首页> 中国专利> 用膜包夹的液体干燥剂进行除湿的间接蒸发冷却器

用膜包夹的液体干燥剂进行除湿的间接蒸发冷却器

摘要

一种间接蒸发冷却器,所述间接蒸发冷却器利用液体冷媒流和排出或放出空气流将入口供应空气流从第一温度冷却到第二、较低的温度。冷却器包括入口供应空气的第一流动通道和与所述第一流动通道相邻的第二流动通道,用于排出的空气。第一和第二流动通道部分地由膜片限定而成,其中所述膜允许水蒸汽渗透通过,从而使得随着热量从入口供应空气被传递到液体冷媒中时,质量以蒸汽形式从入口供应空气穿过所述膜被传递到被包夹的液体干燥剂中进行除湿以及传递到排出空气中。分隔壁将所述液体干燥剂和冷媒分开,但允许热量从供应的空气中被传递到冷媒中,所述冷媒将水蒸汽释放给逆流或交叉流动的排出空气。

著录项

  • 公开/公告号CN102165268A

    专利类型发明专利

  • 公开/公告日2011-08-24

    原文格式PDF

  • 申请/专利权人 可持续能源联盟有限责任公司;

    申请/专利号CN200880128218.8

  • 发明设计人 S·J·斯莱扎克;E·J·科祖巴尔;

    申请日2008-01-25

  • 分类号F24F5/00(20060101);F28F1/32(20060101);F28D7/00(20060101);

  • 代理机构72002 永新专利商标代理有限公司;

  • 代理人刘兴鹏

  • 地址 美国科罗拉多

  • 入库时间 2023-12-18 03:04:41

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2014-04-30

    授权

    授权

  • 2011-10-05

    实质审查的生效 IPC(主分类):F24F5/00 申请日:20080125

    实质审查的生效

  • 2011-08-24

    公开

    公开

说明书

合约来源

美国政府对本发明拥有合同号No.DE-AC36-99GO10337下的权利,所述合同双方是美国能源部和国家可再生能源实验室——中西部研究所的一个科室。

背景技术

空调的使用遍及世界,它提供了舒适健康的室内环境,适当地通风,凉爽并具有充分的湿度控制。虽然有利于调节供应的空气,但传统的空调系统由于要使用大量的能源(如电能)使得运行的成本很高。由于对能源持续增长的需求,空调的成本也有望增加,存在着对更有效率的空调方法和技术持续增长的需求。另外,增加的是对不使用化学品和一些材料的冷却技术的需求,所说的化学品和材料比如是释放或泄露的话可能会环境损害的许多传统的制冷剂。维护也是许多空调技术的关注焦点,因此,任何新技术,如果发现它对维护的要求很苛刻,尤其是住宅使用的,都将会被市场拒之门外。

蒸发冷却器会用在一些场合解决空调需求或需要,但是由于许多局限性所致,传统的蒸发冷却器不能被广泛地使用在商业或住宅建筑中。蒸发冷却器,通常被称作沼泽冷却器(swamp cooler),和利用制冷的传统空调或使用蒸汽压缩或吸收制冷循环的吸收设备相比,它是利用空气中的水分直接蒸发(simple evaporation)的原理提供冷却作用的。蒸发冷却的使用典型地受到气候的局限,比如美国西部地区的天气炎热,而且湿度很低。在这样干燥的气候下,传统蒸发冷却器的安装和运行成本就比制冷空调低。住宅用和工业用的蒸发冷却器典型地使用温暖干燥空气与水混合进行直接蒸发冷却,从而将水分转变成蒸汽并用蒸发潜热(latent heat)生成冷却的湿空气(例如,相对湿度为50%-70%的冷却空气)。例如,蒸发冷却器可设于具有通风侧的封闭金属或塑料箱中,所述通风侧包含风扇或鼓风机、运行所述风扇的电动机、和润湿蒸发冷却垫的水泵。为了提供冷却效果,风扇通过在机组侧上的通风口和潮湿垫抽入环境中的空气。空气中的热量将水分从垫上蒸发出来,所述垫被持续浸润以便使冷却作业继续下去。冷却的湿空气然后经由屋顶或墙壁中的通风口供应建筑物中。

尽管蒸发冷却器的运行成本是制冷空调的大约四分之一,但是它还没被广泛地应用于满足人们对更高效率和更低成本的空调技术的需求。水仓冷却器(sump coolers)的一个问题是在某些特定条件下这些蒸发冷却器不能运行提供充分冷却的空气。例如,当进气是90°F和50%相对湿度时,空气可能仅可被冷却到75°F并且这种冷却可能不足以使特定空间得到充分地冷却。这个问题在温度升高时会更严重,比如已经发现在美国西南部地区和其它许多地方温度可以超过100°F。因此,空调系统可能需要包括制冷空调来冷却从蒸发冷却器出来的空气,这会导致这种系统的购买、运行、和维护都更昂贵。

另外,传统的蒸发冷却器不能对空气进行除湿,并且实际上经常是输出有80%到90%相对湿度的空气,这仅在一些非常干燥的环境下才可接受,这是因为非常潮湿的空气会降低建筑物居住者的蒸发速率(例如降低了舒适等级),并且可能会引起冷凝作用,导致腐蚀或其他问题的发生。在一些蒸发冷却器中作为第二或后级会提供除湿功能,比如通过将液体干燥剂渗入(wicking)空气流动通道壁或腔室壁的方式实现该功能,但是这样的系统不能被广泛应用,这是因为运行和维护成本的增加以及考虑到会将干燥剂与空调过的空气一起排放出来的问题。一般地,维护是蒸发冷却器的一个关注点,因为蒸发作业会导致矿物质沉积在冷却垫上和冷却器的其他表面上,为了维持系统效率而需要清洁或替换它们,并且供水线路需要被保护以防在闲季(off season)例如由于系统的排水而上冻。由于这些和其他的考虑,蒸汽冷却不可能被广泛地用来为商业和住宅用途提供高能效的备选空调方式,除非能够取得显著改进降低对维护的担心同时又提高可达到的冷却效力(例如,在建筑的直接使用中即可提供充分冷却的输出空气)。

前述的相关技术的示例和与之相关的局限性都是作为解释说明用途,并不是排他的。相关技术的其他局限性将会在本领域技术人员阅读到说明书和看图即可清楚。

发明内容

接下来的实施方式及其方面都是结合示例性和解释性的非限定范围的系统、工具和方法进行介绍和解释说明的。在各种不同的实施方式中,上面介绍过问题的一种或多个被减少或消除了,而其他实施方式是针对其他改进的。

这可部分通过设置用于间接蒸发冷却器或热交换器的传质/传热组件实现。组件是由交错的叠堆形成,每个叠堆包括第一(或上)膜材料层或片、分隔壁、和第二(或下)膜材料层或片。每一层的所述膜或膜材料可允许蒸汽态的水分子渗透通过,而分隔壁不允许水渗透通过,但允许热传递(例如,是薄层和/或由导热的材料制成的)。在相邻叠堆对中的第一叠堆中,冷媒,比如水,在第一膜层和分隔壁之间流动,而液体干燥剂在分隔壁和第二膜层之间流动,而在相邻叠堆对中的第二或下一个叠堆中流动的顺序是反的。该顺序贯穿整个传质/传热组件中反复,形成了送气和排气交错流动通道或腔室。供应的空气(或要接受空调的空气)被引导穿过第一对叠堆之间的通道,而预冷的排出空气中的一部分(例如,小部分通过流动穿过叠堆而被冷却的供应空气)被引导穿过第二或下一对叠堆之间的腔室(例如,典型的排布形式是相对于进入的供应空气流动的逆流形式)。液体干燥剂被设为接近供应入口的空气流,而冷媒,比如水,被设为接近排出的空气流(即被引导排出的小部分供应出口的空气流),空气仅通过可渗透通过的膜与这些流动的液体分隔开来。供应的空气入口空气流、供应出口空气流、排出空气流、液体干燥剂流、和冷媒流,比如经由一个或多个歧管组件(manifold assemblies),被接入(plumbed)到传质/传热组件上,该组件可被设置在一个壳体中作为单个单元(例如,间接蒸发冷却器)。

在典型的实施方式中,除湿和蒸发冷却可通过将要处理的空气与液体和/或气体物质(例如液体干燥剂、水、脱水空气等)用膜分隔开的方式实现。所述膜是由一种或多种可允许蒸汽态的水分子渗透通过的物质或材料形成。水分子通过所述膜的渗透作用是对一种或多种工艺空气流进行的除湿(在一些实施方案中的除湿)和蒸发冷却的驱动力(或使能)。如上面所介绍的,若干条空气流可被排布为流动穿过传质/传热组件中的腔室,以便使得次级(放出(purge))空气流(如预冷的供应空气的排出空气流)被润湿并吸收主级(作业)空气流(如之后可被引导到建筑物中作为供应出口空气流(例如,作为住宅或商用建筑物等的补入空气(make up air)的供应入口空气流))的焓。工艺空气流被显冷(sensibly cooled),并且在一些实施方式中,还同时被膜中所包夹(contained)的液体干燥剂流除湿,所述膜限定了送气入口空气流动通道或腔室的边壁。

所述膜还在一些实施方式中用来限定排出(例如,逆流)空气流动通道或腔室,以便使得所述膜能够控制或将冷媒与排出空气流分隔开来。渗入材料/表面或其他设备可被用来包夹或控制水流(例如,直接接触的渗入表面可与膜所包夹的液体干燥剂组合使用),但是膜液体控制使得对叠堆或歧管结构的制造更便利,所述叠堆或歧管结构有益于此处介绍的提供冷却、除湿、和/或加湿作用的热量和质量交换器/组件的构造。在所述构造中,空气流可被排布成逆流、与预冷排出空气逆流,交叉流(cross-flow)、并流(parallel flow)、和射流(impinging flow)以在蒸汽冷却单元中实现所需的热量和质量的同步传递。

以实施例的方式,非限定地,实施方式包括间接蒸发冷却器,所述间接蒸发冷却器利用液体冷媒流和排出或放出空气流将入口供应空气流从第一温度冷却到第二、较低的温度。冷却器包括:第一流动通道,所述入口供应空气流流动通过所述第一流动通道,和与所述第一流动通道相邻的第二流动通道,所述排出的空气流流动通过所述第二流动通道,其中所述排出的空气流所处的温度比供应空气的入口或第一温度低。第二流动通道部分由膜或膜材料片形成或限定而成,其中所述膜或膜材料是允许水蒸汽渗透通过的,然而却可以包夹液体冷媒。通过这种方式,冷媒在膜的一边上流动(且不直接接触第二流动通道中的空气),而在当热量从入口供应空气被传递到液体冷媒中时或响应该传递,质量以蒸汽形式(as vapor)穿过所述膜被传递到排出空气中。在一些情况或构造中,正如将会变清晰的那样,供应的空气流(或入口供应空气)在该第一级中就被冷却或除湿。可提供第二级将空气流显冷到非常凉爽的温度,该温度可低于原始供应入口空气的结露点(dewpoint),这是由于它一开始或在第一状态下就被进行了除湿因此才可以达到这种效果。

与膜片间隔开的分隔壁被用来限定液体冷媒的流动通道,所述壁是由液体冷媒无法渗透通过的材料(如塑料)形成的,但是所述材料可以传导或允许热量从入口空气源传递到冷媒中。第二膜片可与该分隔壁的相反边间隔开,从而限定出液体干燥剂的流动通道,并且在运行过程中,水蒸汽从入口供应空气流穿过膜传递到液体干燥剂中,这导致入口供应空气同时被冷却和除湿。所述膜有效地阻止或者甚至于完全阻挡了液体冷媒和液体干燥剂的流动,但允许水蒸汽流动,在一些实施方式中,冷媒是水,而干燥剂是卤盐溶液(例如,弱干燥剂,比如CaCl等)。排出的空气在一些情况下是入口供应空气流被冷却到第二、较低温度之后(例如,当它离开第一流动通道时)所述流被重新指向的一部分,并且排出空气可在相对于供应空气在第一流动通道中流动的方向交叉、逆流、或它们这些的组合的方向上流动穿过第二流动通道。

在另一示例性实施方式中,提供了一种为住宅或商用建筑调节作业或回流空气的方法。所述方法包括第一引导工艺空气穿过第一流动通道和第二引导液体干燥剂的流或大量液体干燥剂邻近一个或多个限定出第一流动通道的壁,所述液体干燥剂通过膜(例如,提供了壁的膜)与工艺空气分隔开来,所述膜包夹液体干燥剂并且允许水蒸汽从工艺空气中流入和被液体干燥剂吸收,所述液体干燥剂对工艺空气除湿。所述方法进一步包括与第一和第二引导同时进行的第三引导放出空气流穿过接近第一流动通道的(例如,平行相邻的)第二流动通道。放出空气所处的温度比第一流动通道中的所有或至少大部分工艺空气的温度更低,并且在一些情况下,放出空气是小部分经过除湿后离开第一流动通道的工艺空气,其被引导以相对于工艺空气逆流的方向穿过第二流动通道。所述方法还包括第四引导液体冷媒流邻近第二流动通道壁。液体冷媒也通过膜与空气分隔开来,所述膜可允许蒸汽从冷媒中渗透通过,从而使得质量从冷媒被传递到放出空气中。所述方法提供了对工艺空气同时进行(或单级)的除湿和冷却。

根据另一方面,提供了一种在间接蒸发冷却器或交换器设备中使用的传热和传质组件。所述组件包括第一叠堆,所述第一叠堆包括:上膜、下膜、和上和下膜之间的分隔壁。上和下膜可允许蒸汽形式的水渗透通过,而分隔壁大体上不允许液体和蒸汽渗透通过。还提供了第二和第三叠堆,每个都包括上膜、下膜、和位于它们之间的分隔壁。在组件中,第一叠堆和第二叠堆被间隔开(比如分开小于约0.25到0.5英寸),限定出接收第一空气流(例如,要接受调节的空气)的流动通道,而第二和第三叠堆间隔开限定出第二空气流(例如,以相对于第一流空气交叉或逆流为指向的放出或排出的空气)的流动通道。在一些构造和/或运行模式中,设备仅进行蒸发冷却并且不提供除湿。因此,所述膜仅在放出的一边使用,而壁的另一边留空给供应空气进行热交换。

第一、第二、和第三叠堆可被认为是一套叠堆,并且组件包括多个所述的叠堆套,从而限定出由叠堆或膜层和分隔壁间隔开的多条空气流动通道。隔离器或分隔器可设于流动通道中维持所述膜的间距,同时允许空气流在通道内流动。所述组件可在第一叠堆中进一步包括在上膜和分隔壁之间流动的液体冷媒和在分隔壁和下膜之间流动的液体干燥剂。在第二叠堆中,液体干燥剂在上膜和分隔壁之间流动,而液体冷媒在分隔壁和下膜之间流动。在第三叠堆中,液体干燥剂在上膜和分隔壁之间流动,而液体冷媒在分隔壁和下膜之间流动。液体冷媒可以是水,在运行过程中,水蒸汽可从冷媒穿过所述膜被传递到第二空气流。液体干燥剂可以是盐溶液(如弱干燥剂,比如CaCl等),在组件运行或使用的过程中,水蒸汽可从第一空气流穿过所述膜被传递到液体干燥剂,由此使得第一空气流能被同步地除湿并冷却到较低温度。

除了上面介绍的示例性方面和实施方式,另外的方面和实施方式将通过参考附图和理解接下来的介绍而变得清楚。

附图说明

示例性实施方式在带有标号的附图中画出。在此公开的实施方式和附图应当被认为是解释说明性质的,而非限制性的。

图1画出了蒸发冷却器或热交换器的示意形式,包括示例性表示的可渗透膜叠堆或组件用来在一体化单元或单级中同时提供间接蒸发冷却与除湿;

图2画出了蒸发冷却器的另一示例性表示,显示的是膜/壁/膜叠堆组合使用的组件,用以相对于膜所包夹的液体干燥剂和冷媒(例如冷却水)引导供应和排出的空气流以实现冷却和除湿的目的;

图3画出了与图2中所示类似的蒸发冷却器,但它被构造成具有用于排出/冷却后空气的一体化逆流通道;

图4是示例性热交换器的俯视图,画出了空气流动穿过由基于膜的组件设置的多个通道或腔室,该组件比如图1-3中所示的那些或此处所示或介绍的其他实施方式;

图5画出了蒸发冷却器或逆流热量/质量交换器的示例性建模(modeling),比如一个带有图2中所示的叠堆组件和图4中所示流动排布的冷却器或交换器;

图6是沿着如图5中所示模制的交换器长度上的空气流和表面温度曲线图;

图7是沿着如图5中所示模制的交换器长度上的空气湿度比的曲线图;

图8是显示了流动穿过图5模型热交换器的液体干燥剂浓度的曲线图;

图9是显示了如图5中所示模制的冷却和除湿作业的空气湿度图表;

图10是另一个示例性热交换器的俯视图,画出了空气流动穿过由基于膜的组件设置的多个通道或腔室,该组件比如图1-3中所示的那些或此处所示或介绍的其他实施方式;

图11是示例性热交换器的俯视图,所述热交换器与图4和10中所示的那些相似,显示了带有变更的排出空气流的变更的单元排布形式;

图12是显示了图10中所示的热交换器构造的与图5所示建模方式类似建模的冷却和除湿作业的空气湿度图表;

图13画出了使用间接蒸发冷却器来为建筑物提供空调空气的供热、通风和空调系统;以及

图14是提供了带有图2叠堆组件的与图4实施方式相似方式制造的样机的一个测试结果的空气湿度图表。

具体实施方式

接下来提供了对带有冷却器用的除湿和传质/传热组件的示例性间接蒸发冷却器的介绍,所述冷却器提供入口空气流腔室,其带有由包夹液体干燥剂的可渗透膜片限定的边壁。组件还包括出口或排出空气流腔室(比如与入口空气流逆流),所述腔室带有由包夹冷媒(比如水)的可渗透膜片限定的边壁。在下面介绍的实施方式中,所述膜是“可渗透的”,意思是说蒸汽形式的湿气(例如,蒸汽态的水)一般可以比如经由蒸发从入口供应空气和液体冷媒中容易地渗透通过所述膜。但是,所述膜一般包夹或阻挡液体形式的湿气流动通过,这些湿气而是会被引导在通道或腔室之内流动。在一些情况下,当压强小于约20psi时液态的水被包夹在所述膜中,更典型的是压强小于约5psi。一些实施方式中的冷媒和液体干燥剂被维持在低于约2psi的压强下,并且可渗透膜包夹液态的湿气,比如水,与此同时水蒸汽渗透通过所述膜。

正如接下来介绍将会弄清楚的那样,使用比如用于蒸发冷却器或质量/热量传递器的组件有许多好处。入口或工艺空气流可被同步地或者在单个腔室或级段中进行冷却和除湿,而这种组合式作用减小了系统的尺寸和成本以及所需零件和仪器的数量(比如,不需要多级单元或设备来冷却而后除湿和/或进一步用制冷剂等进行冷却)。液体干燥剂除湿与间接蒸发冷却器的组合由于蒸发和吸收作用能够提供出非常高的能量传递速率。本设计方案生成的液体干燥剂系统不需要冷却液体干燥剂的分隔仪器(例如,分隔的冷却塔或冷却装置)。叠堆装置或多层传质/传热组件(或歧管式流动腔室/通道)能实现超低流动的液体干燥剂的设计方案。这部分由于所述组件加强的几何造型和它使能液体干燥剂的温度降到比习惯使用的冷却塔技术可实现的温度更低的能力而造成的。因此,在冷却器中液体干燥剂有更高的浓度梯度(例如氯化锂(LiCl)的大于20百分点和其他干燥剂的类似梯度),这提供了以下优点:(a)热性能系数(coefficient of performance)(COP)更高以重新产生干燥剂(即,从干燥剂中除去水分)在冷却器中重复使用;(b)由于利用率改善而使干燥剂的存储需求变小;以及(c)能够使用比LiCl便宜的干燥剂,比如氯化钙(CaCl),氯化钙无法在传统的系统中使用,因为它们的吸收性质不如LiCl那么好,但是此处介绍的冷却器实施方式所提供的运行温度更低使得这种以及其他“较弱”的干燥剂的性质变得可以接受或变得理想。

将膜作为腔室边壁使用有助于制造逆流和相对于预冷排出的空气实施方式的逆流。液体干燥剂与水分子可渗透通过的膜包夹在一起消除了液体干燥剂发生的“移位”(″carry over″),移位是指小滴的干燥剂穿进空气流中的现象,这是直接接触排布方式的一个担心问题。此处介绍的实施方式还可观地减少或者甚至消除了水蒸发或吸收作业过程中沉积的固体(并且液体流动速率可以维持在足够高的水平以便进一步控制有可能的沉积物),否则污垢会导致现有技术的蒸发冷却器维护费和运行成本增加。

图1画出了蒸发冷却器(或质量/热量交换器)100的示意图,所述冷却器利于提供同时或同步地对作业或入口空气流120(例如,需要在供给到建筑通风系统中以前进行冷却和空调的室外或工艺空气)进行除湿和冷却。冷却器100以简化形式示出,具有以短划线示出的壳体,没有画出入口和出口流道、接入水管(plumbing)、和/或歧管。冷却器100还示出了带有单个质量/热量传递叠堆110,但在典型的冷却器100中可能会存在许多叠堆110,所述叠堆都是重复所示出的构造(例如,通过使液体交错穿通过由膜和壁限定的腔室),从而提供了带有多个空气和液体流动通道或腔室的组件以便为叠堆110提供所需的介绍过的传热和传质功能。

如所示地,入口空气流120被引导到部分由膜112的片或层限定而成的腔室或通道中。液体干燥剂124在膜112另一边上的相邻腔室或通道中流动。液体干燥剂124被膜112所包夹,所述膜可允许液态或蒸汽态的水分子渗透通过,但一般不允许液体干燥剂124的成分通过。用于干燥剂流124的腔室也是由不允许流体流渗透通过的材料片或层114(即,分隔壁)限定而成,以便将液体干燥剂124包夹在腔室或流动路径中。用于流120的腔室也是由相对设置的膜(未示出)限定而成,所述膜用来包夹另一液体干燥剂流。通过这种方式,热量从入口空气流120穿过或去除并传递到液体干燥剂流124(并且干燥剂位于相对边壁/膜(未示出)的后方)。同时地,入口空气流120随着水130穿通过可渗透膜112进入液体干燥剂124中而被去除进而得到除湿。

当空气流穿过膜112时,液体(或气体)干燥剂124可采用许多形式来起到除湿和冷却空气流120的作用。干燥剂124一般是任意的吸湿液体,用来从空气流,如流120中去除或吸收水分和水蒸汽。优选地,选取的干燥剂124可以是可再生干燥剂(例如,可分隔出或去除掉所吸收水分的干燥剂)比如二醇(二乙二醇、(二缩)三乙二醇、三缩四乙二醇等),盐浓缩液或离子盐溶液,如LiCl、CaCl等,或其他干燥剂。膜112可由任意能够发挥包夹液体干燥剂124功能,并且典型地,可包夹冷媒126(比如水等),同时还可允许液态或蒸汽态的水分子渗透通过的材料形成。例如,可用到的聚合物膜具有细孔,所述细孔的尺寸大约为水分子的尺寸或比它略大,在一些情况下,所述细孔还适于使水分子以高迁移率通过膜112。在一个特定实施方式中,膜112是由在Wnek的美国专利号No.6,413,298中有详细介绍的膜材料形成,上述文献全文通过引用结合于此。所述膜材料还可从许多分销商或制造商处获得,比如但不限于:美国佛罗里达州敖德萨市的Dias-Analytic公司。膜112,118和分隔壁114优选地还由抗干燥剂腐蚀作用的材料形成,从这个角度看,它们可用聚合物或塑料制成,在一些情况下壁是由抗腐蚀的金属或合金形成,而这和塑料相比具有更高的导热率。

所示的实施方式100被构造成预冷的排出空气流128(相对于入口空气流120)逆流。其他实施方式可使用交叉(与流动路径成大约90度)或准逆流(例如,非直接的在方向上相反或相对,而是横向例如流动路径相对于空气流120成大于90度的角)。排出的空气流128在由膜片或层(例如,第二膜或下膜)118和另一叠堆的上膜(未示出)限定而成的通道或腔室中流动。分隔壁114和膜118限定出冷媒流126的流动腔室或通道,所述冷媒流典型的是指水流等。热量从液体干燥剂124通过分隔壁被传递到冷媒126中,而冷媒126随着热量和质量(例如水分或其他湿气132)经由膜118被传递到排出流128中而得到冷却。热量的传递并未示出,但一般是通过膜112流动到液体干燥剂124,从液体干燥剂124通过分隔壁114到冷媒126,再从冷媒126通过膜118到排出的空气流128中。膜112,118相对较薄,厚度tmem典型的小于0.25英寸,更典型的小于约0.1英寸,比如100到130微米等。膜112,118如果不被局限住的话,可具有向外膨胀的趋势,并且在一些实施方式中,比如图3中所示的实施方式,隔离器或“流场(flow field)”支撑物被设于入口空气流120和排出空气流128中(即,空气流腔室中),以维持相邻膜的分隔状态(例如,带空气流动的孔或开口的塑料或金属网,并具有之字形、S或W形、或其他横截面(或侧视图),其能提供许多与膜112,118接触的相对较小的接触点)。分隔壁114典型地也相对较薄以便于干燥剂124和冷媒126之间的热量传递,比如具有厚度twall小于0.125英寸等。空气、干燥剂、和冷媒的流动腔室一般也相对较薄,在一些应用中所使用的腔室厚度(或深度)小于1英寸,而其他应用使用的腔室小于约0.5英寸,比如约0.25英寸或更小。

图2画出的是利用膜/分隔壁/膜式的叠堆或组件构造提供质量/热量传递交换器设备的间接蒸发冷却器210,其中除湿和冷却在单级内发生,因此该设备是一种一体化或一元化的设备。在一些实施方式中(未示出)没有干燥剂边膜或干燥剂流。因而,这些实施方式有利于提供一种间接蒸发冷却器,其中膜包夹液体冷媒但没有液体干燥剂,并且所述膜典型地不设在供应空气的一边(或这些通道中)以便用分隔壁提供出更好的热传递表面。如图2中所示,冷却器210包括由叠堆或设备212,230,240组成的传质/传热组件,并且这样的叠堆组件典型地可以被反复在冷却器210中提供多个入口和排出的空气、冷媒、和干燥剂流动通道或腔室。如图所示,每套叠堆(或成层的组件或设备)212,230,240的组成都是相似的,包括膜、分隔壁、和膜,其中所示膜可允许分子水平的水分渗透通过,以便进行传热和传质,而所述壁是不允许(或近乎于不能)渗透通过的,仅能进行热传递不能进行质量传递。

具体地,叠堆212包括上膜层214、分隔壁216、和下膜层218。可典型地提供一些隔离器或间隔器(未示出)将这些层间隔开从而限定出冷媒215和液体干燥剂217的流动通道。例如,分隔器可被构造成还设有到冷媒和可再生干燥剂供应线路的连接机构,设有引导流动过各种叠堆212,230,240的歧管,并设有到冷媒和稀释干燥剂回流线路的连接机构。叠堆230和240同样包括上膜层232,242、分隔壁234,244、和下膜层238,248。与叠堆212相似,叠堆240具有的冷媒(比如水)243被引导到上膜层242和壁244之间的腔室中,而干燥剂246在壁244和下膜层248之间流动。相对而言,叠堆230具有的液体干燥剂233被引导在由上膜层232和壁234限定的腔室中流动,而它具有的冷媒236被引导在由壁234和下膜层238限定的腔室或通道中流动。

冷却器210包括管道等(未示出)从而将供应的入口空气250引导通过叠堆212和叠堆230之间的通道或流动路径。叠堆212,230,240的排布方式和被包夹的流体使得供应的入口空气250穿越过包夹液体干燥剂217,233的膜218,232的表面。因此,供应的出口空气254被输出的是除湿过的空气,这是由于空气250中的湿气经由可渗透膜218,232被干燥剂217,233吸收,并且空气254也通过与干燥剂217,233的相互作用而得到冷却。冷却器210中的冷却效果部分地是由小部分供应的出口空气254实现的,所述小部分出口空气通过管道/歧管(未示出)被重新引导到冷却器210中并作为预冷的排出空气255在叠堆230,240之间的通道或流动路径中流动,之后作为温暖的湿空气258输出。热量从干燥剂233通过壁236穿到冷媒236中(相似的热量传递发生在叠堆212,240中),冷媒236能够经由膜238将热量和质量(例如水分子)传递到进来的排出空气255中。如上面讨论过的,由212,230,240提供的叠堆模式或套组典型地会在冷却器210内反复,形成具有许多平行的空气、冷媒、和干燥剂流动通道的传热和传质组件。

所示的冷却器210是一种逆流交换器,但其他的流动模式也可在实施此处介绍的基于干燥剂除湿和冷却中使用到。例如,很容易就建立起交叉流动模式以及准(或不完全相反的)逆流模式。这些模式可通过交错冷却器的歧管和/或管道/接入水管以及设于叠堆之间的隔离器来实现。另外,逆流通路可一体地设于叠堆组件上而不是像通常在冷却器210中那样设于外部。例如,冷却器310具有与图2冷却器210中所示相似的叠堆排布方式,除了它包括位于入口空气250和排出空气258的流动通道端部上的逆流隔板或分流壁360。逆流隔离器360允许大部分冷却空气作为供应出口空气354离开叠堆(例如,多于约50%或更典型的60%到90%以上的空气流250)。较小一部分(例如与补入的室外空气等的体积相等)作为预冷却的排出空气355被隔离器360引导在叠堆230,240之间流动。图3还画出了对隔离器或流场隔板370的使用,其功能是维持叠堆212,230,240中分隔膜的分隔(或者是维持在约为它们的原始厚度而不是如一些可渗透膜可能会发生的胀出或膨胀)。隔离器370可采用很多形式,比如具有波浪图案的网(例如,S或W形的侧视图或横截面视图),其中所选出的网在实践中对气流提供的阻力要尽可能的小,而同时还要提供足够的强度。还有,期望限制与膜的接触点或区域的数量,这是因为这些接触点或区域会阻挡湿气从空气250传递出和传递到空气355中。

图4画出的是一个实施方式的间接蒸发冷却器400。提供了一种支撑传质/传热组件的壳体410,比如与在图1-3中所示叠堆套组一起形成一个组件。如图所示,壳体410包括第一端412,所述第一端带有供应入口空气流415的入口414和用于排出空气流417的出口416。冷却器4100进一步包括与所述第一端412相反的第二端418,所述第二端为终端使用的设备或系统提供引导供应出口空气流420的出口或通风口(例如,回流空气到建筑物的的入口或供应口)。第二端418还被构造成将冷却后(和除湿后,在一些实施方式中)的空气426的一部分426重新指向,用于在逆流中冷却供应的入口空气流415。冷却器400的样机被制造成带有如图2中所示的叠堆组件,有32条干燥剂通道。样机用10升每分(LPM)的流体进行测试(或约0.3LPM每干燥剂通道)。提供的冷媒是水,其水流速率约为蒸发速率的1.25到2.00倍。该样机的蒸发速率约为1.33加仑/吨-小时或5升/吨-小时,所提供的冷却水或冷媒的流动速率约为6至10升/吨-小时。当然,这仅是示例性的而非限定性的流动速率,并且我们预计液体干燥剂和冷媒的流动速率会取决于许多的因素,并将会匹配于特定的通道设计和冷却需要及其他考量。

间接蒸发冷却器,例如使用图2所示叠堆套组的冷却器400,可被模制以确定使用可渗透膜来包夹冷媒和液体干燥剂的效果。图5给出了这样建模的图表500,显示的是使用参见图2所讨论过的叠堆212,230,和240冷却入口或工艺空气以及在同级或同作业中对这部分空气除湿的情况。示出了模型500的输入,也提供了典型入口空气条件的结果,其中结果和建模在本例中用工程方程解算器(Engineering Equation Solver)(EES)来实现。框内示出的数值或周围带方框的数字都是输入值(或假定的典型运行条件),而框外或无框的值是建模的输出或结果。图表500中所示的建模结果相信对供热、通风、和空调(HVAC)技术领域的技术人员本身就很清楚了,不需要详细的解释来理解在间接蒸发冷却器中使用膜包夹的实施方式所达到的效果;但是,接下来的内容会提供模型500中一些结果的图形介绍。

图6画出了显示在叠堆之间的通道中的空气流温度的曲线图或图表610(例如,在使用此处介绍的这种传质/传热组件的蒸发冷却器中)。曲线图610还显示了沿逆流质量/热量交换器(例如,带有如图2中所示的叠堆排布方式的交换器400)的长度上的表面温度。具体地,曲线图610用线612表示供应空气的温度,用线614表示排出/放出空气的温度,用线616表示干燥剂一边膜表面(例如,在膜和供应空气的交界面处)的温度,用线620表示干燥剂一边膜表面(例如,在膜和供应空气的交界面处)的结露点温度,而用线618表示水的那一边膜表面(例如,膜和排出/放出空气的交界面处)的温度。

图7是显示了沿逆流热量/质量交换器长度上的空气湿度比的曲线图或图表710。具体地,曲线图710用线712表示供应空气的容积湿度比(bulk humidity ratio),用线714表示排出/放出空气的容积湿度比,用线716表示贴近干燥剂一边的膜表面(例如,在膜和供应空气的交界面处)上的空气的湿度比,而用线718表示贴近水那一边的膜表面(例如,膜和排出/放出空气的交界面处)的空气的湿度比。图8画出的曲线图810用线815表示当干燥剂与供应空气同时沿逆流质量/热量交换器的长度流下时的浓度(在该特定的建模中干燥剂是指LiCl)。如线815所示,当干燥剂流动通过膜和分隔壁之间的通道时,由于从空气中吸收了水分子而开始变弱,例如,在该特定的建模实施例中干燥剂浓度从约44%下降到约24%(这是由于膜的特征在于允许这些允许条件下流动的空气中的水分子(以特定输入速率或设定)渗透通过)。

图9在空气湿度图表910中显示的是图5模型500的作业过程。我们可以看到用线912表示的供应空气的湿度在逐渐的流失(以水蒸汽的千克数/干燥空气的千克数或kgv/kgda)。供应的空气912的温度在初始时略升高是由于蒸汽吸收作用的大量的热进入干燥剂中。随着供应空气912沿着交换器(或包夹液体干燥剂的相邻叠堆膜层或壁之间的流动通道或腔室)的长度继续向下,温度进而下降到比入口处更冷/更干燥的条件。在交换器的出口处,供应的空气912被分成两股流。大部分空气被供应到冷却好的空间,而小部分空气(比如体积少于50%或更典型的,少于30%)汇集到(funneled)热量/质量交换器或冷却器的排出/放出一边(或包夹冷媒的膜壁之间的排出/逆流流动通道)中,用线916表示。排出的空气916具有低的结露点,因此,它可以收集到大量的蒸发热量。预冷却好的排出或放出空气916从湿的一边通道收集水蒸汽(和与相关的蒸发热量)。空气916离开单元时的焓比用线912表示的供应入口或出口任一个的焓都大。图表910还用线918表示了贴近干燥剂一边(ds)的膜表面的供应空气的湿度比和温度。

接下来的表格显示的是将图5对入口和出口空气流的建模做成表格形式的结果。如表所示,可以选取并输入到模型500中的温度和湿度水平范围很宽。在结果显示在表格中的构造里,当干燥剂流停用时(例如,在一些运行模式下,不需要或没必要用干燥剂对空气除湿)等效的湿球效率会是113%,这意味着冷却器能够将供应的空气冷却到入口湿球温度以下。

表格:模型运行得到的入口和出口条件(°F和kg/kg)

  序号  T供应,进  T供应,出  T排出,出  ω供应,进  ω供应,出  ω排出,出  1  27.7  21.11  31.55  0.0133  0.00892  0.0289  2  50.0  33.7  50.7  0.0319  0.0179  0.0834  3  50.0  20.7  41.0  0.0077  0.00406  0.0494  4  30.0  13.1  27.2  0.00262  0.00158  0.0226  5  30.0  18.9  42.55  0.0269  0.0137  0.0547  6  15.0  16.9  25.4  0.0105  0.00418  0.0207  7  15.0  11.9  20.0  0.00528  0.00203  0.0147

其中,LiCl入口浓度=44%;流量比(排出流量/(排出流量+供应流量)=0.3;供应的出口面速度(face velocity)=175标准立方英尺/分钟(SCFM);以及大气压强=101.3kPa。

图2的冷却器210可被认为是干燥剂强化的间接蒸发冷却器,其利用允许水分子渗透通过的膜或膜材料层提供需要的液体包夹。标准的空气湿度图表(比如14.7psi大气压强及其他典型参数下)可被用于观察起始于典型室内设定点的等显热比(equal sensible heat ratios(SHRs))线。对于蒸汽压缩除湿来说,小于约0.7的SHR很难在没有二次加热的情况下达到(例如,给定合理的蒸发器温度)。并且,空气湿度也不可能在没有二次加热的情况下达到SHR小于约0.6,尝试达到这样的SHR经常会冻结蒸发器线圈而需要除霜循环。干燥剂强化的间接蒸发冷却器,比如图2中所示的200,用一种独特新颖的作业过程解决了这个问题(这已经在上面介绍过,并将之下面做更详细的阐述)。

在此处有必要参见图2和3回顾一下作业过程。图2和3显示的是描述了用于蒸发冷却器210,320中的单元或组件的内流动通道的简图。混合后的回流/室外空气用箭头250表示(例如,来自空调空间的回流空气与室外空气一起的补入空气,如400立方英尺/吨的供应气和175立方英尺/吨的室外空气等)。空气250通过膜218,232被干燥剂217,233除湿。这同时降低了该空气流的结露点和温度,直到它在254或354处被输出为止。在(包夹液体干燥剂的膜之间的)供应空气通路的出口处,一部分空气如所示那样被分解成箭头255和355,并发送通过(包夹冷媒的膜238,242之间的)相邻通路,所述一部分空气收集来自水层236,243通过膜238,242的湿气。蒸发热是冷却源,它起到了从供应的空气流250中去除显热和吸收热的作用。该空气随后在254,354处被排出(放出)。

发明人已经在实验室中搭建起了在图4的400处所示的热交换器构造,并且该构造如图5中所示那样建模。流动/壳体的其他设计选择在图10的冷却器1000和图11的冷却器1100的构造中示出。所示出的冷却器1000具有壳体1010,所述壳体具有第一部分或端部1012,和第二部分或端部1020。第一部分1012被构造成具有接收供应的入口空气流1013和输入的排出空气流1014的入口或通风口,并且第一部分1012还包括从单元1000输出排出空气流1015的通风口或出口。第二部分1020被构造成(例如,带有歧管或其他零件以引导空气流)具有供应出口空气流1022的出口,其中被重新引导回壳体1010中的一部分1025(如箭头1027所示)与供应入口空气流1013的通道的小部分形成逆流(排出的空气流1014在通道的其它部分或初始部分中形成交叉流),随后这部分空气在1028处从壳体部分1020中排出。输入的排出空气流1014可以是将要排出的回流空气或(来自建筑物空间中的)室外空气。该途径1000通过利用更小的放出空气流1025,1027改善了效率,并且典型优选对放出空气流进行限制以便增加或维持所需的效率。

再参见图4,我们预料得到冷却器400的运行存在着图9的空气湿度图表910中所示的冷却作业过程。如图所示,线912代表的是供应的空气流,而线916代表的是放出空气流流。干燥剂一边的空气边界层用线918表示。图表用图形显示出了用于冷却器400的除湿驱动器是如何有益地用于提供更有效的冷却器。冷却器400甚至可以使用弱的干燥剂,如CaCl溶液进行显著的除湿,而这部分是由于用冷却器400的构造所达到的低温能允许弱的干燥剂获得高的除湿潜能。

图10冷却器1000所示的构造被建模以能够确定其性能的理想性,并且在图12的空气湿度图表1200中给出了结果。在图表1200中,线1210代表供应的空气,线1212代表环境排出空气,线1214代表干燥剂一边的表面温度,线1220代表冷却后的供应空气,线1224代表冷却后的放出空气,而线1230代表显热比线(SHR),建筑物载荷遵循所述的显热比线。所以,例如,建筑物具有0.67个单位的显热以及0.33个单位的潜热增加到空间中,才能到达回流空气的条件,该条件是在80°F和约70格令/磅(grains/lb)处的钻石中间点(middle diamond),而该点可被认为是回流空气条件。线1210的第一点是“混合空气”条件,它是室外空气和回流空气30/70的混合物。由冷却器1000提供的两级式冷却的途径允许作业过程被分成两个独立的片段:除湿加后冷却级(例如,仅显冷却的级中,例如,不存在干燥剂层和除湿,仅提供蒸发冷却)。冷却器1000当然仅仅是能够实现用此处介绍的膜包夹特征提供两级或多级冷却的许多构造中的一种实施例,并且它显示出能够达到近似任意所需SHR(例如,在本例中,SHR约为0.67)的可能性。在提供出图表1200的建模中,一立方英尺的核心(或传质/传热组件)会用到176SCFM,和约为0.3的流动比(例如,30%的放出空气和70%的供应空气)。并且,回流空气处于80°F和40%相对湿度,环境空气处于86°F和60%相对湿度,供给到组件中的液体干燥剂是44%的LiCl(但也可以使用其他干燥剂,如盐(比如但不限于卤盐)和水的溶液,所述溶液使用约20到40重量百分数的盐)。组件能够仅用这一立方英尺来为建筑物提供0.5吨7英制热量单位/磅的冷量。正如从该实施例和建模中能够理解到的,用膜包夹干燥剂和冷媒(例如,包夹液体)的方式使得所生产出来的间接蒸发冷却器比现有的设计更紧凑,这样维护更容易(例如,存在较少或不存在污垢),并且能更有效地产生冷量(例如,同步的除湿和冷却能提供一种可以调节和冷却工艺空气的蒸发冷却器)。

图11画出的是提供了另一种逆流排布方式的蒸发冷却器1100,其中逆流的冷却空气(或预冷的供应空气)在方向上直接相反,但(当不需要或不想要全逆流时)仅在叠堆或流动腔室的选定长度上(比如长度的一半到80%或90%或更多)如此。如图所示,冷却器1100包括壳体1110,所述壳体含有多个叠堆或叠堆套组,所述叠堆被构造为具有用于供应入口空气流1112和逆流空气(例如,重新指向的供应出口空气流1114)的交错流动通道的传质/传热组件(如上所述)。壳体1110包括通风口和/或歧管,其用于将供应入口空气流1112引导到包夹干燥剂的膜之间的通道中并且输出冷却(经常还有除湿)后的供应出口空气流1114。冷却器1100进一步包括管道、歧管等将小部分供应出口空气流重新引导回到壳体1110中以提供如1116处所示的冷却逆流空气(例如,到包夹冷媒的膜之间的流动通道中)。逆流空气1116典型地不途经壳体1110的整个长度,而是在沿通道长度上某点处(约在长度的60%到80%的距离处)的边通风口被泻出。这样的构造有利于将冷却器1100调适为适合特定的运行环境(例如,基于外界空气温度和湿度及其他运行参数来为供应出口空气流提供所需的冷量)。

此处介绍的叠堆和膜技术可以很容易地应用在许多间接蒸发冷却器的设计方案(不管带不带使用液体干燥剂进行除湿的功能)和应用里。但是,我们相信本领域技术人员能够理解该技术在许多其他的这种系统中是有用的,那么讨论一下该技术在空调或HVAC系统内部的使用是有意义的。图13画出了简化的空调系统1300,其中可提供膜技术来为建筑1310(例如,住宅或商业建筑或其他需要空调和冷却空气的建筑物)内的空气调节提供干燥剂除湿和蒸发冷却。如图所示,系统1300包括带壳体1322的冷却器1320,所述壳体用于封装膜叠堆组件,比如上面所介绍过的那些,参见图1-12。提供的风扇或鼓风机1324用来从外面抽进空气,或补入空气1325并使空气1326从建筑1310回流。风扇1324将这两股空气流作为入口供应空气推送通过如上所述的叠堆(例如,在提供除湿的实施方式中包夹在膜中的相邻液体干燥剂,或者在仅蒸发冷却的实施方式中的相邻分隔壁)。冷却后(典型地,并空调后)的空气在1330输出为进入建筑物1310的供应空气,并且一部分回流1332为放出或预冷的排出空气,穿行于壳体1322中叠堆的冷媒或蒸发冷却一边,然后作为排出空气1328出去。冷媒是供应到壳体并从壳体排出(并通过叠堆组件)的水(water supply and drain)1334,而提供的液体干燥剂在1338处供应和排出。干燥剂1338被再生器系统1340再生,所述系统在本例中包括干燥剂锅炉1342。

干燥剂强化的间接蒸发冷却器(DE-IDEC)1320是运用强干燥剂和水对建筑1310提供冷却的系统1300的一部分。系统1300按需和按照需求的比例向建筑1310同时提供显冷和潜冷,例如,系统1300可提供100%的显冷,100%的潜冷,或它们的任意组合。DE-IDEC 1320使用一部分室外空气1325与等量的排出空气1328将热载荷(heatload)排斥到建筑1310外。DE-IDEC 1320本身可位于建筑外壳之内或之外,因为它不具有湿表面并且液体流1334,1338是封闭环路的。这使得系统1300可以室内使用并可实现将冷却器1320放置在建筑1310之内。水或冷媒1334的水源(或冷媒源,未示出)不必需是可饮用的,系统1300足够紧凑到适于建筑管理人接受。用电量比典型的蒸汽压缩系统或单元的用电量小很多(与传统压缩单元典型的1.2kW/ton相比峰值小于0.2kW/ton)。

再生器1340是运行系统1300的另一个重要的零件。该单元1340运用来自DE-IDEC 1320的弱化干燥剂并用锅炉1342(见下面的热源名单)施加热量从而驱使干燥剂1338中所含的湿气逸出。结果得到具有更高盐浓度的干燥剂1338,并可以被DE-IDEC 1320重复使用(例如,在与供应入口空气1325,1326相邻的膜包夹/膜限定的流动通道中)。适合干燥剂再生的热源名单可包括:(a)气体或其他矿物燃料;(b)太阳能;(c)来自任何废热流的废热,例如热电联合电厂(combineheat and power plant);和(d)源于蒸汽压缩循环的冷凝单元的废热。

发明人对与图4中所示冷却器相似地制造的带有例如图2中所示叠堆组建的样机进行了测试。图14提供了对该概念样机测试的结果,概念样机在104°F和93grains/lb入口空气条件下进行构建和测试。该样机要测试用和不用干燥剂流的情况,但设置有用来限定出液体干燥剂流动通道的膜。没有干燥剂流时,间接蒸发冷却器的湿球效率为73%。当开启干燥剂流(用41%的LiCl溶液作为干燥剂)时,湿球效率为63%,并具有12grains/lb的除湿效果。这导致显热比为0.73。样机没有达到上面所述的模型预期效果,这有可能是由于样机缺陷生成的空气、水、和干燥剂流的分布不均匀所致。

虽然已经在上面讨论过许多示例性的方面和实施方式,但本领域技术人员能够得知某些修正、置换、增加、及其子组合形式。因此,接下来所附的权利要求和此后引入的权利要求都应当被理解为将修正、置换、增加、及其子组合形式包括到上面讨论的示例性方面和实施方式中并落入它们真正的精神和范围之内。上面的介绍集中或着重于用来提供独特间接蒸发冷却器的传热/传质组件的设计方案。本领域技术人员将会得知所介绍的冷却器可容易地包括在住宅和商业使用的更完整的HVAC系统中。这种HVAC系统会包括接入水管和使液体干燥剂以所需和可控的流速循环进出冷却器的零件。这些系统还会包括干燥剂再生器(例如,加热液体干燥剂去除所吸收的水分的一种再生器,比如由太阳能面板、电加热器等提供的热量)。再生器还包括水仓和从干燥剂中恢复饮用水的线路,并且为干燥剂提供存储器,在干燥剂被泵入或供给到冷却器中之前存储干燥剂。系统与干燥剂接触的部分典型地要用抗腐蚀材料制造,比如某些金属,或更典型地,塑料。HVAC系统还可包括管道和其他零件,比如风扇或鼓风机,用来使从建筑回流的空气移动通过冷却器并返回冷却后的空间,使补入的空气移动通过冷却器并进入冷却后的空间,以及泻出任何放出或排出的空气。还可提供带有管路和泵/阀(根据需要)的冷媒供应系统,它为冷却器叠堆(例如,膜和分隔壁之间的通道)提供冷媒,比如饮用水。

所示的实施方式典型地讨论了正在进行的用液体干燥剂对供应或工艺空气除湿的用途。但是,在许多运行条件下,冷却器可以在无干燥剂流的情况下运行,而这些运行条件可被认为是“自由蒸发冷却”的条件(或空气湿度图表上的区域)。“自由冷却”得到了冷却效率的例证,冷却效率高到使系统运转所消耗的能量可以忽略不计(of no consequence)。例如,当湿度比低于约80(干球温度高于60°F)时,可用此处介绍的冷却器进行无干燥/除湿的冷却,但在高于该湿度比时可能需要进行冷却和干燥,冷却器在该点可带流动的液体干燥剂运行。这种“自由”冷却方式在世界上不太潮湿的地区(比如美国西南部)相对大多数的日子里是实用的。

依照上面的介绍和附图的间接蒸发冷却器的实施方式被作为单个单元提供,该单元提供了一种利用许多个分隔壁的一体化热量和质量传递设备。传递设备或组件使用膜包夹的手段,使得空气流不会与干燥剂或水(冷媒)直接发生接触。冷却器使用(例如水从横穿膜流动的空气中)蒸发冷却方式,驱使热量和质量交换,热量通过分隔壁在液体干燥剂和冷媒之间发生传递。热量传递发生在两股逆流和/或交叉流动的空气流之间。质量传递,比如在除湿过程中,一般是水蒸汽从入口供应空气或工艺空气通过水分子可渗透膜传递到液态(例如,被液体干燥剂吸收)。冷却器的蒸发段驱使热量通过分隔壁并通过从冷媒/水到空气流的蒸发作用斥出该热量(例如,水蒸汽再次通过可渗透膜,但是在排出或逆流/交叉流动空气流中被传递为蒸汽态)。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号