首页> 中国专利> 用于具有微通道冷凝器和再热循环的制冷系统的启动程序

用于具有微通道冷凝器和再热循环的制冷系统的启动程序

摘要

一种制冷系统具有微通道设计和构造的冷凝器并包括再热循环。再热循环包括制冷剂流控制装置(例如三通阀),用于选择性地路由引导至少一部分制冷剂从压缩机和膨胀装置之间的位置经过再热换热器。用于制冷系统的控制设备选择性地致动该制冷剂流控制装置以在系统启动时路由引导至少一部分制冷剂经过再热换热器。

著录项

  • 公开/公告号CN102066853A

    专利类型发明专利

  • 公开/公告日2011-05-18

    原文格式PDF

  • 申请/专利权人 开利公司;

    申请/专利号CN200980122017.1

  • 发明设计人 M.F.塔拉斯;E.B.弗雷泽;

    申请日2009-05-07

  • 分类号F25B13/00;F28F1/00;F25B1/00;F25B39/00;F25B49/02;

  • 代理机构中国专利代理(香港)有限公司;

  • 代理人原绍辉

  • 地址 美国纽约州

  • 入库时间 2023-12-18 02:26:11

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2013-07-31

    授权

    授权

  • 2011-07-20

    实质审查的生效 IPC(主分类):F25B13/00 申请日:20090507

    实质审查的生效

  • 2011-05-18

    公开

    公开

说明书

相关申请

本申请要求2008年6月13日提交的美国临时专利申请61/061142的优先权。

背景技术

制冷系统利用制冷剂来调节输送至气候受控空间的二次流体(例如空气)。在基础制冷系统中,制冷剂在压缩机中压缩,并向下游流到亚临界制冷剂循环中的冷凝器中,或者流到跨临界制冷剂循环中的气体冷却器中,其中在与周围环境相互作用的热传递过程中,热量通常从制冷剂被排斥到该周围环境。然后,制冷剂流经膨胀装置,在那里,制冷剂膨胀到较低的压力和温度,并且制冷剂流到蒸发器,在那里,在与二次流体(例如,室内空气)相互作用的热传递过程中,制冷剂蒸发并通常为过热的,而同时冷却并通常减湿该二次流体。

近年来,对于制冷系统的换热器(冷凝器和蒸发器)的有效操作汇聚了很多关注和设计努力。换热器技术中的一个相对新近的进步是开发和应用了平行流或所谓的微通道或小通道换热器(这两个术语在全文中是可交换使用的),来作为冷凝器和蒸发器。

这些换热器具有典型地为非圆形的多个平行换热管,制冷剂分布在这些管中并以平行方式流动。换热管基本上垂直于进口、中间和出口歧管中的制冷剂流动方向大致定向,该进口、中间和出口歧管与换热管流体连通。换热管典型地具有多通道构造,制冷剂分布在该多通道中并以平行方式在这些多通道内流动。热传递鳍片内置于换热管之间并刚性附接到换热管。采用平行流换热器(其一般具有铝的炉铜焊构造)的主要原因与其优越性能、高紧凑性、结构刚度、较轻重量、较少制冷剂容量和增强的耐腐蚀性有关。

与利用微通道换热器有关的也涉及其优点的问题在于其低的内部体积。因为低内部体积,微通道换热器由于遍及制冷剂回路的制冷剂流中的瞬时变化而更容易受到制冷剂压力变化的影响。微通道换热器还对于制冷剂容量是非常敏感的,其中,即使系统中很小量的额外制冷剂容量将导致比希望的排放操作压力和瞬时压力尖峰更高。这些问题在启动期间是特别显著的。如果排放压力尖峰超过预定可允许安全极限(典型地,对于预定次数),控制软件基于高压警报或例如高压开关的机械安全设备产生的紧急停机能够导致制冷系统操作的损害性中断,这导致了完全不能操作制冷系统。结果,这将导致无法将气候受控环境保持在希望的温度和湿度范围内,从而导致占用者的不舒适和责任主张(liability claim)。在一定情况下,短时间周期内的重复启动和停机会潜在地导致压缩机故障。

另一制冷剂循环组成部分是再热循环,其利用遍及主制冷剂回路循环的主制冷剂。在再热循环中,至少一部分制冷剂经过再热换热器,该再热换热器放置在流过蒸发器的空气路径中。再热换热器典型地放置在蒸发器下游的空气路径中。在再热循环被致动的情况下,空气能够在蒸发器中被冷却到正常希望的温度之下,允许从空气流中除去更大量的湿气。然后,空气在再热换热器上经过并被朝向目标温度往回加热。典型地,再热循环具有制冷剂流控制装置(例如三通阀),其在希望再加热时能够选择性地路由引导至少一部分制冷剂经过再热换热器。再热循环在系统启动时没有被操作,以便防止高压尖峰和损害性制冷系统停机。

发明内容

一种制冷系统具有压缩机,其将压缩的制冷剂输送至冷凝器。来自冷凝器的制冷剂经过膨胀装置和蒸发器。制冷剂从蒸发器返回压缩机。冷凝器为微通道换热器。再热循环包括制冷剂流控制装置,其用于选择性地路由引导至少一部分制冷剂经过再热换热器。再热换热器定位在蒸发器上经过的空气路径中。制冷系统的控制设备(control)选择性地致动开关以在系统启动时路由引导制冷剂经过再热换热器。

在一个实施例中,当预期将出现高压尖峰时,再热循环还可在一定环境和操作条件下被致动。例如,这些条件可包括高周围温度,可变速压缩机的更高操作速度和更高数量的活动串联压缩机。这些环境和操作条件可被预编程并存储在制冷系统控制器的存储器中。

通过下列描述和附图,本发明的这些和其他特征将能够得到最好的理解,下面是附图说明。

附图说明

图1A示出了第一实施例示意图。

图1B示出了替代实施例。

图2A示出了示例性微通道换热器。

图2B是经过图2A的一部分的剖面。

图3是示出了利用所公开方法的启动的曲线图。

具体实施方式

制冷系统20在图1A中示出并包括将制冷剂输送至排放管路的压缩机22,排放管路通向冷凝器24。冷凝器24是平行流换热器,并且在一个公开实施例中是微通道或小通道换热器。如上所述,这些术语在此处可交换地使用。

热量在冷凝器24中从制冷剂传递至二次流体,例如周围空气。高压、减温的、压缩的和通常过冷的制冷剂从冷凝器24通入膨胀装置38,在那里,制冷剂膨胀成较低的压力和温度。在膨胀装置38下游,制冷剂流经蒸发器36并回到压缩机22。众所周知,换热器24在亚临界应用中作为冷凝器工作并在跨临界应用中作为气体冷却器工作。然而,尽管两种应用都在本发明的范围内,但换热器24在全文中将指的是冷凝器。

再热循环结合到制冷系统20中。众所周知,制冷剂流控制装置(例如三通阀30)选择性地路由引导冷凝器24下游的至少一部分制冷剂并经过再热换热器32。空气推动装置(例如风扇34)将空气吹过蒸发器36,并吹过再热换热器32。也就是说,再热换热器32与蒸发器36一起放置在室内并相对于空气流放置在蒸发器36的下游。如上所述,本质上,再热循环通过(全部或部分地)打开三通阀30而选择性致动以当希望在气候受控环境X中除湿时引导至少一部分制冷剂经过再热换热器32。在这些情况下,制冷系统被控制成使得蒸发器36将空气冷却到低于待调节环境X中希望的温度,这允许从输送至受调节环境X的空气中除去额外的湿气量。当空气在再热换热器32上经过时,其朝向目标温度被再加热。结果,在气候受控环境X中实现了温度和湿度控制。

在再热换热器32下游,具有可选的止回阀40。此外,如所示的,冷凝器旁通管路26选择性地使至少一部分制冷剂旁通绕过冷凝器24并包括制冷剂流控制装置,例如阀28。这允许实现可变除湿能力或可变显热比。阀28可以是可调节的(通过调制或脉动(pulsation))或者为开/关类型。

图1B示出了替代实施例,其中,再热循环三通阀42放置在冷凝器24上游并输送至少一部分制冷剂经过再热制冷剂管路44到再热换热器(未示出)。为了本应用的目的,三通阀42和再热换热器32的精确位置不是决定性的,只要它们都位于制冷系统20的高压侧。而且,众所周知,三通阀30和42可由执行相同制冷剂路由引导功能的一对常规阀代替。

如图2A所示,压缩机22下游的进口管路146将制冷剂输送至第一排平行换热管148中,然后通过冷凝器芯到中间歧管结构133的第一腔室。制冷剂从中间歧管结构133往回经过第二排平行换热管150到歧管147中的中间腔室。制冷剂然后经过另一排平行换热管152,返回中间歧管133。制冷剂从中间歧管133经过另一排换热管154返回到歧管147和出口制冷剂管路。当然,这是一个简单示出的实施例。应注意到的是,在实践中,可具有比四个示出的通程(pass)148、150、152和154更多或更少的制冷剂通程。此外,应理解的是,尽管为了简单目的,每个制冷剂通程由单个换热管表示,但在每个通程内典型地具有很多换热管,制冷剂在通程内流动的同时分布在这些管中。在冷凝器应用中,每排内的换热管的数量可相对于制冷剂流在下游方向上减小。例如,在第一排中可具有12个换热管,在第二排中可具有8个换热管,在第三排中可具有5个换热管,而在最后第四排中可具有仅2个换热管。分离器板143放在歧管133和147内以分开放置在相同歧管结构内的腔室。

如图2B所示,管排148、150、152和154内的换热管可由多个平行通道100组成,该多个平行通道100由壁101分开。图2B是图2A中示出的换热管的剖视图。通道100允许增强的热传递特征并协助改善换热器的结构刚性。通道100的剖面可采取不同形式,并且尽管在图2B中示出为矩形,但是其可为例如三角形、梯形、椭圆形或圆形构造。微通道换热器中的通道100的尺寸是相当小的。如所公开的,通道可具有小于或等于5 mm的液力直径,并且更窄地,可具有小于或等于3 mm的液力直径。值得注意的是,“液力直径”的使用并不意味着通道是圆形的。

如上所述,当微通道换热器用作冷凝器时,可尤其在制冷系统启动时观察到的压力尖峰能够给制冷系统设计者提供挑战。微通道换热器的一个令人关心的问题在于它们的内部体积是相对小的,并且因此它们是特别容易受到压力尖峰影响的并且对制冷剂容量是极为敏感的。尽管压力尖峰在制冷系统启动时是特别显著的,它们还可在操作条件变化时被观察到,例如,压缩机速度陡增或激活大量串联压缩机,以便满足受调节空间X中的热负载需求。

在本发明中,再热回路在制冷系统启动时被致动。现在,当制冷剂经过冷凝器24并经过再热换热器32时,在制冷系统的高压侧上存在更大的组合内部空间,由此减小了压力尖峰的幅度。在一些情况中,所有制冷剂均可经过再热换热器32。

如图3所示,在常规启动S而不致动再热回路的情况下,压力尖峰可为相对较高的,并且可超过安全极限Y。利用本申请并在图3中如Z所示,由于换热器24和32的组合内部体积,大大减小了压力尖峰的幅度。以此方式,压力尖峰可较好地低于安全极限Y,并且控制软件基于高压警报的操作或例如高压开关的机械安全设备产生的损害性停机能够被避免。这提供了对气候受控环境中的希望范围内和占用者舒适的温度和湿度的不间断控制。此外,短时间周期内的制冷系统的重复启动和停机将被避免,导致了改善的压缩机可靠性和受调节空间中的温度/湿度变化减小。

再热换热器32可以为任意类型的换热器,包括标准换热器或微通道换热器。

用于制冷系统的控制设备110可为任意适合的电子控制设备类型,如本领域已知的。控制设备将典型地控制所有系统部件,不仅是可以是可调节的(通过调制或脉动)或者为开/关类型的三通阀30。当很可能发生高压尖峰时,控制设备110能够在一定环境和操作条件时致动再热循环。这种条件可包括例如,高周围温度、可变速压缩机的更高操作速度和更高数量的活动串联压缩机。这些环境和操作条件可被预编程并存储在制冷系统控制设备110的存储器中。此外,在一些环境和操作条件下,可能的情况是,在系统启动时出现压力尖峰的可能性较小。因此,控制设备可被编程以在这些情况下不致动再热循环。

另外,在制冷系统启动之后的一定时间段后,三通阀30被停用以阻止制冷剂流经再热换热器32,除非希望操作的除湿模式。该时间段可以是15秒到3分钟的量级。

尽管公开了本发明的实施例,本领域技术人员将认识到一定的修改将落入本发明的范围内。为此,应研究所附权利要求以确定本发明的真实范围和内容。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号