首页> 中国专利> 用于冷却涡轮转子叶片的平台区域的设备和方法

用于冷却涡轮转子叶片的平台区域的设备和方法

摘要

本发明涉及用于冷却涡轮转子叶片的平台区域的设备和方法。一种在翼型件和根部之间的交接部处具有平台的涡轮转子叶片中的平台冷却装置,其中,转子叶片包括在运行中至少包括高压冷却剂区域和低压冷却剂区域的内部冷却通道,并且其中,平台包括平台下侧。该平台冷却装置可包括:包括板顶侧的板;形成于板顶侧上的通路,该通路包括上游端和下游端,并且通过板顶侧而开口,使得在将板附连到平台上之后,平台下侧包括通路顶面;将通路的上游端连接到内部冷却通道的高压冷却剂区域上的高压连接器;以及将通路的下游端连接到内部冷却通道的低压冷却剂区域上的低压连接器。

著录项

  • 公开/公告号CN102444429A

    专利类型发明专利

  • 公开/公告日2012-05-09

    原文格式PDF

  • 申请/专利权人 通用电气公司;

    申请/专利号CN201110305898.X

  • 申请日2011-09-28

  • 分类号F01D5/18(20060101);

  • 代理机构72001 中国专利代理(香港)有限公司;

  • 代理人李强;谭祐祥

  • 地址 美国纽约州

  • 入库时间 2023-12-18 04:59:56

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2015-04-08

    授权

    授权

  • 2013-08-28

    实质审查的生效 IPC(主分类):F01D5/18 申请日:20110928

    实质审查的生效

  • 2012-05-09

    公开

    公开

说明书

技术领域

本申请大体涉及燃气轮机发动机,如在本文中所用且除非特别作 出其它规定,这些燃气轮机发动机包括所有类型的燃气轮机发动机, 例如在功率发生中使用的那些和航空发动机。更具体而言但不以限制 的方式,本申请涉及用于冷却涡轮转子叶片的平台区域的设备、系统 和/或方法。

背景技术

燃气轮机发动机典型地包括压缩机、燃烧器和涡轮。压缩机和涡 轮一般包括沿轴向堆迭成级的数排翼型件或叶片。各个级典型地包括 被固定的一排沿周向隔开的定子叶片,以及绕着中心轴线或轴旋转的 一组沿周向隔开的转子叶片。在运行中,压缩机中的转子叶片绕着轴 旋转,以压缩空气流。压缩空气然后在燃烧器内用来燃烧燃料供应。 由于燃烧过程而产生的热气流在涡轮中膨胀,这导致转子叶片使它们 所附连的轴旋转。这样,包含在燃料中的能量转化成旋转轴的机械能, 然后例如可使用该机械能来旋转发电机的线圈而产生电力。

参照图1和2,涡轮转子叶片100一般包括翼型部分或翼型件102 和根部部分或根部104。翼型件102可被描述为具有凸形吸力面105 和凹形压力面106。翼型件102可进一步描述为具有为前部边缘的前 缘107,以及为后部边缘的后缘108。根部104可描述为具有用于将 叶片100固定到转子轴上的结构(如所显示的那样,其典型地包括鸠尾 榫109)、平台110(翼型件102从平台110延伸),以及包括鸠尾榫109 和平台110之间的结构的柄部112。

如所示出的那样,平台110可基本为平面的。更具体而言,平台 110可具有平面的顶侧113,如图1中所示,顶侧113可包括沿轴向 且沿周向延伸的平的表面。如图2中所示,平台110可具有平面的下 侧114,下侧114也可包括沿轴向且沿周向延伸的平的表面。平台110 的顶侧113和底侧114可形成为使得各自基本平行于另一个。如所描 绘的那样,将理解,平台110典型地具有薄的径向轮廓,即在平台110 的顶侧113和底侧114之间存在较短的径向距离。

一般而言,在涡轮转子叶片100上采用平台110来形成燃气轮机 的热气路径区段的内部流径边界。平台110进一步为翼型件102提供 了结构性支承。在运行中,涡轮的旋转速度会引起机械负荷,该机械 负荷会沿着平台110产生高应力区域,当与高温结合时,这会最终导 致形成运行缺陷,例如氧化、蠕变、低周(low-cycle)疲劳裂纹等。这 些缺陷当然会对转子叶片100的使用寿命有负面影响。将理解,这些 苛刻的运行状况(即暴露于热气路径的极端温度和与旋转叶片相关联 的机械负荷)会在设计既性能良好且制造起来又成本有效的耐用持久 的转子叶片平台110中产生非常大的挑战。

使平台区域110更耐用的一种常用解决方案是在运行期间用压缩 气体流或其它冷却剂来冷却它,并且各种各样的这些类型的平台设计 是已知的。但是,如本领域普通技术人员将理解的那样,平台区域110 存在某些设计挑战,这使得它难以以这个方式冷却。这很大部分是由 于此区域的棘手的几何结构的原因,因为如所描述的那样,平台110 为远离转子叶片的中心芯体而驻留且典型地设计成具有结构牢固但 薄的径向厚度的周缘构件。

为了使冷却剂循环,转子叶片100典型地包括一个或多个空心内 部冷却通道116(见图3、4、5和9),该一个或多个空心内部冷却通道 116至少沿径向延伸通过叶片100的芯体,包括通过根部104和翼型 件102。如下面更详细地描述的那样,为了增加热交换,这样的内部 冷却通道116可形成为具有蜿蜒通过叶片100的中心区域的曲折的路 径,但是其它构造是可行的。在运行中,冷却剂可通过形成于根部104 的内侧部分中的一个或多个入口117进入中心内部冷却通道。冷却剂 可循环通过叶片100且通过形成于翼型件上的出口(未显示)和/或通过 形成于根部104中的一个或多个出口(未显示)而离开。冷却剂可被加 压,并且例如可包括加压空气、混合了水的加压空气、蒸汽等。在许 多情况下,冷却剂为从发动机的压缩机中转移的压缩空气,但是其它 源是可行的。如下面更详细地论述的那样,这些内部冷却通道典型地 包括高压冷却剂区域和低压冷却剂区域。高压冷却剂区域典型地对应 于内部冷却通道的具有较高冷却剂压力的上游部分,而低压冷却剂区 域对应于具有相对较低的冷却剂压力的下游部分。

在一些情况下,可将冷却剂从内部冷却通道116引导到形成于邻 近的转子叶片100的柄部112和平台110之间的腔体119中。由此, 冷却剂可用来冷却叶片的平台区域110,在图3中提供了平台区域110 的传统设计。此类型的设计典型地从内部冷却通道116中的一个抽取 空气且使用该空气来对形成于柄部112/平台110之间的腔体119加压。 一旦被加压,此腔体119则会将冷却剂供应给延伸通过平台110的冷 却通路。在穿过平台110之后,冷却空气可通过形成于平台110的顶 侧113中的薄膜冷却孔而离开腔体。

但是将理解,此类型的传统设计具有若干个缺点。第一,冷却回 路并非在一个部件中是独立的,因为冷却回路仅形成于组装两个邻近 的转子叶片100之后。这会给安装和预安装流测试增加很大的困难度 和复杂度。第二个缺点在于,形成于邻近的转子叶片100之间的腔体 119的完整性依赖于腔体119的周边被密封得多好。不充分的密封可 导致不充分的平台冷却和/或浪费的冷却空气。第三个缺点是固有的风 险:热气路径气体可被吸入腔体119或平台110本身中。如果腔体119 在运行期间未保持在足够高的压力处,则这可发生。如果腔体119的 压力落在热气路径内的压力以下,则热气将被吸入柄部腔体119或平 台110本身中,这典型地会损害这些构件,因为它们未设计成承受对 热气路径状况的暴露。

图4和5示出了用于平台冷却的另一种类型的传统设计。在此情 况下,冷却回路包含在转子叶片100内,而不涉及柄部腔体119,如 所描绘的那样。冷却空气被抽取自延伸通过叶片110的芯体的内部冷 却通道116中的一个,并且向后被引导通过形成于平台110内的冷却 通路120(即“平台冷却通路120”)。如若干个箭头所显示的那样,冷 却空气流过平台冷却通路120且通过平台110的后部边缘121中的出 口离开或从沿着吸力侧边缘122设置的出口离开。(注意,在描述或参 照长方形平台110的边缘或面时,其各自可基于其相对于翼型件102 的吸力面105和压力面106和/或发动机的向前方向和向后方向(一旦 安装了叶片100)的位置来描绘。因而,如本领域普通技术人员将理解 的那样,平台可包括后部边缘121、吸力侧边缘122、前部边缘124 和压力侧边缘126,如图3和4中所指示。另外,吸力侧边缘122和 压力侧边缘126也通常被称为“抽打面(slashface)”,并且形成于它们 之间的狭窄腔体(一旦安装了邻近的转子叶片100)可称为“抽打面腔 体”。)

将理解,图4和5的传统设计具有优于图3的设计的优点,因为 它们不受组装或安装状况的变化的影响。但是,这个性质的传统设计 具有若干个限制或缺点。第一,如所示出的那样,在翼型件102的各 个侧上仅提供了单个回路,并且因而存在的缺点为对用于平台110中 的不同位置处的冷却空气的量的控制有限。第二,此类型的传统设计 具有一般有限的覆盖区。虽然图5的曲折的路径在覆盖方面是优于图 4的改进,但是仍然在平台110内存在仍未被冷却的死区。第三,为 了用错综复杂地形成的平台冷却通路120来获得更好的覆盖,制造成 本会急剧增加,特别是在冷却通路具有需要铸造过程来形成的形状的 情况下。第四,这些传统设计典型地在使用之后且在冷却剂被完全消 耗之前将冷却剂卸放到热气路径中,这会对发动机的效率有负面影 响。第五,这个性质的传统设计一般具有很小的柔性。也就是说,通 路120形成为平台110的组成部分,并且在运行状况改变时提供很少 的机会或不提供机会来改变它们的功能或构造。另外,这些类型的传 统设计难以维修或整修。

因此,传统的平台冷却设计在一个或多个重要方面有所缺憾。仍 然存在对有效地且高效地冷却涡轮转子叶片的平台区域、同时还构建 起来成本有效、在应用中有柔性且耐用的改进的设备、系统和方法的 需要。

发明内容

本申请因而描述了一种在翼型件和根部之间的交接部处具有平 台的涡轮转子叶片中的平台冷却装置,其中,转子叶片包括形成于其 中的内部冷却通道,该内部冷却通道从在根部处的与冷却剂源的连接 部至少延伸到平台的大约径向高度,其中,在运行中,内部冷却通道 至少包括高压冷却剂区域和低压冷却剂区域,并且其中,平台沿着内 侧表面包括平台下侧。该平台冷却装置可包括:包括板顶侧的板,板 顶侧可脱开地连接到平台下侧上;形成于板顶侧上的通路,该通路包 括上游端和下游端,并且通过板顶侧而开口,使得在将板附连到平台 上之后,平台下侧包括通路顶面;将通路的上游端连接到内部冷却通 道的高压冷却剂区域上的高压连接器;以及将通路的下游端连接到内 部冷却通道的低压冷却剂区域上的低压连接器。

本申请进一步描述了一种产生用于在翼型件和根部之间的交接 部处具有平台的涡轮转子叶片的平台冷却装置的方法,其中,转子叶 片包括形成于其中的内部冷却通道,该内部冷却通道从在根部处的与 冷却剂源的连接部至少延伸到平台的大约径向高度,其中,在运行中, 内部冷却通道至少包括高压冷却剂区域和低压冷却剂区域,并且其 中,平台沿着内侧表面包括平台下侧。该方法可包括以下步骤:加工 将出口连接到内部冷却通道的高压冷却剂区域上的高压连接器,出口 定位在平台的内侧的第一预定位置上;加工将入口连接到内部冷却通 道的低压冷却剂区域上的低压连接器,入口定位在平台的内侧的第二 预定位置上;将板的顶侧固定到平台下侧上,板包括形成于板顶侧上 的、包括上游端和下游端的通路,该通路通过板顶侧而开口,使得在 将板附连到平台上之后,平台下侧包括通路顶面;其中,板构造成使 得通路的上游端连接到高压连接器的出口上,而通路的下游端连接到 低压连接器的入口上;以及其中,通路包括曲折的通路。

在结合附图和所附权利要求审阅优选实施例的以下详细描述之 后,本申请的这些和其它特征将变得显而易见。

附图说明

通过仔细地研究结合附图得到的本发明的示例性实施例的以下 更详细的描述,将更完整地明白和理解本发明的这些和其它特征,其 中:

图1示出了其中可采用本发明的实施例的示例性涡轮转子叶片的 透视图;

图2示出了其中可使用本发明的实施例的涡轮转子叶片的仰视 图;

图3示出了具有根据传统设计的冷却系统的邻近的涡轮转子叶片 的截面图;

图4示出了具有带有根据传统设计的内部冷却通道的平台的涡轮 转子叶片的俯视图;

图5示出了具有带有根据备选的传统设计的内部冷却通道的平台 的涡轮转子叶片的俯视图;

图6为涡轮转子叶片和根据本申请的一个实施例的具有曲折的冷 却通路的板的透视图;

图7为根据本申请的一个实施例的平台冷却装置的截面俯视图;

图8为根据本申请的一个实施例的具有曲折的冷却通路的板的透 视图;

图9为其中可实践本申请的实施例的未经修改的传统平台的截面 侧视图;

图10为图9的平台的截面侧视图,其示出了可怎样修改平台以 接受本申请的一个示例性板实施例;

图11为图9的平台的截面侧视图,其将板示出为其可根据本申 请的一个示例性实施例来附连到图10的经修改的板上;

图12为根据本申请的一个备选实施例的具有曲折的冷却通路的 板的透视图;

图13为平台的截面侧视图,其将图12的板示出为其可根据本申 请的一个备选实施例来附连;以及

图14为产生根据本申请的一个实施例的平台冷却装置的示例性 方法。

具体实施方式

将理解,通过冷却剂的内部循环来冷却的涡轮叶片典型地包括内 部冷却通道116,内部冷却通道116沿径向从根部向外延伸,通过平 台区域,并且进入翼型件,如上面关于若干个传统冷却设计所描述的 那样。将理解,本发明的某些实施例可结合传统冷却剂通道来使用, 以增强或实现高效的主动平台冷却,并且结合这样的普通设计来论述 本发明:具有蜿蜒的或曲折的构造的内部冷却通道116。如图6、8和 9中所描绘的那样,该曲折的路径典型地构造成允许有单向冷却剂流, 并且包括促进冷却剂和包围着的转子叶片100之间的热交换的特征。 在运行中,典型地为从压缩机放出的压缩空气(但是其它类型的冷却剂 (例如蒸汽)也可用于本发明的实施例)的加压冷却剂通过形成为通过 根部104的连接部而供应给内部冷却通道116。压力会驱动冷却剂通 过内部冷却通道116,并且冷却剂会使来自包围着的壁的热对流。

在冷却剂运动通过内部冷却通道116时,将理解,它会损失压力, 内部冷却通道116的上游部分中的冷却剂比下游部分中的冷却剂具有 更高的压力。如下面更详细地论述的那样,此压差可用来驱动冷却剂 穿过或通过形成于平台中的内部冷却通道。将理解,本发明可用于具 有不同的构造的内侧的内部冷却通道的转子叶片100中,而不限于具 有曲折的形式的内部冷却通道。因此,如本文中所用,用语“内部冷 却通道”或“内侧冷却通道”意图包括冷却剂可通过其中而在转子叶 片中循环的任何通道或空心通路。如本文中所提供,本发明的内部冷 却通道116至少延伸至平台116的大约径向高度,并且可包括相对较 高的冷却剂压力的至少一个区域(在下文其称为“高压区域”,并且在 一些情况下,可为曲折的通道内的上游区段)和相对较低的冷却剂压力 的至少一个区域(在下文其称为“低压区域”,并且相对于高压区域, 可为曲折的通道内的下游区段)。

大体上,传统的内侧的内部冷却通道116的各种设计对于对转子 叶片100内的某些区域提供主动冷却是有效的。但是,如本领域普通 技术人员将理解的那样,平台区域被证明是更具挑战性的。这至少部 分是由于平台的棘手的几何结构的原因-即,它的狭窄的径向高度和 它远离转子叶片100的芯体或主体而伸出的方式。但是,由于它会暴 露于热气路径的极端高温和高的机械负荷,所以平台的冷却需要是值 得考虑的。如上面所描述,传统的平台冷却设计是无效果的,因为它 们不能处理区域的特定挑战,在它们的冷却剂的使用方面是低效率 的,以及/或者制作成本高昂。

现在参照图6至14,提供了本发明的示例性实施例的若干个视图。 图6提供了涡轮转子叶片100和根据本申请的一个实施例的具有曲折 的冷却通路133的板132的透视图。如所显示的那样,板132可附连 到平台110上。更具体而言,板132可附连到平台下侧114上。类似 于平台110的顶侧113,平台下侧114可包括沿轴向且沿周向延伸的 平面的表面。(注意,如本文中所用,“平面的”的意思是大致或基本 呈平面的形状。例如,本领域普通技术人员将理解,平台可构造成具 有为略微弯曲和凸形的外侧表面,曲率对应于涡轮的在转子叶片的径 向位置处的周边。如本文中所用,此类型的平台形状被看作平面的, 因为曲率半径足够大来给予平台平的外表。)在本申请的一个实施例 中,平的穴131可位于平台下侧114中,这显示在图9至11中。平 的穴131可通过一个或多个制造方法形成,例如但不限于(机械)加工、 铸造等。例如,现有的转子叶片可加工成使得形成适当的平的穴131。 在本申请的一个实施例中,平的穴131可位于平台下侧114的基本对 应于叶片100的翼型件102的压力侧的区域上。平的穴131可构造成 接受根据本发明的板132。

如图8和12中所示出的那样,板132可包括具有平面的顶侧134 的沿径向较薄的结构,通路133形成于平面的顶侧134上。一旦安装 在平台下侧114上,平面的顶侧134就可沿轴向方向和周向方向延伸。 在一个实施例中,通路133包括曲折的路径或蜿蜒路径,但是其它构 造是可行的。如所显示的那样,通路133形成于板132的表面上,即 不完全包含在板132内。通路133因而可描述为通过板顶侧134而保 持开口。将理解,在将板132附连到平台下侧114上之后,平台下侧 114然后会封闭通路133。也就是说,一旦两个表面被联结,平台下 侧114可对通路133提供顶面140。

通路133可具有上游端138和下游端139。高压连接器148可将 通路133的上游端138连接到内部冷却通道116的高压冷却剂区域上。 低压连接器149可将通路133的下游端139连接到内部冷却通道116 的低压冷却剂区域上。相对于转子叶片100的向前方向和向后方向, 通路133的上游端138可具有较前部的位置,而通路133的下游端139 可具有后部位置。

如所叙述的那样,翼型件102可描述为具有压力侧106和吸力侧 105,并且压力侧抽打面126可包括对应于翼型件102的压力侧106 的平台边缘。在一个实施例中,板132位于平台下侧114的对应于翼 型件的压力侧的区域上,如图7中所示。另外,如图7、8和12中所 示,在轮廓方面(即,从图7的优势点看),板132可包括弯曲边缘151 和直边缘152。将理解,弯曲边缘151在形状方面可大致对应于翼型 件102的压力侧106连接到平台110处的翼型件102的弯曲轮廓。然 而,直边缘151在形状方面可大致对应于压力侧抽打面126的直线轮 廓。更具体而言,在一些实施例中,板132的弯曲边缘151和直边缘 152的位置对应于翼型件102的弯曲轮廓和压力侧抽打面126的直线 轮廓的位置。

在一些实施例中,通路133形成为包括抽打面区段155。抽打面 区段155可包括通路的驻留在板132的直边缘152的附近且平行于直 边缘152(并且因此,一旦被安装,就驻留在压力侧抽打面126的附近, 如图7中所示出)的区段。抽打面区段155的上游端138可驻留在通路 133的上游端138的附近。抽打面区段155沿着板132的直边缘152 延伸的长度可称为“抽打面区段通路长度”。在优选实施例中,抽打 面区段通路长度可为抽打面126的长度的至少0.5(倍)。更优选地,抽 打面区段通路长度可大于抽打面126的长度的0.75(倍)。将理解,使 通路的此区段以这个方式定位提供了某些性能优点。例如,因为抽打 面区段155位于通路133的上游端138的附近,所以冷却剂供应必须 首先流过此区域,这导致其比通路133的下游区段接收具有更低的温 度的冷却剂。因为这是经历最高运行温度中的一些的平台区域和因为 其从转子叶片100的中心区移开而在传统上冷却起来较麻烦的区,所 以以这个方式来把这个区作为目标被证明是期望的冷却策略。

从抽打面区段起,通路133包括回转部158(即约180°的急转), 并且在回转部158之后,延伸到板132的中心区中,该中心区可称为 通路133的内部区段159。内部区段159可包括第一回转部158的下 游的直线区段,并且在其下游,包括第二回转部158,它们的组合有 效地对板132的中心区提供了覆盖。第二回转部158可驻留在通路133 的下游端139的附近。

在一些实施例中,通路133的上游端138包括上游气室。大体上, 上游气室138包括具有增加的通路宽度的区。如所显示的那样,在轮 廓方面,上游气室138在本质上可为圆形的。在运行中,上游气室138 提供了较大的体积,多种冷却剂进料(如果存在的话)可收集在其中且 然后被引导到通路133中。而且,上游气室138提供了较大的目标轮 廓,借此,可进行与高压连接器148的连接。类似地,在一些实施例 中,通路133的下游端139包括下游气室。大体上,下游气室139也 包括具有增加的通路宽度的区,并且如所显示的那样,下游气室139 可具有圆形轮廓。下游气室139提供了较大的目标轮廓,借此,可进 行与低压连接器149的连接。

如所叙述的那样,高压连接器148连接到通路133的上游端138 上,而低压连接器149连接到通路133的下游端139上。此连接可使 用若干种构造来进行。例如,在一个优选实施例中(如图8中所示), 板132包括不中断地在板132的周缘的周围延伸的外侧壁144。在此 情况下,如图9至11中所描绘,连接器148、149可包括处于叶片100 的内部的区段和形成于平台110上的下侧通路161。更具体而言,下 侧通路161包括形成于平台下侧114的表面上的通路。将理解,类似 于通路133,下侧通路161通过其所定位的表面(在此情况下,其为平 台下侧114)而保持开口。下侧通路161仅在板132附连到平台110上 之后变得被封闭。将理解,一旦附连了板132,板顶侧134就可被描 述为如下侧通路161的底面162那样起作用。如所叙述的那样,此构 造可用于高压连接器148和低压连接器149两者上。在高压连接器148 的情况下,下侧通路161的下游端在位置方面对应于通路133的上游 端138,但是各自沿径向方向偏移。在低压连接器149的情况下,下 侧通路161的上游端在位置方面对应于通路133的下游端139,但是 各自沿径向方向偏移。

在另一个实施例中,外侧壁144可包括形成为通过该外侧壁144 的侧壁入口165和侧壁出口166,如图12中所示。在此情况下,侧壁 入口165可通过外侧壁144而将通路133的上游端138直接连接到高 压连接器148上。而且,侧壁出口166可通过外侧壁144而将通路133 的下游端139直接连接到低压连接器149上。

板132可使用各种技术来附连到平台下侧114上。在一些实施例 中,板132可脱开地附连到平台110上。如本文中所用,此类型的附 连意图包括可合理地反转操作(reverse)使得可重复使用板132和/或叶 片100的任何附连。这可包括例如某些类型的焊接、铜焊、粘合剂、 机械保持等。作为附连板的一部分,可进行传统的步骤来密封所形成 的通路133,并且其与连接器148、149进行的连接可基本导致在高压 连接器148和低压连接器149之间有闭环冷却剂回路。因而,从高压 连接器148流到通路133中的基本所有的冷却剂均通过低压连接器 149返回到内部冷却通道116,以进行进一步的使用。本领域普通技 术人员将理解,可在板132和平台下侧114之间使用任何密封手段。 例如,可使用机械衬垫、化学密封剂等。

本领域普通技术人员将理解,平台冷却装置130可用来高效地对 现有的涡轮转子叶片进行改型,因为板132和平台110是非一体地形 成的构件。另外,平台冷却装置130可使用涡轮转子叶片110的现有 的内部冷却通道116,从而提供柔性来在现有的叶片或新的叶片中采 用本发明的实施例。还可通过铸造后的改变来调节板132。可改变板 132和通路133的各种方面,以优化对平台110的冷却。因而,平台 冷却装置130可定制(tailor-made)成适合各种涡轮转子叶片构造。也可 成本有效地且高效地制造平台冷却装置130,因为板132可与涡轮转 子叶片的各种构件分开来制造。此外,板132可预先制作且然后现场 组装。

图14示出了描绘根据本申请的一个实施例的产生平台冷却装置 130的示例性方法的流程图200。流程图200可在步骤202处开始, 在此处,如果必要的话,在平台下侧114中将平的穴131加工在预定 位置上。在一些实施例中,优选的位置对应于翼型件102的压力侧126。 在图9至11中示出了此加工过程。图9呈现了形成穴131之前的平 台110的截面。如所显示的那样,许多现有的平台110包括平面的下 侧114,但是可能需要一些加工来为具有用以提供期望的冷却覆盖区 的大小的板132提供足够的间隙。图10示出了可为移除的目标的区。 平的穴131可具有基本对应于翼型件102的压力侧106的轮廓的轮廓 形状,压力侧106的轮廓还可对应于形成的板132的轮廓。将理解, 在一些情况下,平的穴131可作于铸入特征已经存在于叶片100中。

在步骤204处,可形成高压连接器148和低压连接器149。高压 连接器148可具有预定构造和位置,使得无论可能是什么情况,其会 将内部冷却通道116的高压冷却剂区域连接到板通路133的上游端 138或板132的侧壁入口165的最终位置上。在不存在侧壁入口165 的情况下,形成高压连接器148可包括形成下侧通路161,如上面所 描述。同样地,低压连接器149可具有预定构造和位置,使得无论可 能是什么情况,其会将内部冷却通道116的低压冷却剂区域连接到板 通路133的下游端139或侧壁出口166的最终位置上。在不存在侧壁 出口166的情况下,形成低压连接器149可包括形成下侧通路161, 如上面所描述。将理解,可使用相对不那么昂贵的加工过程来完成连 接器148、149的形成,特别是在只要完成平的穴131的形成且在附 连板132之前就可获得对叶片100的相关区的接近的情况下。

在步骤206处,板132可根据所期望的规格来制作。将理解,分 开来制作板132简化了制造过程。例如,可使用简单的加工或铸造过 程来将通路133形成于板132上。同时,将同一通路形成于一体地形 成的平台内典型地将需要更复杂和昂贵的铸造过程。

在步骤208处,板132可附连到平台下侧114上,使得板132驻 留在平台下侧114的内侧,从而封闭板132和平台下侧114之间的通 路133。板132可附连到平台下侧114上,使得板132驻留在平的穴 131中。最后,在步骤210处,可进行额外的步骤来密封通路133。 如所叙述的那样,密封通路133以及其与连接器148、149进行的连 接可基本导致在高压连接器148和低压连接器149之间有闭环冷却剂 回路。将理解,本发明利用了在运行期间发生的离心负荷来增强在板 132和平台下侧114之间产生的密封,特别是在使用一个或多个下侧 通路161来将通路133连接到冷却剂供应上时。

如本领域普通技术人员将理解的那样,上面关于若干个示例性实 施例描述的许多不同的特征和构造可进一步选择性地应用来形成本 发明的其它可行实施例。为了简短以及考虑到本领域普通技术人员的 能力,未提供或详细地描述所有的可行迭代,但是由所附若干个权利 要求或以别的方式包含的所有组合和可行实施例意图为本申请的一 部分。另外,根据本发明的若干个示例性实施例的上面的描述,本领 域技术人员将意识到改进、改变和修改。在本领域技术内的这样的改 进、改变和修改也意图由所附权利要求所覆盖。另外,应当显而易见 的是,前述内容仅涉及本申请的所描述的实施例,并且可在本文中作 出许多改变和修改,而不脱离所附权利要求及其等效方案所限定的本 申请的精神和范围。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号