首页> 中国专利> 具有自动对焦功能的拍摄装置

具有自动对焦功能的拍摄装置

摘要

一种具有自动对焦功能的拍摄装置,检测在由拍摄部所拍摄的拍摄图像内的成为合焦对象的关注被摄体的图像区域的形状;设定与检测出的关注被摄体的图像区域的形状相匹配的多个对比度评价区域;基于设定的对比度评价区域内的图像数据,使拍摄部合焦。

著录项

  • 公开/公告号CN101924880A

    专利类型发明专利

  • 公开/公告日2010-12-22

    原文格式PDF

  • 申请/专利权人 卡西欧计算机株式会社;

    申请/专利号CN201010213213.4

  • 申请日2010-06-12

  • 分类号H04N5/232(20060101);

  • 代理机构11021 中科专利商标代理有限责任公司;

  • 代理人张远

  • 地址 日本国东京都

  • 入库时间 2023-12-18 01:22:20

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2012-12-19

    授权

    授权

  • 2011-02-02

    实质审查的生效 IPC(主分类):H04N5/232 申请日:20100612

    实质审查的生效

  • 2010-12-22

    公开

    公开

说明书

技术领域

本发明涉及具有自动对焦功能的拍摄装置、具有自动对焦功能的拍摄装置的控制方法和控制程序。

背景技术

一直以来,数码相机的自动对焦(AF)处理中,已知在拍摄帧内设定多个AF区域的技术(例如,特开2007-178576号公报(专利文献1))、追踪被摄体并自动对焦(AF)的技术(例如,特开2006-184742号公报(专利文献2))等。

然而,上述专利文献1所涉及的技术中,是在拍摄帧内预先决定的位置设定AF区域,与成为AF对象的特定的被摄体的形状无关地设定AF区域。另外,不是对成为AF对象的一个被摄体设定多个AF区域。因此,以因部位而对比度不同的被摄体为AF对象的情况下,也有在对比度低的部分设定AF区域的情况;这样的情况下,就有AF精度降低的问题。另外,即使应用上述专利文献2所涉及的技术,也无法防止在对比度低的部分设定AF区域。

另一方面,如果设定包括被摄体整体的大的AF区域,则AF处理的对比度梯度有可能变缓;这样的情况下,会产生检测对比度的峰值的精度下降的问题。

发明内容

本发明的一个方式是一种拍摄装置,其特征在于,包括:

拍摄部;

检测部,检测在由该拍摄部所拍摄的拍摄图像内的成为合焦对象的关注被摄体的图像区域的形状;

区域设定部,设定与由该检测部所检测出的所述关注被摄体的图像区域的形状相配的多个对比度评价区域;和

合焦控制部,基于由该区域设定部所设定的对比度评价区域内的图像数据,使所述拍摄部合焦。

另外,本发明的另一方式是利用了拍摄装置的合焦方法,其特征在于,包括:

检测处理,检测在由拍摄部所拍摄的拍摄图像内的成为合焦对象的关注被摄体的图像区域的形状;

设定处理,设定与检测出的所述关注被摄体的图像区域的形状相配的多个对比度评价区域;和

合焦处理,基于设定的对比度评价区域内的图像数据,使所述拍摄部合焦。

另外,本发明的另一方式是记录了控制拍摄装置的程序的记录介质,其特征在于,记录了使所述拍摄装置作为以下模块而发挥功用的程序:

检测部,检测在由拍摄部所拍摄的拍摄图像内的成为合焦对象的关注被摄体的图像区域的形状;

区域设定部,设定与由该检测部所检测出的所述关注被摄体的图像区域的形状相配的多个对比度评价区域;和

合焦控制部,基于由该区域设定部所设定的对比度评价区域内的图像数据,使所述拍摄部合焦。

附图说明

图1是表示应用了本发明的一个实施方式的拍摄装置的概略结构的模块图。

图2是表示由拍摄装置的自动合焦处理所涉及的动作的一个例子的流程图。

图3是图2的自动合焦处理的后续的流程图。

图4是示意性地表示图2的自动合焦处理中提取的关注被摄体的一个例子的图。

图5A、5B、5C、5D是示意性地表示图2的自动合焦处理所涉及的图像的一个例子的图。

图6A、6B、6C、6D是示意性地表示图2的自动合焦处理所涉及的图像的一个例子的图。

图7A、7B、7C、7D是示意性地表示图2的自动合焦处理所涉及的图像的一个例子的图。

具体实施方式

以下对本发明使用附图说明具体方式。然而发明范围不限于图示例。

图1是表示应用了本发明的一个实施方式的拍摄装置100的概略结构的模块图。

本实施方式的拍摄装置100,检测拍摄图像(例如,拍摄图像G2,参照图6A)内的成为合焦对象的关注被摄体(例如,关注被摄体S2)的图像区域(例如,图像区域A2,参照图6B)的形状,与该关注被摄体的图像区域的形状相匹配,设定多个AF评价区域(例如,AF评价区域P2,参照图6C),基于这些AF评价区域内的图像数据,使透镜部1合焦。

具体而言,如图1所示,拍摄装置100具有:透镜部1、透镜驱动部2、电子拍摄部3、单元电路4、拍摄控制部5、图像生成部6、AF处理部7、图像处理部8、显示部9、图像记录部10、操作输入部11、缓冲存储器12、程序存储器13、中央控制部14等。

透镜驱动部2、拍摄控制部5、图像生成部6、AF处理部7、图像处理部8、显示部9、图像记录部10、缓冲存储器12、程序存储器13、中央控制器14经总线15连接。

透镜部1例如具有多个透镜而构成,具体而言,具有聚焦透镜、变焦透镜(图示均省略)等。

透镜驱动部2使透镜部1所具有的聚焦透镜和变焦透镜等分别在光轴方向上驱动。具体而言,透镜驱动部2具有聚焦透镜和变焦透镜等的驱动源、和根据来自中央控制部14的控制信号使驱动源驱动的驱动器等(图示均省略)。

电子拍摄部3配置于透镜部1的光轴上。另外,电子拍摄部3例如由CCD(电荷耦合器件,Charge Coupled Device)或CMOS(互补金属氧化物半导体,Complementary Metal-oxide Semiconductor)等图像传感器所构成,将通过透镜部1的各种透镜的光学像转换为二维的图像信号。

单元电路4,输入从电子拍摄部3所输出的与被摄体的光学像相对应的模拟的拍摄信号,由保持输入的拍摄信号的CDS、放大该拍摄信号的增益调整放大器(AGC,自动增益控制)、将放大的拍摄信号转换为数字的拍摄信号的A/D变换器(ADC)等而构成。

单元电路4将数字的拍摄信号发送至图像生成部6和AF处理部7。

拍摄控制部5,以根据中央控制部14所设定的帧速率的定时,进行使电子拍摄部3和单元电路4驱动的控制。具体而言,拍摄控制部5具有驱动TG(定时发生器,Timing Generator)、电子拍摄部3的驱动器等(图示均省略);通过TG而控制驱动器和单元电路4等的动作定时。也就是说,中央控制部14根据从程序存储器13中读出的程序线图而设定快门速度时,拍摄控制部5的TG则将该快门速度所对应的电荷蓄积时间作为快门脉冲向驱动器输出,根据来自驱动器的驱动脉冲信号使电子拍摄部3动作,控制电荷蓄积时间(曝光时间)。

像这样构成的透镜部1、电子拍摄部3、单元电路4和拍摄控制部5,构成了拍摄被摄体的拍摄部。

图像生成部6,对从单元电路4送来的图像数据实施γ补正处理、白平衡处理等处理,并且生成亮度色差信号(YUV数据)。然后图像生成部6将生成的亮度色差信号的图像数据经总线15输出至中央控制部14。

AF处理部7,具有检测拍摄图像(例如,拍摄图像G1、G2、G3,参照图5A、图6A、图7A)中的关注被摄体(例如,关注被摄体S1、S2、S3)的图像区域(例如,图像区域A1、A2、A3,参照图5B、图6B、图7B)的图像区域检测部7a。

图像区域检测部7a,在例如每当从单元电路4送来图像数据时,对该图像数据一起进行水平方向(横)和垂直方向(竖)的规定倍率的缩小处理,依次生成低分辨率的图像数据(例如,横×竖:40×30像素,参照图4)L。然后,图像区域检测部7a,对于低分辨率的图像数据L,利用规定的图像识别技术,检测成为合焦对象的关注被摄体,提取图像区域。此处,关注被摄体的检测处理,例如可以从颜色和亮度的变化的连续性而提取关注被摄体的轮廓而进行;也可以预先检测关注被摄体的种类,与该关注被摄体的特征信息比较判定从而提取轮廓而进行。

此外,图5B、图6B、图7B中,将图像数据二值化表示,无点的白色所表示的图像区域A1、A2、A3相当于关注被摄体S1、S2、S3,有点的黑色所表示的图像区域相当于关注被摄体S1、S2、S3以外的部分。

关注被摄体不一定作为一个被摄体而独立,也可以是多个被摄体在前后方向上重叠的状态,还可以是多个被摄体在左右或上下方向偏离的分离的状态。

图像区域检测部7a在检测出提取的关注被摄体的图像区域A1、A2、A3的大小之后,设定包围该关注被摄体的图像区域A1、A2、A3的最小的矩形框W为该关注被摄体的图像区域的假定形状。具体而言,图像区域检测部7a通过从关注被摄体的图像区域的x轴方向(水平方向)的最大的坐标x2与最小的坐标x1的差计算出水平幅度x,并且从y轴方向(垂直方向)的最大的坐标y2与最小的坐标y1的差计算出垂直幅度y(参照图4),设定该水平幅度x和垂直幅度y的矩形框(假定对比度评价区域)W为关注被摄体的图像区域的假定形状。

图像区域检测部7a,构成了将包围作为拍摄部的透镜部1、电子拍摄部3、单元电路4和拍摄控制部5所拍摄的拍摄图像内的、成为合焦对象的关注被摄体的图像区域的最小的矩形框W设定为该关注被摄体的图像区域的假定形状的被摄体设定部。另外,图像区域检测部7a构成了检测拍摄图像内的关注被摄体的图像区域的形状的检测部。

AF处理部7具有大小判定部7b,判定由图像区域检测部7a所检测出的关注被摄体(例如,关注被摄体S1、S2、S3)的图像区域(例如,图像区域A1、A2、A3)的大小是否大于作为AF评价区域(例如,AF评价区域P1、P2、P3,参照图5C、图6C、图7C)可设定的最小大小。

大小判定部7b,具体而言,判定由图像区域检测部7a所设定的矩形框W的大小是否大于预先设定的各AF评价区域的最小大小。AF评价区域的最小大小,例如对于低分辨率(例如,横×竖:40×30像素)的图像数据L,最小水平幅度Xmin设定为6像素,最小垂直幅度Ymin设定为4像素。所以,由大小判定部7b所判定的结果,区域设定部7e(后述)一方面在矩形框W的大小大于各AF评价区域的最小大小的情况下,设定多个AF评价区域;另一方面在矩形框W的大小在各AF评价区域的最小大小以下的情况下,设定1个最小大小的AF评价区域。

大小判定部7b构成了大小判定部,判定关注被摄体的图像区域的大小是否大于AF评价区域(对比度评价区域)的可设定的最小大小。

AF处理部7具有分割数决定部7c,根据由图像区域检测部7a所设定的矩形框(假定对比度评价区域)W的大小,决定改矩形框W的分割数。

分割数决定部7c,根据矩形框W的垂直幅度y与水平幅度x的比率(纵横比Ratio),计算矩形框W的分割数,也就是说计算由区域设定部设定的多个AF评价区域P1、P2、P3的设定数。具体而言,分割数决定部7c首先根据下列式子,从垂直幅度y和水平幅度x计算矩形框W的纵横比Ratio。

Ratio=(x/y)×100…式(1)

接下来,分割数决定部7c根据计算出的纵横比Ratio,决定AF评价区域的整体形状(例如,“1×n型”、“2×n型”、“n×n型”、“n×1型”、“n×2型”,n为自然数),之后根据AF评价区域的整体形状,根据由矩形框W的大小和各AF评价区域的最小大小所规定的规定的计算式,计算矩形框W的分割数Nx、Ny。

例如,分割数决定部7c在纵横比Ratio小于44的情况下,在决定了AF评价区域的整体形状为“1×n型”之后,通过矩形框W的垂直幅度y除以AF评价区域的垂直方向的最小大小Ymin,计算矩形框W的垂直方向的分割数Ny。此外,由于AF评价区域的整体形状为“1×n型”,所以矩形框W的水平方向的分割数Nx为“1”。

例如,分割数决定部7c在纵横比Ratio在44以上且小于66的情况下,在决定了AF评价区域的整体形状为“2×n型”之后,通过矩形框W的垂直幅度y除以AF评价区域的垂直方向的最小大小Ymin,计算矩形框W的垂直方向的分割数Ny。此外,由于AF评价区域的整体形状为“2×n型”,所以矩形框W的水平方向的分割数Nx为“2”。

例如,分割数决定部7c在纵横比Ratio在66以上且小于266的情况下,在决定了AF评价区域的整体形状为“n×n型”之后,通过矩形框W的垂直幅度y除以AF评价区域的垂直方向的最小大小Ymin,计算矩形框W的垂直方向的分割数Ny。此外,由于AF评价区域的整体形状为“n×n型”,所以矩形框W的水平方向的分割数Nx为与垂直方向的分割数Ny相等的值。

例如,分割数决定部7c在纵横比Ratio在266以上且小于400的情况下,在决定了AF评价区域的整体形状为“n×2型”之后,通过矩形框W的水平幅度x除以AF评价区域的水平方向的最小大小Xmin,计算矩形框W的水平方向的分割数Nx。此外,由于AF评价区域的整体形状为“n×2型”,所以矩形框W的垂直方向的分割数Ny为“2”。

例如,分割数决定部7c在纵横比Ratio在400以上的情况下,在决定了AF评价区域的整体形状为“n×1型”之后,通过矩形框W的水平幅度x除以AF评价区域的水平方向的最小大小Xmin,计算矩形框W的水平方向的分割数Nx。此外,由于AF评价区域的整体形状为“n×1型”,所以矩形框W的垂直方向的分割数Ny为“1”。

分割数决定部7c构成了决定部,根据关注被摄体的图像区域的垂直方向和水平方向的长度的比率,决定多个邻接设定的AF评价区域的垂直方向和水平方向的设定数。

上述的纵横比Ratio、AF评价区域(AF框)的整体形状和分割数Nx、Ny只是一个例子,而不限于此,可适当任意地变更。

AF处理部7具有大小计算部7d,计算矩形的各AF评价区域(例如,AF评价区域P1、P2、P3)的大小。

大小计算部7d在矩形框W的垂直幅度y除以由分割数决定部7c所决定的矩形框W的垂直方向的分割数Ny而计算出AF评价区域的垂直幅度Y之后,根据预先规定的AF评价区域的形状(例如,横∶纵为4∶3的比率等),而计算AF评价区域的水平幅度X。

大小计算部7d构成了计算部,根据关注被摄体的图像区域的形状和大小(矩形框W的形状和大小)、和由分割数决定部7c所决定的AF评价区域的垂直方向和水平方向的设定数(矩形框W的分割数),计算AF评价区域的大小。

AF处理部7具有区域设定部7e,与关注被摄体(例如,关注被摄体S1、S2、S3)的图像区域(例如,图像区域A1、A2、A3)的形状相配而设定多个由大小计算部7d所计算出的大小的AF评价区域(例如,AF评价区域P1、P2、P3)。

区域设定部7e每当由大小计算部7d设定AF评价区域的大小时,依次设定与关注被摄体的图像区域的形状相配的多个AF评价区域。具体而言,区域设定部7e在大小判定部7d判定矩形框W的大小作为规定的AF评价区域大于可设定的最小大小的情况下,使矩形框W的水平幅度x的中点与AF评价区域(AF框)的水平幅度X的中点大体重叠着邻接配置多个矩形的AF评价区域。也就是说,区域设定部7e,对于关注被摄体的图像区域的水平方向,优先在垂直方向设定AF评价区域。由此,区域设定部7e设定了作为多个AF评价区域所组成的整体的扩展的矩形框。

此外,图5C、图6C、图7C中,表示了对于二值化的图像数据而设定了AF评价区域P1、P2、P3的状态。

区域设定部7e构成了区域设定部,与关注被摄体的图像区域的形状相配设定多个AF评价区域。

区域设定部7e在由大小判定部7d判定为矩形框W的大小在AF评价区域P1的最小大小以下的情况下,只设定一个AF评价区域P1(参照图5A~图5C)。

AF处理部7具有区域判定部7f,判定由区域设定部7e所设定的AF评价区域(例如,AF评价区域P1、P2、P3)内是否包括了规定的比例以上的关注被摄体(例如,关注被摄体S1、S2、S3)的图像区域(例如,图像区域A1、A2、A3)。

区域判定部7f作为区域判定部,对于与作为关注被摄体的图像区域的假定形状的矩形框W相配的由区域设定部7e所设定的多个AF评价区域,从各AF评价区域内检测出关注被摄体的图像区域(关注被摄体区域)之后,判定是否包括规定的比例(例如,5成)以上的该关注被摄体区域。

AF处理部7具有评价对象除外部7g,根据区域判定部7f的判断结果,将未包括指定比例以上的关注被摄体(例如,关注被摄体S1、S2、S3)的图像区域(例如,图像区域A1、A2、A3)的AF评价区域除外。

评价对象除外部7g作为除外部,在多个AF评价区域当中,将由区域判定部7f判定为未包括规定比例以上的该关注被摄体区域的AF评价区域作为无效AF框,从评价对象中除外。由此,只有由区域判定部7f判定为包括了规定比例以上的该关注被摄体区域的AF评价区域,才被设定为有效AF框。

AF处理部7具有评价值计算部7h,计算合焦状态的判定所涉及的AF评价值。

评价值计算部7h,对从单元电路4向AF处理部7送来的各图像数据,计算AF评价值。具体而言,评价值计算部7h在由图像区域检测部7a所生成的低分辨率的图像数据(例如,横×竖:40×30像素,参照图4)L当中,基于由区域判定部7f设定为有效AF框的AF评价区域(例如,AF评价区域P1、P2、P3)的图像数据,计算表示图像的对比度的高低的AF评价值(对比度评价值)。

图像处理部8具有编码部(图示省略)和解码部等(图示均省略)。编码部以指定的编码方式(例如,JPEG方式等)压缩、编码由图像生成部6所生成的图像数据(YUV数据);解码部对从图像记录部10读出的编码图像数据以该编码方式所对应的解码方式解码。

显示部9在将缓冲存储器12中存放的1帧的YUV数据转换为视频信号之后,在显示面画上以实时取景图像显示。具体而言,显示部9基于由被摄体的拍摄所生成的多个图像帧,显示实时取景图像,显示作为本拍摄图像而拍摄的浏览(レツクビユ一)图像。

图像再现时,显示部9基于从图像记录部10中读出、在图像处理部8中解码的图像数据,而显示图像。

图像记录部10由例如非易失性存储器(闪存)等构成。另外,图像记录部10存储由图像处理部8的编码部(图示省略)以规定的编码方式(例如,JPEG方式、MPEG方式等)而压缩、编码的静止图像数据、运动图像数据等。

操作输入部11,用于进行该拍摄装置100的规定操作。具体而言,操作输入部11具有被摄体的拍摄指示所涉及的快门按钮、拍摄模式和功能等的选择指示所涉及的选择决定按钮、变焦量的调整指示所涉及的变焦按钮等(图示均省略)。根据这些按钮的操作将规定的操作信号输出至中央控制部14。

缓冲存储器12是临时保存图像数据等的缓冲器,同时还作为中央控制部14的工作存储器等而使用。

程序存储器13中,存放着该拍摄装置100的功能所涉及的各种程序和数据。另外,程序存储器13中,还存放了程序AE数据、EV值表;其中程序AE数据构成了表示在静止图像拍摄时、连拍时、实时取景图像拍摄时等的各拍摄时的正确的曝光值(EV)所对应的光圈值(F)与快门速度的组合的程序线图。

中央控制部14是控制拍摄装置100各部分的单片机。

中央控制部14基于从操作输入部11所输出的输入操作信号,控制拍摄装置100的各部分。具体而言,中央控制部14在根据操作输入部11的快门按钮的规定操作所输出的拍摄信号输入时,根据程序存储器13中存储的规定的程序,由TG控制电子拍摄部3和单元电路4的驱动定时,执行拍摄静止图像的处理。由该静止图像的拍摄而在缓冲存储器12中存放的1帧的YUV数据,在图像处理部8中以JPEG方式等压缩编码,被作为静止图像数据而记录于图像记录部10中。

中央控制部14基于计算出的AF评价值,通过向透镜驱动部2输出规定的控制信号,使对焦电机驱动而调整透镜部1的合焦位置;其中AF评价值是基于由AF处理部7的评价值计算部7h的有效AF框的AF评价区域(例如,AF评价区域P1、P2、P3)的图像数据而计算出的。此时,中央控制部14也可以在由AF处理部7的区域设定部7e所设定的多个AF评价区域当中,选取由评价值计算部7h所计算出的各评价区域内的图像数据的对比度梯度的检测精度在规定值以上、且离该拍摄装置100距离最近的具有对比度的峰值的AF评价区域3的输出结果,使拍摄部合焦。也就是说,即使对于多个关注被摄体设定了多个AF评价区域的情况下,也可以对最近优先的一个关注被摄体合焦。

中央控制部14和透镜控制部2构成合焦控制部,基于由区域设定部7e所设定的AF评价区域内的图像数据,使拍摄部合焦。

接下来,基于由拍摄装置100的合焦方法所涉及的自动合焦处理,参照图2~图7D进行说明。

图2和图3是表示自动合焦处理所涉及的动作的一个例子的流程图。另外,图4是示意性地表示自动合焦处理所提取的关注被摄体的一个例子的图。

自动合焦处理是在实时取景图像的显示中,由用户对操作输入部11的快门按钮作规定操作(例如,半按操作等)的情况下,在中央控制部14的控制下的反复执行的处理。此外,也可以不管有无快门按钮的操作,在实时取景图像的显示中一定执行。

如图2所示,当由被摄体的拍摄所生成的拍摄图像(例如,拍摄图像G1、G2、G3)的多个图像帧(参照图5A、图6A、图7A等)所涉及的图像数据从单元电路4向AF处理部7送来时,AF处理部7就进行从该图像数据提取关注被摄体(例如,关注被摄体S1、S2、S3)的图像区域(例如,A1、A2、A3)的处理(步骤S1)。

具体而言,AF处理部7的图像区域检测部7a,对于从单元电路4所送来的各图像数据进行规定倍数的缩小处理,生成低分辨率的图像数据(例如,横×纵:40×30像素,参照图4)L之后,对于低分辨率的图像数据L利用规定的图像识别技术,检测成为合焦对象的关注被摄体S1、S2、S3(参照图5B、图6B、图7B等),提取图像区域A1、A2、A3。

图像区域检测部7a,如图4所示,设定包围提取的关注被摄体的图像区域A1、A2、A3的最小的矩形框W,为该关注被摄体的图像区域的假定形状(步骤S2)。

具体而言,图像区域检测部7a计算关注被摄体S1、S2、S3的图像区域A1、A2、A3的x轴方向(水平方向)的水平幅度x和y轴方向(垂直方向)的垂直幅度y(参照图4),设定该水平幅度x和垂直幅度y的矩形框W。

AF处理部7的大小判定部7b判定由图像区域检测部7a所设定的矩形框W的大小是否大于预先设定的作为AF评价区域(例如,AF评价区域P1、P2、P3)可设定的最小大小(步骤S3)。

当矩形框W的大小判定为不大于AF评价区域的最小大小时(步骤S3:否),AF处理部7的区域设定部7e设定一个最小大小的AF评价区域P1(参照图5C),使矩形框W的中心坐标与该最小大小的AF评价区域(AF框)的中心坐标重叠(步骤S4)。

中央控制部14使由区域设定部7e所设定的最小大小的AF评价区域P1的边缘部分所对应的AF框显示F1(参照图5D)在显示部9上显示为与实时取景图像的关注被摄体S1重叠(步骤S5)。然后,AF处理部7利用基于由评价值计算部7h的AF评价区域P1的图像数据而计算出的AF评价值,通过向透镜驱动部2输出规定的控制信号,使对焦电机驱动而调整透镜部1的合焦位置。

步骤S3中,矩形框W的大小被判定为大于AF评价区域的最小大小时(步骤S3:是),AF处理部7的分割数决定部7c由垂直幅度y和水平幅度x,根据下式(1)计算矩形框W的垂直幅度y和水平幅度x的比例(纵横比Ratio)(步骤S6)。

Ratio=(x/y)×100…式(1)

AF处理部7根据矩形框W的纵横比Ratio使处理分支(步骤S7)。

具体而言,在纵横比Ratio小于44的情况下,分割数决定部7c决定AF评价区域的整体形状为“1×n型”(步骤S711)。接下来,通过矩形框W的垂直幅度y除以AF评价区域的垂直方向的最小大小Ymin,计算矩形框W的垂直方向的分割数Ny,设定矩形框W的水平方向的分割数Nx为“1”(步骤S712)。

纵横比Ratio在44以上且小于66的情况下,分割数决定部7c决定AF评价区域的整体形状为“2×n型”(步骤S721)。接下来,通过矩形框W的垂直幅度y除以AF评价区域的垂直方向的最小大小Ymin,计算矩形框W的垂直方向的分割数Ny,设定矩形框W的水平方向的分割数Nx为“2”(步骤S722)。

纵横比Ratio在66以上且小于266的情况下,分割数决定部7c决定AF评价区域的整体形状为“n×n型”(步骤S731)。接下来,通过矩形框W的垂直幅度y除以AF评价区域的垂直方向的最小大小Ymin,计算矩形框W的垂直方向的分割数Ny,设定矩形框W的水平方向的分割数Nx为与垂直方向的分割数Ny相等的值(步骤S732)。

纵横比Ratio在266以上且小于400的情况下,分割数决定部7c决定AF评价区域的整体形状为“n×2型”(步骤S741)。接下来,通过矩形框W的水平幅度x除以AF评价区域的水平方向的最小大小Xmin,计算矩形框W的水平方向的分割数Nx,设定矩形框W的垂直方向的分割数Ny为“2”(步骤S742)。

纵横比Ratio在400以上的情况下,分割数决定部7c决定AF评价区域的整体形状为“n×1型”(步骤S751)。接下来,通过矩形框W的水平幅度x除以AF评价区域的水平方向的最小大小Xmin,计算矩形框W的水平方向的分割数Nx,设定矩形框W的垂直方向的分割数Ny为“1”(步骤S752)。

AF处理部7的大小计算部7d,用由分割数决定部7c所决定的矩形框W的垂直方向的分割数Ny去除矩形框W的垂直幅度y,计算出1个AF评价区域(例如,AF评价区域P2、P3)的垂直幅度Y之后,通过根据规定的AF评价区域的形状(例如,横∶纵为4∶3的比例等)计算AF评价区域的水平幅度X,计算AF评价区域的大小(步骤S8)。

AF处理部7的区域设定部7e将由大小计算部7d所计算出的大小的AF评价区域(例如,AF评价区域P2、P3),与对于低分辨率的拍摄图像L的关注被摄体(例如,关注被摄体S2、S3)的图像区域(例如,图像区域A2、A3)的形状相配,根据步骤S711、S721、S731、S741、S751所决定的类型,多个邻接地配置(步骤S9;参照图6C、图7C等)。

区域设定部7e对多个AF评价区域(例如,AF评价区域P2、P3)的每一个,判定是否从低分辨率的拍摄图像L的端部露出(步骤S10)。

AF评价区域被判定为从拍摄图像的端部露出时(步骤S10:是),区域设定部7e调整全部的AF评价区域的配置,以使从拍摄图像的边缘部分起超出的AF评价区域不存在(步骤S11)。也就是说,关注被摄体(例如,关注被摄体S2、S3)处于接近拍摄图像的上下左右的各端部的部分的情况下,就存在AF评价区域从拍摄图像的端部超出的情况。这样的情况下,为了平等地判定各AF评价区域的AF评价值,每个AF评价区域都需要不得从拍摄图像超出。由此,区域设定部7e移动各AF评价区域,使得不变更各AF评价区域的大小和形状,使全部的AF评价区域配置于拍摄图像内。

区域设定部7e在计算出全部的AF评价区域(例如,AF评价区域P2、P3)的中心坐标之后(步骤S12),判定AF评价区域的大小是否大于作为预先设定的AF评价区域可设定的最大大小(例如,对于由横×纵:40×30像素所构成的低分辨率的图像数据L,最大的水平幅度Xmax为8像素,最大的垂直幅度Ymax为6像素)(步骤S13)。步骤S10中,即使判定为AF评价区域未从拍摄图像的端部超出的情况下(步骤S10:否),区域设定部7e也将处理转移至步骤S12,进行之后的处理。

步骤S13中,判定为AF评价区域(例如,AF评价区域P2、P3)大于最大大小时(步骤S13:是),区域设定部7e以中心坐标不移动而配置最大大小的AF评价区域,以取代已配置的AF评价区域(步骤S14)。也就是说,由于关注被摄体(例如,关注被摄体S2、S3)的大小很大,所以对于关注被摄体即使设定了分割的多个AF评价区域,也恐怕各AF评价区域的大小变大,无法正确进行AF评价区域内的对比度评价。这样的情况下,通过改设为最大大小的AF评价区域,AF评价区域不会成为邻接状态,AF评价区域内的对比度评价得以正确进行。

AF处理部7的区域判定部7f对于由区域设定部7e所设定的多个AF评价区域(例如,AF评价区域P2、P3),在从各AF评价区域中检测出关注被摄体(例如,关注被摄体S2、S3)的图像区域(关注被摄体区域)之后(步骤S15),判定是否含有规定的比例(例如,5成)以上的该关注被摄体区域(步骤S16)。步骤S13中,判定为AF评价区域不大于最大大小时(步骤S13:否),区域判定部7f使处理转移至步骤S 15,进行以下的处理。

步骤S16中,判定为未含有规定的比例以上的关注被摄体区域时(步骤S16:否),AF处理部7的评价对象除外部7g,在多个AF评价区域(例如,AF评价区域P2、P3)当中,将未含有规定的比例以上的关注被摄体区域的AF评价区域设定为无效AF框,从评价对象中除外(步骤S17)。另一方面,判定为含有规定比例以上的关注被摄体区域时(步骤S16:是),AF处理部7的评价对象除外部7g,在多个AF评价区域当中,对含有规定的比例以上的关注被摄体区域的AF评价区域设定为有效AF框(步骤S18)。

中央控制部14使设定为有效AF框的AF评价区域(例如,AF评价区域P2、P3)的边缘部分所对应的AF框显示F2、F3(参照图6C、图7C等)与实时取景图像的关注被摄体(例如,关注被摄体S2、S3)的形状相配,在显示部9上显示(步骤S19),并且基于计算出的AF评价值,通过向透镜驱动部2输出规定的控制信号,使对焦电机驱动而调整透镜部1的合焦位置,其中AF评价值是基于由AF处理部7的评价值计算部7h的有效AF框的AF评价区域的图像数据而计算出的。

由此,根据上述的自动合焦处理,例如如图5A~图5D所示,用微距拍摄“花”等的情况下,提取“花瓣”的中心部分作为关注被摄体S1,即使在围住该关注被摄体S1的图像区域A1的矩形框W的大小不大于AF评价区域的最小大小的情况下,也设定一个最小大小的AF评价区域P1(参照图5C),将最小大小的AF评价区域P1的边缘部分所对应的AF框显示F1(参照图5D)与实时取景图像中的关注被摄体S1相重叠表示。

与之相对,例如如图6A~图6D所示,像在晴天的室外拍摄乒乓球等的“白球”的状况,即使在被摄体无对比度的情况下,也可以在检测出“白球”作为关注被摄体S2,并从围住该关注被摄体S2的图像区域A2的矩形框W的纵横比Ratio而决定AF评价区域P2的设定数量之后,计算各AF评价区域P2的大小。然后,2×2型的4个AF评价区域P2与关注被摄体S2的图像区域A2的形状相配,设定为邻接(参照图6C),AF评价区域P2的边缘部分所对应的4个AF框显示F2(参照图6D)与实时取景图像的关注被摄体S2相重叠表示。

另外,例如如图7A~图7D所示,即使是被摄体(例如,重叠的“多个骰子”)在边缘的构图,也能将该“多个骰子”检测为关注被摄体S3,与上述相同,1×4型的4个AF评价区域P3设定为与关注被摄体S3的图像区域A3的形状相配而邻接(参照图7C),将AF评价区域P3的边缘部分所对应的4个AF框显示F3(参照图7D)与实时取景图像的关注被摄体S3相重叠而显示。

如上,根据本实施方式的拍摄装置100,检测拍摄图像(例如拍摄图像G1、G2、G3)内的成为合焦对象的关注被摄体(例如,关注被摄体S1、S2、S3)的图像区域(例如,图像区域A1、A2、A3)的形状,与该关注被摄体的图像区域的形状相配设定多个AF评价区域(例如,AF评价区域P2、P3),基于这些AF评价区域内的图像数据,可以使透镜部1合焦。也就是说,自动合焦处理中,由于依次检测关注被摄体的图像区域的形状,与依次检测出的关注被摄体的图像区域的形状相配,依次设定多个AF评价区域,即使在因部位而对比度不同的关注被摄体作为AF对象的情况下,也可以防止设定对比度低的部分为AF区域。进一步地,通过设定包括关注被摄体整体的大的AF区域,可以防止AF评价区域内的图像数据的对比度梯度变缓。

由此,由与关注被摄体的图像区域的形状相配所设定的多个AF评价区域,可使自动合焦处理的精度提高。

另外,关注被摄体(例如,关注被摄体S1、S2、S3)的图像区域(例如,图像区域A1、A2、A3)的大小大于AF评价区域(例如,AF评价区域P1、P2、P3)的最小大小的情况下,一方面使矩形的AF评价区域P2、P3多个邻接着设定;另一方面,关注被摄体的图像区域的大小在AF评价区域的最小大小以下的情况下,由于只设定了一个最小大小的AF评价区域P1,所以不管关注被摄体的图像区域是什么大小,也可以正确进行AF评价区域的设定。

进一步地,因为是根据关注被摄体(例如,关注被摄体S1、S2、S3)的图像区域(例如,图像区域A1、A2、A3)的垂直方向和水平方向的比例,也就是说,根据基于关注被摄体的图像区域的形状和大小,作为该关注被摄体的图像区域的假定形状而设定的矩形框W的大小,而决定AF评价区域的垂直方向和水平方向的设定数量,所以能够根据关注被摄体的图像区域的形状和大小,使AF评价区域的设定数量改变,正确地进行多个AF评价区域的设定。

另外,由于基于关注被摄体(例如,关注被摄体S1、S2、S3)的图像区域(例如,图像区域A1、A2、A3)的形状和大小、以及AF评价区域(例如,AF评价区域P1、P2、P3)的垂直方向和水平方向的设定数,而计算AF评价区域的大小,所以可以根据关注被摄体的图像区域的形状和该图像区域的大小和AF评价区域的垂直方向和水平方向的设定数量,使AF评价区域的大小改变,可以正确地进行多个AF评价区域的设定。

此外,AF评价区域的大小的计算,只要是以AF评价区域的垂直方向和水平方向的设定数量为基准进行就可以,不一定非要以关注被摄体的图像区域的形状和大小为基准。

进一步地,对于与作为关注被摄体(例如,关注被摄体S1、S2、S3)的图像区域(例如,图像区域A1、A2、A3)的假定形状的矩形框W相配而设定的多个AF评价区域(例如,AF评价区域P1、P2、P3),在未包括规定的比例以上的该关注被摄体的图像区域的情况下,由于该AF评价区域从评价对象中除外,所以可以从围住关注被摄体的图像区域的矩形框W所对应的多个AF评价区域当中,将不与关注被摄体的图像区域相对应的AF评价区域设定为无效AF框,并从评价对象中除外,可以只对与关注被摄体的图像区域相对应的AF评价区域设定为有效AF框,可以正确地进行多个AF评价区域的设定。

此外,本发明不限于上面的实施方式,只要在不脱离本发明的主旨的范围内,可以进行各种改良和设定的变动。

例如,在由区域设定部7e的AF评价区域的设定中,也可以配置为与关注被摄体的图像区域的轮廓部分相交。也就是说,即使在关注被摄体自身对比度小的情况下,由于至少关注被摄体与其外的部分的边界存在着对比度差,所以可以由评价值计算部7h计算更加正确的AF评价值,可以更加正确地进行自动合焦处理。

另外,在关注被摄体的图像区域的检测时,是从由单元电路4所送来的图像数据而生成低分辨率的图像数据L,从而利用该图像数据L而进行的,但是生成低分辨率的图像数据L不是必要的,也可以利用由单元电路4所送来的图像数据本身而进行。

进一步地,是检测关注被摄体的图像区域的形状和大小,但也不限于此,也可以至少检测关注被摄体的图像区域的形状,而是否检测大小可恰当地任意变更。

另外,作为合焦控制部,示例了中央控制部14和透镜驱动部2,但不限于此,也可以设置使电子拍摄部3在光轴方向移动的驱动机构(图示省略),使该驱动机构在中央控制部14的控制下驱动。

进一步地,拍摄装置100的结构,上述实施方式中的示例是一个例子,但不限于此;而只要是至少具有拍摄部、检测部、区域设定部、合焦控制部的结构,就可以恰当地任意变更。

此外,上述实施方式中,构成为作为检测部、区域设定部、合焦控制部的功能,是在中央控制部14的控制下,由AF处理部7的驱动而实现的,但不限于此,也可以构成为由中央控制部14执行规定的程序等而实现。

也就是说,在存储程序的程序存储器13中,预先存储了包括检测处理程序、区域设定处理程序、合焦控制处理程序的程序。于是,由检测处理程序,可以使中央控制部14的CPU作为检测部而发挥功能,该检测部检测由拍摄部所拍摄的拍摄图像(例如,拍摄图像G1、G2、G3)内的成为合焦对象的关注被摄体(例如,关注被摄体S1、S2、S3)的图像区域(例如,图像区域A1、A2、A3)的形状。另外,由区域设定处理程序,可以使中央控制部14的CPU作为区域设定部而发挥功能,该区域设定部与由检测处理程序所检测出的关注被摄体(例如,关注被摄体S1、S2、S3)的图像区域(例如,图像区域A1、A2、A3)的形状相配合,设定多个对比度评价区域。另外,由合焦控制处理程序,可以使中央控制部14的CPU作为合焦控制部而发挥功能,该合焦控制部基于由区域设定处理程序所设定的对比度评价区域内的图像数据,使拍摄部合焦。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号