首页> 中国专利> 一种利用氢质子低场核磁共振技术测定水泥凝结时间的方法

一种利用氢质子低场核磁共振技术测定水泥凝结时间的方法

摘要

本发明属于建筑材料领域,具体涉及一种利用氢质子低场核磁共振技术测定水泥凝结时间的方法,包括以下步骤:1)采用Carr-Purcell-Meiboom-Gill(CPMG)序列测定标准稠度不同水化龄期(t)的水泥浆体,获得第一回波峰核磁信号幅度(Aecho,1(t));2)从Aecho,1(t)与t的关系曲线上读出转折点,即为水泥的初凝时间;3)测试不同水化龄期水泥净浆核磁共振信号衰减曲线,并采用多指数方程进行拟合,获得T2分布曲线;4)根据T2分布曲线的突变,得到终凝时间。

著录项

  • 公开/公告号CN101995413A

    专利类型发明专利

  • 公开/公告日2011-03-30

    原文格式PDF

  • 申请/专利权人 同济大学;

    申请/专利号CN201010503009.6

  • 发明设计人 孙振平;俞洋;庞敏;

    申请日2010-09-30

  • 分类号G01N24/08(20060101);

  • 代理机构31200 上海正旦专利代理有限公司;

  • 代理人张磊

  • 地址 200092 上海市四平路1239号

  • 入库时间 2023-12-18 01:48:00

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2016-11-16

    未缴年费专利权终止 IPC(主分类):G01N24/08 授权公告日:20130501 终止日期:20150930 申请日:20100930

    专利权的终止

  • 2013-05-01

    授权

    授权

  • 2011-05-18

    实质审查的生效 IPC(主分类):G01N24/08 申请日:20100930

    实质审查的生效

  • 2011-03-30

    公开

    公开

说明书

技术领域

本发明属建筑材料技术领域,具体涉及一种利用氢质子低场核磁共振技术测定水泥凝结时间的方法。

背景技术

自1945年美国物理学家Bloch和Purcell发现核磁共振现象以来,核磁共振作为一种重要的现代分析手段已广泛应用于各个领域,如物质结构分析、医学成像、油气资源的勘探,低场核磁共振分析仪采用价格低廉的钕铁硼永磁材料作为场源,大大降低了仪器和运行成本,进一步扩展了核磁共振的应用。近年来,低场核磁共振技术的应用已逐步从生命科学、地球物理等领域扩展到建筑材料领域,该方法可在不破坏样品的前提下,利用水分子中质子的弛豫特性研究水含量及其分布的变化,具有快速、连续、无损的优势。

低场核磁共振技术包含三方面要素:原子核的自旋、静磁场B0和射频场B1。在没有磁场的情况下,核自旋方向各异,即微观磁矩是杂乱无章的,因此就一个原子核的宏观集体而言,净磁矩为零。在施加静磁场B0后,微观磁矩在一定的时间(自旋-晶格弛豫时间,T1)内沿磁场方向排列,从无序变成有序,这样就在宏观上形成的净磁矩M0

M0=Nr2h2I(I+1)3(4π2)kTB0---(1)

式中k——波尔兹曼常数;

T——绝对温度,K;

h——普朗克常数;

I——原子核的自旋量子数;

在实验中近似认为Aecho,1(t)正比于样品中氢核的数量。

在核磁共振中,B0的方向定位试验室坐标系中Z方向,M0沿Z轴取向。若在X轴施加一个射频场B1,M0将沿着X轴转动,这种转动称之为章动。章动角度θ0为,

θ0=γB1τ      (2)

式中γ——旋磁比;

τ——施加射频场的时间,半回波时间,s。

如果θ0为π/2,则此时的脉冲称为π/2脉冲;如果θ0为π,则此时的脉冲称为π脉冲。在低场核磁共振的试验中经常使用的Carr-Purcell-Meiboom-Gill(CPMG)序列均是由π/2脉冲和π脉冲构成的,它的组成是π/2-τ-π-2τ-π-2τ-π-2τ-......。在零时刻在施加π/2脉冲后,净磁矩的方向从Z轴转到X轴,此后由于磁场的不均匀,各个磁元发生散相Δωiτ(Δωi为对应于磁场不均匀ΔBi的角动量变化);在τ时刻施加π脉冲,引起相位反转-Δωiτ,再经过时间τ,磁元重聚后产生信号,这个信号即为自旋回波信号,记录一系列自旋回波信号,就可以获得自旋回波衰减曲线,如图1所示:

MX(t)=M0Xe-tT2---(3)

式中Mx(t)——t时刻横向磁化矢量的幅度;

M0x——t=0时横向磁化矢量的幅度;

t——质子置于B1中的时间;

T2——横向弛豫时间。

用一组指数衰减曲线的和进行精确模拟,每一条指数衰减均对应于一个常数T2,这些常数的集合就构成了T2分布曲线,如图2所示。

目前,凝结时间按GB1346-2001《水泥标准稠度用水量、凝结时间、安定性检验方法》进行测试,方法如下:

1)以标准稠度用水量制成标准稠度净浆一次装满试模,振动数次刮平,立即放人湿气养护箱中;

2)记录水泥全部加人水中的时间作为凝结时间的起始时间;

2)试件在湿气养护箱中养护至加水后30min时进行第一次测定,测定时,从湿气养护箱中取出试模放到试针下,降低试针与水泥净浆表面接触,拧紧螺丝1s~2s后,突然放松,试针垂直自由地沉人水泥净浆,观察试针停止下沉或释放试针30s时指针的读数,当试针沉至距底板4mm±1mm时,为水泥达到初凝状态,由水泥全部加人水中至初凝状态的时间为水泥的初凝时间,用“min”表示;

3)终凝时间的测定是在完成初凝时间测定后,立即将试模连同浆体以平移的方式从玻璃板取下,翻转180°直径大端向上,小端向下放在玻璃板上,再放人湿气养护箱中继续养护,临近终凝时间时每隔15min测定一次,当试针沉入试体0.5mm时,即环形附件开始不能在试体上留下痕迹时,为水泥达到终凝状态,由水泥全部加人水中至终凝状态的时间为水泥的终凝时间,用“min”表示。

相对于现有的凝结时间测定方法,本方法具有原料用量少,操作简单和形象直观等优势。

发明内容

本发明的目的在于提供一种利用氢质子低场核磁共振技术测定水泥凝结时间的方法。

本发明提出的利用氢质子低场核磁共振技术测定水泥凝结时间的方法,具体步骤如下:1)采用CPMG序列测定标准稠度不同水化龄期(t)的水泥浆体,获得第一回波峰核磁信号幅度Aecho,1(t);2)从Aecho,1(t)与t的关系曲线上读出转折点,即为水泥的初凝时间;3)测试不同水化龄期水泥净浆核磁共振信号衰减曲线,并采用多指数方程进行拟合,获得T2分布曲线;4)根据T2分布曲线的突变,得到终凝时间。

本发明中,步骤3)中所述在测试过程中每5min测试一次,以提高测试的精度。

本发明中,步骤(2)中读出转折点的方法为:1)判断转折点的类型,根据水泥水化的理论,Aecho,1(t)-t曲线应分为三个阶段,分别对应着诱导前期、诱导期和加速期,诱导前期和加速期水分消耗速率均大于诱导期水消耗速率,因此Aecho,1(t)-t曲线在诱导前期和加速期的斜率绝对值较大,而在诱导期斜率绝对值较小,因此水泥浆体初凝发生在Aecho,1(t)-t曲线从斜率绝对值较小段到较大段的转折的部分,在转折的部分寻找可能的转折点,称之为候选转折点;2)在测试过程中,每次测试得到的Aecho,1(t)记为A(i),其中i为测试的次数。对于候选转折点A(i),将Aecho,1(t)-t曲线在A(i)处分成两段分别拟合成直线l1和l2,斜率分别为k1和k2,求出Δk=|k1-k2|;;3)找出候选转折点Δk的最大者,即为初凝时间。

本发明中,步骤(4)中所述T2分布曲线在终凝之前包含两个峰,分别代表着絮凝状结构中的水和絮凝状结构之间的水,而在终凝之后两个峰合并为一个峰。

本发明中,寻找T2分布曲线中转折的方法为:1)将采集的核磁信号幅度衰减曲线经反演,获得样品T2分布曲线;2)对比不同龄期的T2分布曲线,寻找从双峰到单峰的时间,即为终凝时间。

本发明的有益效果在于:相对于传统的测试方法,本发明所述的方法具有操作简单的优势,采用的传统的方法要在临近初凝时每5min测定一次,每次测试需要30s,观察试针距底板的距离,在临近终凝时每15min测定一次,观察试针是否会在试体上留下痕迹,而使用本发明所述的方法,若使用自动测试程序,整个测试过程可自动完成;最重要的是,本发明所述的方法依据的是在初凝附近水泥水化速度的突然增大以及在初凝附近之后水泥浆体结构的剧烈变化,这比目前使用的维卡仪测定凝结时间的方法更有根据。

附图说明

图1为自旋回波信号衰减曲线。

图2为典型的水泥水化初期T2分布曲线。

图3为实施例1白水泥浆体Aecho,1随水化时间变化曲线。

图4为实施例2硅酸盐水泥水泥浆体Aecho,1随水化时间变化曲线。

图5为实施例3标准稠度水泥净浆T2分布曲线在终凝附近的变化。

具体实施方式

下面通过实施例进一步说明本发明。

实施例1:

白水泥净浆初凝时间的测试。测试采用PQ-001型核磁共振分析仪,永久磁体磁场强度0.53T,质子共振频率23MHz,磁体恒定控温32℃。将装有标准稠度的白水泥净浆的核磁共振管装入直径15mm薄壁玻璃试管,并插入仪器探头线圈内,采用CPMG脉冲序列测试。采集不同水化龄期的Aecho,1(t),做出Aecho,1(t)与t的关系曲线。根据前文所述的转折点寻找方法(如图3所示),得出初凝时间为200min,与按GB1346-2001《水泥标准稠度用水量、凝结时间、安定性检验方法》测得的210min,相差10min,相对误差4.76%。

实施例2:

普通硅酸盐水泥净浆凝结时间的测试。测试采用PQ-001型核磁共振分析仪,永久磁体磁场强度0.53T,质子共振频率23MHz,磁体恒定控温32℃。将装有标准稠度的硅酸盐水泥净浆的核磁共振管装入直径15mm薄壁玻璃试管,并插入仪器探头线圈内,采用CPMG脉冲序列测试。采集不同水化龄期的Aecho,1(t),做出Aecho,1(t)与t的关系曲线。根据前文所述的转折点寻找方法(如图4所示),得出初凝时间为190min,与按GB1346-2001《水泥标准稠度用水量、凝结时间、安定性检验方法》测得的195min,相差5min,相对误差2.56%。

实施例3:

普通硅酸盐水泥净浆的终结时间的测试。测试采用PQ-001型核磁共振分析仪,永久磁体磁场强度0.53T,质子共振频率23MHz,磁体恒定控温32℃。将装有标准稠度的硅酸盐水泥净浆的核磁共振管装入直径15mm薄壁玻璃试管,并插入仪器探头线圈内,采用CPMG脉冲序列测试。采集的弛豫信号经InvFit反演软件分析,获得样品T2分布曲线。将所得T2分布曲线整合到一张图中,如图5从中可以看出,从水化4h07min到4h17min,T2反演曲线从双峰变成了单峰,说明终凝时间为4h12min,与按GB1346-2001《水泥标准稠度用水量、凝结时间、安定性检验方法》测得的4h18min,相差6min,相对误差2.33%。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号