况C1情况C2情况D1情况D2θ170度95度95度135度135度θ220度20度25度20度25度

 如果仔细观看图8的曲线,可知情况A即θ1为70度时,随着从热分解气体导入口27起的高度变高,与情况C1、情况C2、情况D1、情况D2相比,热分解气体与空气的混合变差。又将情况C1、情况C2、即θ1为95度的情况与情况D1、情况D2、即θ1为135度的情况相比,最后了解到在情况D1、情况D2的情况下的热分解气体与空气的混合稍好。另一方面,对于气体导入口27的倾斜角度,在θ2为20度时和25度时看不出有意义的差别。

以上所述的第1实施形态的废弃物处理设备100中,在气化炉1从废弃物中发生的热分解气体在碳和灰分含量不变的状态下利用输送管线6送往水泥制造设备200,被引入分解炉20。从旋转窑30来的高温窑废气流入分解炉20,形成喷流向上方吹,但是导入热分解气体时,不直接使其与该窑废气主流发生干涉,因此该热分解气体和碳没有被刮走,能够在分解炉20内充分燃烧。

特别是在本实施形态中,从设置于分解炉20的周壁部23的下部的气体导入口27将热分解气体围绕着窑废气主流周围旋转地引入,同时在其下方形成更大流量的燃烧用空气的旋流,如果使其先与来自下方的窑废气流发生干涉,则能够可靠抑制窑废气流将热分解气体刮走的情况的发生。

然后将借助于窑废气提高温度的燃烧用空气与并行旋转的热分解气体充分混合,提高其点火性能和燃烧性能,然后从靠近气体导入口27设置的燃料供给口26提供微细碳粉那样的燃料,将其点火使其燃烧,这可望进一步提高作为火种的热分解气体的点火性能。

―变形例―

如上所述,第1实施形态中,将热分解气体和燃烧用空气引入分解炉20的周壁部23上旋转窑30一侧的相反侧,但是不限于此,热分解气体的导入口数目也不限于一个。假如在废弃物处理设备100中,气化炉1设置两个以上,则也可以利用各气体输送管线6从各气化炉1将输送的热分解气体引入各分解炉20内。

例如,在图5A~5D中表示出在分解炉20中设置两个气体导入口27的变形例。在该变形例中,只是气体导入口27的数目和位置不同于第1实施形态的分解炉20,其他都相同。如该图5A~5C所示,在变形例的分解炉20中,两个气体导入口27在旋转窑30一侧和其相反侧分别与第1实施形态一样相对于水平面向下倾斜设置。

又,如图5D所示,在俯视时,两个气体导入口27指向圆周方向,分别沿着侧壁部23内周引导热分解气体,相互相位相差180度平行设置。也就是说,两个气体导入口27在同一圆周上引导热分解气体形成相同的旋流。这样强化旋流的旋转成分同时尽量将热分解气体引向相离的部位,以此进一步提高热分解气体的燃烧性能。

―第2实施形态―

下面参照图6对本发明第2实施形态的废弃物处理设备和水泥制造设备进行说明。该图相当于上述第1实施形态的图1。还有,在该实施形态中,水泥制造设备200的悬挂式预热器10和分解炉20的结构不同于第1实施形态,但是对于分解炉20,除了没有空气导入口25外,与第1实施形态相同,因此标以相同的符号20。除此以外的相同构成的构件,也标以相同的符号并省略其说明。

而且本第2实施形态的水泥制造设备200中,悬挂式预热器10分为两个系统,每一系统具备例如5级旋流器11。在图左侧的系统中,从下级吹入窑废气,除了没有设置分解炉20外,与第1实施形态相同。另一方面,图右侧的系统中,设有分解炉20,但是这里流入的不是窑废气,而是来自空气淬火冷却器40的高温的冷却器废气。

上面已经说过,冷却器废气与第1实施形态的窑废气一样流入分解炉20下端,作为喷流向上方吹(图中点划线所示)。该冷却器废气与被引入分解炉20内的热分解气体混合。一边使其燃烧一边将水泥原料向上吹,从上部管道22到最下一级的旋流器11。而且逐级通过旋流器11上升,从最上一级的旋流器11向废气管线50流出。

对该分解炉20下部(详细图示省略),与第1实施形态一样从旋流器11提供水泥原料,又,设置从气化炉1引入热分解气体的气体导入口27,但是不设置使其燃烧用的空气的导入口25。也就是说,因为如上面所述,通过分解炉20向上吹的冷却器废气不同于窑废气,由大量含有氧气的燃烧用空气构成。

除了不设置空气导入口25外,分解炉20的结构与第1实施形态相同,热分解气体从在周壁部23指向圆周方向设置的气体导入口27被引向分解炉20内,沿着周壁部23内表面围绕上下轴线20a周围旋转。也就是说,在本实施形态中,也是热分解气体以不直接与冷却器废气的主流发生干涉的形态被引入分解炉20。

因此,热分解气体不随着冷却器废气的主流掠过分解炉20,而是螺旋状围绕向上吹的冷却器废气主流周围一边旋转一边慢慢混合,充分燃烧。借助于该燃烧,冷却器废气的温度上升到900℃以上。借助于此,促进被吹上来的水泥原料的煅烧(脱二氧化碳反应)。

又,在废弃物来的热分解气体中,有时候含有二氧(杂)芑,为了使其分解,需要维持约2秒钟以上的时间,850℃以上的气氛,但本实施形态中,在分解炉20内燃烧的热分解气体的温度被维持4秒钟以上、900℃以上温度,二氧(杂)芑能充分分解。

从而,如本第2实施形态所述,即使是使冷却器废气流入分解炉20那样的情况下,通过将气化炉1来的热分解气体作为相对其旋转的旋流引入,也不会随着冷却器废气流被刮走,能够使热分解气体在分解炉20内充分燃烧。

―其他实施形态―

还有,上述实施形态的说明不过是例示,本发明无意限制其适用物或其用途。例如在上述第1实施形态中,对水泥制造设备200的分解炉20引入热分解气体,使其气流围绕窑废气的主流周围旋转,同时在其下方导入燃烧用空气使其并排旋转,但是并不限于此。

也就是说,燃烧用的空气也可以在热分解气体的旋流上方引入分解炉20内,也可以燃烧用空气和热分解气体两者都不旋转地引入。简而言之,使热分解气体不与分解炉20内的窑废气主流直接发生干涉地导入即可,因此在例如窑废气作为旋流流入分解炉20内的情况下,也可以沿着该旋流的旋转中心引入热分解气体。

而且,废弃物处理设备100的气化炉1和水泥制造设备200的窑(烧成炉)等的结构也不受上述各实施形态的限制。气化炉1不限于流动层式,烧成炉也不限定于旋转窑30,例如也可以式流动层窑。

又,在上述各实施形态中,对气化炉1内提供的废气物设想为来自家庭的一般废弃物、包含废塑料的工业废弃物等,但是也不限定于此,也可以对气化炉1提供间伐木材(Thinned wood)、木屑等木质废弃物、或家畜的粪尿、下水道污泥那样的其他动植物燃料废弃物。

工业应用性

如果采用本发明,则能够将气化炉发生的废弃物的热分解气体,在保持所含碳和灰分原封不动的情况下,向水泥制造设备的分解炉输送,使其充分燃烧,因此能够有效利用已有的水泥制造设备,以低成本实现废弃物的卫生处理,工业应用价值很高。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号