首页> 中国专利> 电磁波吸收膜以及利用该吸收膜的电磁波吸收体

电磁波吸收膜以及利用该吸收膜的电磁波吸收体

摘要

本发明提供一种电磁波吸收膜以及利用该吸收膜的电磁波吸收体。该电磁波吸收膜具有塑料膜、在其至少一面设置的单层或多层的金属薄膜,在上述金属薄膜以不规则宽度和间隔形成多个实质上平行且断续的线状痕。

著录项

  • 公开/公告号CN102067743A

    专利类型发明专利

  • 公开/公告日2011-05-18

    原文格式PDF

  • 申请/专利权人 加川清二;

    申请/专利号CN200980122381.8

  • 发明设计人 加川清二;

    申请日2009-06-26

  • 分类号H05K9/00(20060101);B32B3/20(20060101);B32B15/08(20060101);E04B1/92(20060101);

  • 代理机构11021 中科专利商标代理有限责任公司;

  • 代理人樊建中

  • 地址 日本国埼玉县

  • 入库时间 2023-12-18 02:26:11

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2022-06-07

    未缴年费专利权终止 IPC(主分类):H05K 9/00 专利号:ZL2009801223818 申请日:20090626 授权公告日:20140219

    专利权的终止

  • 2014-02-19

    授权

    授权

  • 2011-07-20

    实质审查的生效 IPC(主分类):H05K9/00 申请日:20090626

    实质审查的生效

  • 2011-05-18

    公开

    公开

说明书

技术领域

本发明涉及一种在宽范围的频率中电磁波吸收能力优异的廉价的电磁波吸收膜以及利用该吸收膜的电磁波吸收体。

背景技术

在便携电话、个人电脑等电子设备或通信设备中,使用着防止电磁波泄露和进入的屏蔽材料。目前广泛使用的屏蔽材料是金属薄板或网状物,但这些存在笨重体积大、并且配置于设备壳体内费时费力的问题。作为质量轻并且对塑料壳体等的配置较容易的电磁波吸收屏蔽材料,JP特开平9-148782号提出了一种屏蔽材料,其具有:塑料膜;在其一面形成的第一铝蒸镀膜且蚀刻为非导通的线状图案;和在其另一面形成的第二铝蒸镀膜且蚀刻为网眼状图案。但是,该文献中例示的线状图案以及网眼状图案都是规则的,因此,仅能吸收特定频率的电磁波,无法不泄露地吸收宽范围频率的电磁波。并且,由于通过蚀刻而图案化,因此电磁波吸收屏蔽材料的价格不得不提高。

JP特开平11-40980号也提出了一种电磁波屏蔽材料,在塑料膜的一面顺序形成铜蒸镀层和镍蒸镀层。但是,这种电磁波屏蔽材料中由于蒸镀层上未设置线状的缝隙,因此电磁波吸收能力较差。

发明内容

因此,本发明的目的在于提供一种在宽范围的频率电磁波吸收能力优异的廉价的电磁波吸收膜、以及利用该吸收膜的电磁波吸收体。

鉴于上述目的,作为经过潜心研究的结果,本发明者发现了一种电磁波吸收膜,当在形成于塑料膜的单层或多层的金属薄膜上以不规则的宽度及间隔形成多个线状痕时,对宽范围频率的电磁波发挥出优异的吸收能力。

也就是说,本发明的电磁波吸收膜特征在于,具有塑料膜、在其至少一面设有的单层或多层的金属薄膜,在所述金属薄膜上以不规则的宽度及间隔形成多个实质上平行且断续的线状痕。优选所述金属薄膜由铝、铜、镍、或者这些的合金组成。

优选所述线状痕的宽度90%以上在0.1~1000μm的范围内,平均值为1~100μm。优选所述线状痕的间隔在0.1μm~5mm的范围内,平均值为1~100μm。所述金属薄膜还可以具有多个微细的孔。

本发明的第一电磁波吸收体特征在于,由多张电磁波吸收膜组成,所述电磁波吸收膜具有塑料膜、在其至少一面设有的单层或多层的金属薄膜,在所述金属薄膜上以不规则的宽度及间隔形成多个实质上平行且断续的线状痕,多个所述电磁波吸收膜以所述线状痕的取向不同的方式配置。多个电磁波吸收膜可以具有同种的金属薄膜,也可以具有异种的金属薄膜。

在第一电磁波吸收体的优选一例中,直接或隔着电介质层层叠了多个平坦的电磁波吸收膜。该电介质层可以是空气层。

在第一电磁波吸收体的优选的另一例中,多张电磁波吸收膜的至少一张是波形的电磁波吸收膜。波形可以是正弦曲线状、连续的圆弧状、连续的“コ”字状等。通过波形的电磁波吸收膜彼此的组合可以形成蜂窝构造。在组合了至少一张平坦的电磁波吸收膜和至少一张波形的电磁波吸收膜的情况下,波形的电磁波吸收膜的线状痕对于平坦的电磁波吸收膜的线状痕既可以是平行的也可以是垂直的。

根据本发明优选的其他例的电磁波吸收体特征在于,具有最外侧一对的平坦的电磁波吸收膜、被所述平坦的电磁波吸收膜夹着的至少一张波形的电磁波吸收膜,相邻的电磁波吸收膜以线状痕大致垂直的方式配置,并且接触部粘着起来,抑制电磁波吸收能力的各向异性并自身具有支持性。

本发明的第二电磁波吸收体特征在于,隔着电介质层配置至少一张的电磁波吸收膜和电磁波反射体,所述电磁波吸收膜具有塑料膜、在其至少一面设有的单层或多层的金属薄膜,在所述金属薄膜上以不规则的宽度及间隔形成多个实质上平行且断续的线状痕。作为所述电磁波反射体层优选金属膜或者形成了金属薄膜的塑料膜。所述电介质层的厚度优选是包含要吸收的电磁波噪声的1/4中心波长λ的范围、例如λ/8~λ/2的范围。

本发明的电磁波吸收膜由于在金属薄膜上以不规则宽度及间隔系形成了多个线状痕,因此在宽范围频率中具有优异的电磁波吸收能力。此外,组合了多个电磁波吸收膜的本发明的电磁波吸收体,因为由一张电磁波吸收膜反射或透过的电磁波被其他电磁波吸收膜吸收,因此具有高的电磁波吸收能力。特别是以线状痕的取向不同的方式配置多个电磁波吸收膜的电磁波吸收体,具有抑制电磁波吸收的各向异性的优点。再有,隔着空间配置多个电磁波吸收膜的电磁波吸收体,除了电磁波吸收能力以外还具有优越的隔热性和隔音性,适合于建筑材料。具有这种特征的本发明的电磁波吸收膜,利用表面具有硬质微粒子的辊能廉价地制造出。

本发明的这种电磁波吸收膜和电磁波吸收体适合应用于便携电话、个人电脑、电视等电子设备及通信设备、建筑物内壁等。特别是粘着至少一张平坦的电磁波吸收膜和至少一张波形的电磁波吸收膜而形成的电磁波吸收体,除了较高的电磁波吸收能力以外,由于还具有优越的隔热性、隔音性、和自身支持性,因此作为建筑物内壁用的电磁波屏蔽材料非常合适。

附图说明

图1(a)是表示本发明的一个实施方式的电磁波吸收膜的剖面图。

图1(b)是表示图1(a)的电磁波吸收膜的详细结构的部分放大平面图。

图1(c)是表示图1(a)的A部分的放大剖面图。

图1(d)是表示图1(c)的A’部分的放大剖面图。

图2(a)是表示本发明的其他实施方式的电磁波吸收膜的剖面图。

图2(b)是表示图2(a)的电磁波吸收膜的详细结构的部分放大平面图。

图2(c)是表示图2(a)的B部分的放大剖面图。

图3表示本发明的另外实施方式的电磁波吸收膜的剖面图。

图4(a)表示本发明的另外实施方式的电磁波吸收膜的剖面图。

图4(b)是表示图4(a)的C部分的放大剖面图。

图5(a)是表示制造本发明的电磁波吸收膜的装置的一例概略图。

图5(b)是表示在图5(a)的装置中复合膜与硬质粒子辊挤压摩擦的情况的部分放大剖面图。

图6是表示本发明的一个实施方式的电磁波吸收体的立体图。

图7是表示本发明的其他实施方式的电磁波吸收体的立体图。

图8是表示本发明的另外实施方式的电磁波吸收体的立体图。

图9是表示本发明的另外实施方式的电磁波吸收体的剖面图。

图10是表示本发明的另外实施方式的电磁波吸收体的剖面图。

图11是表示本发明的另外实施方式的电磁波吸收体的部分剖面立体图。

图12(a)是表示本发明的另外实施方式的电磁波吸收体的剖面图。

图12(b)是图12(a)的分解剖面图。

图13是表示本发明的另外实施方式的电磁波吸收体的立体图。

图14是表示本发明的另外实施方式的电磁波吸收体的立体图。

图15是表示为了测定表面电阻在电磁波吸收膜的实验片上配置了电极的状态的平面图。

图16是表示评价电磁波吸收膜的电磁波吸收能力的装置的概略图。

图17是表示实施例1的电磁波吸收膜中的频率与接收信号强度之间的关系的曲线图。

图18是表示实施例2的电磁波吸收膜中的频率与接收信号强度之间的关系的曲线图。

图19是表示实施例3的电磁波吸收体中的频率与接收信号强度之间的关系的曲线图。

图20是表示实施例4的电磁波吸收体中的频率与接收信号强度之间的关系的曲线图。

图21是表示实施例5的电磁波吸收膜中的频率与接收信号强度之间的关系的曲线图。

图22是表示实施例6的电磁波吸收膜中的频率与接收信号强度之间的关系的曲线图。

图23是表示实施例7的电磁波吸收膜中的频率与接收信号强度之间的关系的曲线图。

具体实施方式

参照附图对本发明的各实施方式进行详细说明,但如果没有特别声明,则对一个实施方式的说明也适用于其他实施方式。此外,下述说明并不是限定,可以在本发明的技术思想范围内进行各种变更。

[1]电磁波吸收膜

本发明的电磁波吸收膜在塑料膜的至少一面具有单层或多层的金属薄膜。作为多层金属薄膜优选二层结构的金属薄膜,该情况下优选磁性金属薄膜和非磁性金属薄膜的组合。

(1)第1电磁波吸收膜

图1(a)~(d)表示一例在塑料膜100的整个一面形成了单层结构的金属薄膜11的第一电磁波吸收膜。在金属薄膜11上,以不规则的宽度以及间隔形成了多个实质上平行且断续的线状痕12。

(a)塑料膜

形成塑料膜10的树脂只要具有绝缘性同时具有足够的强度、可挠性以及加工性,便没有特别限制,例如聚酯(聚对苯二甲酸乙二醇酯等)、聚芳硫醚(聚苯硫醚等)、聚酰胺、聚酰亚胺、聚酰胺-酰亚胺、聚醚砜、聚醚醚铜、聚碳酸酯、丙烯树脂、聚丙乙烯、聚烯烃(聚乙烯、聚丙烯等)等。塑料膜10的厚度可以在10~100μm左右。

(b)金属薄膜

形成金属薄膜11的金属只要具有导电性便没有特别限定,但优选从耐蚀性及成本方面考虑优选铝、铜、镍、钴以及它们的合金,特别优选铝、铜、镍以及它们的合金。金属薄膜的厚度优选0.01μm。厚度的上限没有特别限定,但实用中10μm左右就足够了。当然,也可以使用超过10μm的金属薄膜,但高频率电磁波的吸收能力几乎没变。金属薄膜的厚度进一步优选0.01~5μm,更加优选0.01~1μm,特别优选10~100nm。

(c)线状痕

根据将显微镜照片图式化之后的图1(b)和图1(c)可知,在金属薄膜11上以不规则的宽度和间隔形成了多个实质上平行且断续的线状痕12。此外,为了说明方便,实际上夸大了线状痕12的深度。线状痕12具有从非常细的线状痕到非常粗的线状痕的各种宽度W,并且以各种间隔I不规则排列。线状痕12的宽度W通过与原表面Sur相交的位置求得,相邻的线状痕12的间隔I通过与原表面Sur相交的位置求得。在线状痕12中也可以存在部分连接的线状痕。此外,在线状痕12中存在贯通金属薄膜11到达塑料薄膜10的线状痕(形成了非导通部121的线状痕)、比较深而没有贯通金属薄膜11的线状痕(形成高阻抗部122的线状痕)。这样,由于线状痕12以不规则宽度和间隔I形成,因此本发明的电磁波吸收膜能够有效地吸收遍及宽范围频率的电磁波。

对于线状痕12的宽度W,90%以上在0.1~1000μm范围内,优选平均为1~100μm。在上述范围以外电磁波吸收膜的电磁波吸收能力较低。对于线状痕12的宽度W,进一步优选90%以上处于0.1~100μm的范围内,更加优选0.1~20μm的范围内。此外,优选线状痕12的平均宽度Wav为1~100μm,进一步优选1~20μm,更加优选1~10μm。

线状痕12的间隔I优选在0.1μm~5mm的范围内,进一步优选在0.1~1000μm的范围内,更加优选在0.1~100μm的范围内,特别优选在0.1~20μm的范围内。此外,优选线状痕12的平均间隔Iav为1~100μm,进一步优选1~20μm,更加优选1~10μm。

由于线状痕12的长度L由摩擦接触条件(主要是辊以及膜的相对周速、以及膜对辊的卷绕角度θ),因此只要不改变摩擦接触条件,大部分长度L基本上相同(大致平均长度相等)。线状痕12的长度没有特别限定,实用中1~100mm左右就可以。

(d)微细孔

图2(a)~图2(c)表示第一电磁波吸收膜的其他例子。在该例中,在金属薄膜11上除了线状痕12之外,还随机设有贯通金属薄膜11的多个微细孔13。微细孔13,能通过将表面具有高硬度粒子的辊按压在金属薄膜11上而形成。如图2(c)所示,微细孔13的开口径D通过原表面Sur的位置求得。优选微细孔13的开口径D的90%以上在0.1~1000μm的范围内,进一步优选在0.1~500μm的范围内。此外,优选微细孔13的平均开口径Dav在0.5~100μm的范围内,更加优选在1~50μm的范围内。进一步优选平均开口径Dav的上限为20μm,更加优选为10μm。优选微细孔13的平均密度为500个/cm2以上,进一步优选为1×104~3×105个/cm2

(e)保护层

如图3所示,可以在金属薄膜11上形成覆盖线状痕12(以及微细孔13)的塑料保护层10a。优选保护层10a的厚度为10~100μm。

(f)压花

为了提高电磁波吸收能力,也可以在电磁波吸收膜上实施圆锥状、球面状等多个压花。优选压花的直径以及深度分别为100μm以上,进一步优选150~250μm。优选压花的面积率为20~60%。

(g)表面电阻

电磁波吸收膜1的电磁波反射系数SC由公式:SC=(R-Z)/(R+Z)表示,其中,Z是入射的电磁波的特性阻抗(Ω),R是电磁波吸收膜1的表面电阻(Ω/□),当R=Z时为0。电磁波的特性阻抗Z根据在电磁波源的近旁离电磁波源的距离大幅变化,在离电磁波源足够远的位置为自由空间的特性阻抗(377Ω)。因此,在电磁波源的近旁配置电磁波吸收膜1的情况下,以尽量靠近Z的方式来调整R;而在离电磁波源足够远的位置配置电磁波吸收膜1的情况下,使R尽量靠近自由空间的特性阻抗。电磁波吸收膜1的表面电阻能够根据金属薄膜11的材料以及厚度、线状痕12的宽度、间隔、长度等调整。表面电阻能够通过直流二端子法进行测定。

(2)第二电磁波吸收膜

图4(a)以及图4(b)表示一例本发明的第二电磁波吸收膜。在该电磁波吸收膜中,在塑料膜10的一面形成由第一和第二金属薄膜11a、11b组成的复合金属薄膜,第一和第二金属薄膜的一方是非磁性金属,另一方是磁性金属,在复合金属薄膜整面地形成多个实质上平行且断续的线状痕12。线状痕12可以与图1(a)~图1(d)所示的同样。作为磁性金属例如是镍、钴、铬或者它们的合金,作为非磁性金属例如是铜、银、铝、锡或者它们的合金。优选的组合是镍和铜或者铝。优选磁性金属薄膜的厚度为0.01μm以上,优选非磁性金属薄膜的厚度为0.1μm以上。虽然厚度的上限没有特别限定,但是两金属薄膜实用中都可以是10μm左右。进一步优选磁性金属薄膜的厚度为0.01~5μm,非磁性金属薄膜的厚度为0.1~5μm。与第一电磁波吸收膜同样,第二电磁波吸收膜也可以具有微细孔13、塑料保护层10a以及压花。

[2]电磁波吸收膜的制造方法

第一以及第二的电磁波吸收膜1都能通过如下方法制造,在塑料膜10的至少一面通过蒸镀法(真空蒸镀法、溅射法、离子镀膜法等的物理蒸镀法、或者等离子CVD法、热CVD法、光CVD法等化学气相蒸镀法)、电镀法、箔接合法形成金属薄膜11,使表面具有多个高硬度微粒子的辊在已得到的复合膜的金属薄膜11侧挤压摩擦,从而在金属薄膜11上形成多个实质上平行且断续的线状痕12。

(a)线状痕的形成

线状痕12例如能够通过WO2003/091003号记载的方法形成。如图5(a)以及图5(b)所示,优选让表面随机附着了具有锐角部的多个高硬度(例如莫氏硬度5以上)的微粒子(例如钻石微粒子)的辊2,挤压摩擦具有金属薄膜11的复合膜1’的金属薄膜11侧。线状痕12的宽度W、间隔I以及长度L,根据复合膜1’与辊2的挤压摩擦条件(辊2上的微粒子的粒径、复合膜1’的周速度、辊2的周速度、复合膜1’的张力、复合膜1’对辊2的缠绕距离、复合膜1’以及辊2的旋转方向等)决定。因此,优选微粒子的90%以上具有1~1000μm的范围内的粒径,进一步优选10~100μm。优选微粒子在辊面以50%以上的面积率附着。优选复合膜1’的周速度为5~200m/分,优选辊2的周速度为10~2000m/分。优选复合膜1’的张力为0.05~5kgf/cm幅。复合膜1’对辊2的缠绕距离L(由卷绕角度θ决定)相当于线状痕12的长度L。优选辊2与复合膜1’的旋转方向相反。

如图5(b)所示,当辊2的微粒子在加压下与复合膜1’的金属薄膜11挤压摩擦时,在复合膜1’的整面以不规则的宽度和间隔形成多个实质上平行且断续的线状痕(摩擦伤)12。

(b)微细孔等的形成

通过专利第2063411号等记载的方法能够在具有线状痕12的金属薄膜11上形成多个微细孔13。例如,在表面附着了具有锐角部的莫氏硬度为5以上的多个微粒子的第一辊(可以与上述线状痕形成用辊相同)、与被第一辊按压的平滑面的第二辊之间的间隙,使金属薄膜11处于第一辊侧,以与第一辊相同的周速度使复合膜1’通过。此外,在复合膜1’形成了线状痕12并且根据需要形成了微细孔13之后,通过热层压法使第二塑料膜与金属薄膜11粘合,能够形成塑料保护层10a。再有,根据需要可对金属薄膜11实施压花加工。

[3]电磁波吸收体

(1)第一电磁波吸收体

对于第一电磁波吸收体,以线状痕的取向不同的方式配置多张上述电磁波吸收膜。由于没有被电磁波吸收膜吸收的电磁波反射或者透过,因此通过采取被其他电磁波吸收膜吸收的结构,电磁波吸收能力显著提高。此外,与线状痕12垂直方向的表面电阻比与线状痕12平行方向的表面电阻大,由于电磁波吸收膜在电磁波吸收能力上具有各向异性,因此通过以线状痕12的取向不同的方式配置多个电磁波吸收膜,可抑制电磁波吸收能力的各向异性。例如由两张电磁波吸收膜构成电磁波吸收体的情况下,优选以各个线状痕12大致垂直的方式配置。此外,在由三张电磁波吸收膜构成电磁波吸收体的情况下,优选各个线状痕12以60°交叉的方式配置。

电磁波吸收膜的组合可以是(1)全部都由第一电磁波吸收膜组成的情况、(2)全部都由第二电磁波吸收膜组成的情况、以及(3)由第一以及第二电磁波吸收膜组成的情况。例如,在具有磁性金属薄膜的第一电磁波吸收膜和具有非磁性金属薄膜的第一电磁波吸收膜的组合的情况下,优选磁性金属是镍,非磁性金属是铝或铜。

在电磁波源近旁配置第一电磁波吸收体的情况下,当组合与线状痕12垂直方向的表面电阻为20~377Ω/□优选30~377Ω/□的电磁波吸收膜、和与线状痕12垂直方向的表面电阻为377~10000Ω/□优选377~7000Ω/□的电磁波吸收膜时,能够有效地吸收电场和磁场双方。

为了获得优异的电磁波吸收能力,可以在多个电磁波吸收膜之间设有电介质层(空气层)。该情况下,优选电磁波吸收膜的间隔为0.2~10mm,进一步优选1~8mm。

图6是一例具有在两张平坦的电磁波吸收膜1a、1a之间设有波形的电磁波吸收膜1b的构造的电磁波吸收体。波形的电磁波吸收膜1b的形状和尺寸根据用途适当设定即可。波形可以是正弦曲线状、连续的圆弧状、连续的“コ”字形状等。平坦的电磁波吸收膜1a、1a与波形的电磁波吸收膜1b在切点处粘着,因此该电磁波吸收体自身具有支持性,不仅适合于电子通信设备还适合于在建筑物中使用。在附着于电子通信设备的外壳的情况下,优选波形的高度h1和间隔I2为0.2~3mm,在用于建筑物内壁的情况下,为了发挥优异的隔热性和隔音性优选3~10mm。

图7表示一例具有交替层叠了平坦的电磁波吸收膜1a和波形的电磁波吸收膜1b的构造的电磁波吸收体。由于该电磁波吸收体与图6的电磁波吸收体相比,具有更高的自身支持性、隔热性和隔音性,因此适合于建筑物的内壁。在该电磁波吸收体中,以线状痕的方向交替的方式配置电磁波吸收膜1a、1b。如图8所示,可以使波形的电磁波吸收膜1b、1b的取向不同。此外,如图9所示,波形的电磁波吸收膜1b的剖面也可以是“コ”字形状。再有,如图10所示,可以在两张平坦的电磁波吸收膜1a、1a之间配置多张(例如两张)波形的电磁波吸收膜1b、1b。

在图11所示的电磁波吸收体中,在平坦的电磁波吸收膜1a、1a之间粘着成蜂窝状的波形的电磁波吸收膜1c,以两者的线状痕大致垂直的方式配置。由于该电磁波吸收体具有优异的隔热性和隔音性并且具有较高的自身支持性,因此适合于建筑材料等。

图12(a)以及图12(b)表示粘着两张电磁波吸收膜1d、1e的金属薄膜11、11而得到的电磁波吸收体。15表示粘着层。优选电磁波吸收膜1d、1e的金属薄膜11、11的一方由非磁性金属组成,另一方由磁性金属组成。

在图6~图11所示的例子中,可以由一面整体形成了金属薄膜的塑料膜置换多个平坦的电磁波吸收膜1a的一部分。

(2)第二电磁波吸收体

图13表示一例第二电磁波吸收体。该电磁波吸收体中,隔着电介质层17层叠了电磁波吸收膜1和电磁波反射体16。电磁波吸收膜1配置在电磁波源侧。优选电磁波反射体16是由金属等组成的膜状、网眼状等的导电体、或形成了金属薄膜的塑料膜等。电介质层17不仅可以是塑料膜这种电介质,也可以是空气层。优选电介质层17的厚度在包含要吸收的电磁波的中心波长λ的1/4的范围、例如λ/8~λ/2的范围。

图14表示第二电磁波吸收体的其他例。该电磁波吸收体具有如下结构:交替层叠了多个电磁波吸收膜1f和多个电介质层17,在中央设有电磁波反射体16。优选电磁波吸收膜1f的线状痕定向于交替不同的方向(例如垂直的方向)。

在图6~图11所示的电磁波吸收体中,可以由电磁波吸收体16置换多个平坦的电磁波吸收膜1a的一部分,并且在电磁波吸收膜1a与电磁波反射体16之间设有电介质层17。

虽然通过以下实施例对本发明进行详细说明,但本发明并不限定于此。

实施例1

在二轴延伸聚对苯二甲酸乙二醇酯等(PET)膜[厚度:12μm,介电常数:3.2(1MHz),介电损耗因子:1.0%(1MHz)、熔点:265℃,玻璃转移温度:75℃]的一面,通过真空蒸镀法形成厚度为0.05μm的铝层,制作出复合膜。利用图5(a)以及图5(b)所示的装置,在下述条件下使电沉积有粒径分布为50~80μm的钻石微粒子的辊2与复合膜1’的铝层挤压摩擦。

复合膜1’的行进速度:10m/分

辊2的周速度:350m/分

复合膜1’的张力:0.1kgf/cm幅

膜的卷绕角度θ:30°

通过观察光学显微镜照片,可知所得到的电磁波吸收膜具有下述的线状痕。

宽度W的范围:0.5~5μm

平均宽度Wav:2μm

间隔I的范围:2~10μm

平均间隔Iav:5μm

平均长度Lav:5mm

如图15所示,通过直流二端子法测定在电磁波吸收膜的实验片(15cm×15cm)的对置端部配置的四对铜电极(长3cm×宽1cm)4、4间的电阻值,并求出平均值。根据平均电阻值求得的电磁波吸收膜的表面电阻在与线状痕垂直的方向是700Ω/□,在与线状痕平行的方向是10Ω/□。

如图16所示,以天线50、60以50mm间隔d对置的方式配置具备发送用天线50的高频振荡器5和具备接收用天线60的高频接收器6,在天线50、60之间配置电磁波吸收膜1的实验片(15cm×15cm)。从发送用天线50以2.5mW的输出发送频率200~3250MHz的信号,测定接收信号的强度。图17中表示结果。为了比较,由虚线(中间空白)表示天线50、60之间没有配置电磁波吸收膜1时的接收信号的强度。

实施例2

制作了除设置有微细孔以外与实施例1相同的电磁波吸收膜。微细孔的平均开口径为3μm,平均密度为5×104个/cm2。该电磁波吸收膜的表面电阻在与线状痕垂直的方向是900Ω/□,在与线状痕平行的方向是15Ω/□。图18表示与实施例1同样测定的电磁波吸收能力。

实施例3

使实施例1的电磁波吸收膜处于天线50侧,在天线50、60之间,配置将实施例1以及2的电磁波吸收膜以线状痕的取向大致垂直的方式且以5.0mm的间隔平行地配置而成的电磁波吸收体,与实施例1同样地评价电磁波吸收能力。图19表示其结果。

实施例4

将除了辊的周速度设定为200m/分之外,与实施例1同样地制造出的平坦的电磁波吸收膜A(表面电阻在与线状痕垂直的方向为200Ω/□,为与线状痕平行的方向为10Ω/□)、与成形为正弦波状的实施例1的电磁波吸收膜B(周期:5mm、振幅:2.5mm),以两者的线状痕的取向大致垂直的方式粘着,制作出图8所示的电磁波吸收体。图20表示该电磁波吸收体的电磁波吸收能力。

实施例5

除了通过热层压法将厚度20μm的聚对苯二甲酸丁二醇酯(PBT)膜(熔点:220℃、玻璃转移温度22℃)粘着于铝层以外,与实施例同样地制作出电磁波吸收膜。对该电磁波吸收膜的PBT膜侧实施圆锥形的印花加工。印花的直径、深度以及面积率分别是200μm、200μm和40%。图21表示该电磁波吸收膜的电磁波吸收能力。

实施例6

除了辊2的周速度设为200m/分以外,以与实施例1同样的方法在复合膜形成线状痕,该复合膜是通过真空蒸镀法在厚度16μm的二轴延伸PET膜的一面分别形成厚度为0.6μm的铜层以及厚度为0.2μm的镍层。所得到的电磁波吸收膜的线状痕以及表面电阻如下所示。

宽度W的范围:0.5~5μm

平均宽度Wav:2μm

间隔I的范围:0.5~5μm

平均间隔Iav:2μm

平均长度Lav:5mm

表面电阻:150Ω/□(与线状痕垂直的方向)

:5Ω/□(与线状痕平行的方向)

图22表示该电磁波吸收膜的电磁波吸收能力。

实施例7

除了将镍层的厚度设定为0.3μm、将辊2的周速度设定为300m/分以外,与实施例6同样地制作电磁波吸收膜。该电磁波吸收膜的表面电阻在与线状痕垂直的方向是150Ω/□,在与线状痕平行的方向是10Ω/□。

由图17~23可知,实施例1~7的电磁波吸收膜,都对200~1600MHz、特别是550~800MHz的范围以及1000~1400MHz的范围的电磁波具有优异的吸收能力。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号