首页> 中国专利> 晶体形成设备与系统以及制造和使用该晶体形成设备与系统的方法

晶体形成设备与系统以及制造和使用该晶体形成设备与系统的方法

摘要

本发明提供微流体设备及其使用方法。在一个实施例中,一种微流体系统,包括:接受站,所述接受站适于接受具有多个腔室的微流体设备,所述微流体设备被连接到载体上,并且多个腔室的至少一些腔室与载体内的多个入口相连接;适于与载体内的至少一个入口相接合的接口板;被连接到接口板上、并且适于向载体内的至少一个入口提供压力流体的流体源;以及与流体源和接口板相连接的控制器,用于引导流体从流体源流向载体。

著录项

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2012-07-04

    授权

    授权

  • 2011-02-02

    实质审查的生效 IPC(主分类):C30B7/00 申请日:20050125

    实质审查的生效

  • 2010-12-15

    公开

    公开

说明书

本申请是申请日为2005年1月25日,申请号为No.200580009282.0,题目为“晶体形成设备与系统以及制造和使用该晶体形成设备与系统的方法”的专利申请的分案申请。

优先权要求

本申请基于35U.S.C§119(e)要求以下列共有的、同时待审的美国临时专利申请为优先权基础:

No.60/558,316Unger于2004年3月30日提交的,题为Microfluidic Devices and Systems and Methods for Using the Same;

No.60/557,715Unger于2004年3月29日提交的,题为Microfluidic Devices and Systems and Methods for Using the Same;和

No.60/539,283Unger等人于2004年1月25日提交的,题为Microfluidic Devices and Systems and Methods for Using the Same;

基于此文中所披露的全部目的和特定目的,通过参考将以上所有申请通过引用的方式合并于本文中。

对专利以及专利申请的交叉参考

本申请涉及以下专利或专利申请中所披露的主题:美国专利申请No.09/796,666,由Unger等人(“Unger”)于2001年2月28日提交,题为Microfabricated Elastomeric Valve and Pump Systems,现在为美国专利No.6,408,878;美国专利申请No.09/887,997,由Hansen等人(“Hansen”)于2002年4月5日提交,公布为美国2003.9961686A1;以及美国专利申请No.10/160,906,由Delucas等人(“Delucas”)于2002年5月30日提交,2002年11月2日公布为美国专利公开No.2002/0164812A1,该申请是2002年4月5日提交的美国专利申请No.09/543,326(现在已经放弃)的继续申 请,其要求以1999年4月6日提交的美国临时专利申请No.60,128,012为优先权基础。以上的申请通过引用的方式被合并于本文中。

本申请还涉及以下专利或专利申请中所披露的主题:美国专利申请No.10/997,714,由Facer等人于2004年11月24日提交,题为Devices and Methods for Holding Microfluidic Devices,其要求以Facer等人于2003年11月26日提交的美国临时专利申请No.60/525,245为优先权基础。以上的申请通过引用的方式被合并于本文中。

本申请进一步涉及以下专利或专利申请中所披露的主题:美国专利申请No.10/827,917,由Nassef等人于2004年4月19日提交,题为Crystal Growth Devices and Systems,and Method for Using Same,其要求以Nassef等人于2003年10月5日提交的美国临时专利申请No.60/509,098、Nassef等人于2003年4月28日提交的美国临时专利申请No.60/466,305以及Nassef等人于2003年4月17日提交的美国临时专利申请No.60/463,778为优先权申请。以上的申请通过引用的方式被合并于本文中。

技术领域

本发明涉及的领域有:微流体、芯片实验室(lab-on-a-dhip)以及聚合酶链反应(“PCR”)、生化分析、蛋白质结晶和蛋白质结晶条件筛选、微制造、实验室机器人、自动生物筛选及分析、以及其他领域。

背景技术

对于生物和化学领域而言,结晶是一项重要的技术。特别是,靶化合物的高质量晶体可以被X光衍射技术分析,以便产生靶的精确三维结构。随后可以利用该三维结构信息来预测靶的官能度和性能。

在理论上,结晶过程是简单的。纯的靶化合物被溶解在溶剂中。随后改变已溶解的靶材料的化学环境,使得靶的溶解度变小,从而转变成晶态的固相。尽管压力和温度的变化也会影响靶材料的溶解度,但是化学环境的改变通常是借助加入结晶剂、使靶材料的溶解度降低来实现的。

但是在实践中,形成高质量的晶体是非常困难的,有时甚至是不可能的,这需要研究人员的大量的反复试验和耐心。特别是,即使简单的生物 化合物也具有高度复杂的结构,这意味着它们不容易形成高度规则的晶体结构。因此,即使实际上可能获得晶体,研究人员也还是需要耐心并且有条理、尝试地试验大量结晶条件,改变参数,诸如试样浓度、溶剂种类、反萃取剂种类、温度以及时间长度,以便获得高质量的晶体。

因此,用于执行靶材料结晶的高产量筛选的方法和结构是现有技术所需要的。

微流体设备被定义为具有截面尺寸在1000μm以下的一个或多个流体路径(经常称为通道、微通道、沟或凹槽)的设备,并且这些流体路径提供诸如增大产量以及减小反应体积等益处。将微流体设备连接到大尺寸系统,比如机器人液体分配系统,是很有挑战性的,这通常会导致在单个微流体设备中能够并行进行的反应数量减少。作为非限制性的实例,Delucas公开的内容中,使用微流体设备在并联的阵列中实施纳升(nanoliter)规模的蛋白质结晶筛选反应。

在Unger公开的内容中,微流体设备具有弹性块,该弹性块带有可偏转的隔膜。在所公开的一个实施例中,如图1A和1B所示,第一弹性层1被粘结到第二弹性层3的顶表面7上以形成弹性块5,其中第一弹性层1具有底表面8,在该底表面8上具有微制造的凹槽2;第二弹性层3具有微制造的凹槽4,所形成的弹性块5具有由第一弹性层1的凹槽2所形成的第一通道6,该第一通道6被第二弹性层3的顶表面7阻断,并且如果第二弹性层的凹槽4与第一通道6相重叠,则借助第二弹性层3的、将第一通道6和第二弹性层3的凹槽4分隔开的一部分形成可偏转的隔膜8。随后,可以将弹性块5连接到基片9上,从而第二弹性层3的凹槽4借助基片9的顶表面形成第二通道10。通过致动可偏转隔膜8、使其偏向或者偏离第二通道10,可以控制流过第二通道10的流体流。可偏转的隔膜8可以通过增加或降低第一通道6内的流体压力而被致动,以便使可偏转隔膜8分别偏向或偏离第二通道10。或者,通过增加或降低第二通道10内的流体压力,可偏转的隔膜8能够分别偏入或偏离第一通道6。

图1C表示上述设备的使用情况,其中液体通过通路孔11被引入第二通道10,该通路孔11是通过从弹性块的顶表面穿过第一弹性层1和部分第二弹性层3直至第二通道10钻设流体路径而形成的。随后,可以通过 施加流体压力,比如通过第二通路孔13施加气压,将充满第二通道10的流体分隔开;该第二通路孔13是通过穿过第一弹性层1进入第二通道6钻芯而形成的,从而当第一通道6内的压力增大时,可偏转隔膜8向下偏转进入第二通道10,以便接触基片9的表面。Unger的特殊设备提供了高密度、可靠的微流体设备,其中通过致动可偏转隔膜能够引起和/或控制流体在其中的流动,致使隔膜起到阀或泵的一部分的作用。

微流体设备的理想用途是对应能够使蛋白质形成大到足够用来进行结构分析的晶体的条件而进行筛选。在确定该类蛋白质的结构时,蛋白质结晶是重要的步骤。通常,通过手动吸取含有蛋白质的溶液和含有蛋白质结晶剂的溶液进行反应,以便引发蛋白质形成足够大的晶体,以便与X光源共线来进行X光衍射研究。通常通过无数次的选配试验来确定可以形成足够大的晶体的适当条件。因此,珍贵的蛋白质分离物的供应是非常有限的,因此在对应正确结晶条件进行筛选的同时需要审慎地使用。作为在条件筛选的过程中节约蛋白质的方式,人们致力于减小蛋白质结晶试样的体积,同时在筛选时增加并行试验的数量。在Delucas公开的内容中,尤其公开了用于执行纳升规模的蛋白质结晶试验的方法和设备。在所公开的一个实施例中,微流体设备被用于在基片上形成的井孔中执行纳升规模的蛋白质结晶试验。

在Hansen公开的内容中包括用于执行蛋白质结晶反应的微流体设备。在Hansen公开的一些实施例中,采用了Unger的具有可偏转隔膜的弹性块来调节流体流动。例如,微流体设备具有液体连通的第一腔室和第二腔室,该第一腔室含有蛋白质溶液,第二腔室具有含有结晶剂的溶液,当结晶剂与第一腔室内的蛋白质接触时可以引发蛋白质晶体形成。在其中的一个实施例中,通过一个或多个通道来形成每个腔室之间的液体连通。位于各个腔室之间并且与通道相连通的阀能够受致动来调节两个腔室之间的扩散。第一腔室与第一入口相连通,该第一入口用于向第一腔室内引入含有蛋白质的溶液,而第二腔室与第二入口相连通,第二入口用于向腔室内引入结晶剂。

Hansen所公开的内容中包括用于保持微流体设备的载体。Hansen载体的实例如图2所示,其中微流体结构11000被放置在框架底座11002内 且在具有观察窗1103的接受区域1106内,该微流体结构11000具有几个入口和入口排,比如井孔排11012a和井孔排11012b、试样入口11012c以及密封阀控制入口11012d和接口阀控制入口11012e。具有压力空腔11026和11024的顶框架11014被放置在框架底座11002上,并且微流体结构11000被夹在二者之间,从而每个压力空腔密封井孔排11012a和11012b,以便在每个井孔排的顶部形成压力腔。在使用时,井孔排11012a和11012b的每个井孔通常都充满了用于结晶蛋白质的不同试剂,并且试样入口11012c载有包含待结晶蛋白质的试样溶液。密封阀控制入口11012d和接口阀控制入口11012e通常充有液体,比如油或水,以便液压致动微流体设备内的阀。气压管线被插入控制入口11012d和11012e,以便施加压力气体,该压力气体与微流体设备中每个控制入口通道内所含有的液体流体连通,从而该液体偏转位于第一弹性层通道和第二弹性层通道之间特定交叉位置处的隔膜阀,如图1所示。

类似地,试样溶液可以受驱动进入通道并且继续流动进入微流体设备的腔室内,这是通过向试样入口11012c类似地施加气压而引起试样溶液产生液压,进而试样溶液通过通道流入腔室来实现的。通过向每个压力空腔施加气压,装入井孔或井孔排11012a和11012b的试剂也能够受驱动进入相应的通道,并继续流动进入微流体设备的腔室中。一旦微流体设备内的试样腔室和试剂腔室被充满,随后可以通过致动可偏转隔膜来关闭密封阀,其中该隔膜在腔室之前与入口通道相连通,借此将试样和试剂保持在相应的腔室内。同时,在每个试样/试剂腔室对之间的接口阀保持关闭,以便防止试剂扩散进入试样,并且防止试样扩散进入试剂。当所有的腔室充满后,通过打开接口阀、同时保持密封阀关闭,开始自由的界面扩散。

使用Hansen所公开的设备进行蛋白质结晶试验可能会用几天的时间。如上所述,密封阀应该始终保持关闭,以便防止试样或试剂流出腔室而交叉污染。因此,需要保持用于建立稳定液压源的气压源,以便使密封阀保持关闭。这可以通过利用“脐带”将载体连接到气压源,比如受控气源来实现。然而,这种脐带会限制使用者在实验室内移动载体,例如,将载体移入冰箱或恒温箱中以便实现温度控制的能力。这样,需要一种系统,该系统能够使微流体设备,比如Hansen或Unger所公开的微流体设备不再 需要脐带来维持阀致动。

2003年2月20日公开的、发明人为Schulte等人、发明名称为“Well-Plate Microfluidics”的美国专利公开文献No.2003-0034306A1的全文在此引入并用作各种目的的参考,该文献公开了微流体设备,但是本发明与Schulte的设备之间有多处本质上的差别。

发明内容

本发明提供一种微流体设备及其使用方法。本发明还提供使用本发明的微流体设备、在该微流体设备内执行的分析反应的装置和系统,以及用于产生、存储、组织和分析由使用微流体设备所产生的数据的系统。本发明还提供使用和制造微流体系统和设备的方法,在有些实施例中,该系统和设备可用于晶体形成。

本发明提供一种用于操作微流体设备的装置。在一个实施例中,该装置包括压板,该压板具有压板表面,压板表面上带有一个或多个流体口。所述流体口在空间上对应于微流体设备表面上的一个或多个井孔。还包括用于相对压板保持微流体设备的平台,以及用于将压板压在微流体设备上的压板致动器,从而压板的至少一个流体口被压在井孔之一上,以便形成包括井孔和流体口的压力腔,从而当压力流体通过流体口之一被导入或流出压力腔时,腔内的流体压力发生变化。

在另一实施例中,该装置包括机器人压板致动器;该压板致动器处于控制器的电子控制之下;该控制器为计算机或处于计算机控制之下;该计算机按照程序运行;该程序由装置的使用者定制;该微流体设备包括通过通道和沿着通道设置的阀彼此流体连通的第一和第二腔室,该阀在打开或关闭时控制第一和第二腔室之间的流体连通,并且当微流体设备与压板连接时,阀处于自动的阀致动设备的控制之下;该自动的阀致动设备受到计算机的控制;该阀通过自动的阀致动设备而被打开和关闭;该阀包括可偏转的隔膜;并且压板致动器适于利用大约1psi(1磅/平方英寸)至35psi(35磅/平方英寸)之间的压力来向至少一个流体压力口分配压力流体。

本发明还提供微流体系统。一个这种系统包括具有多个腔室的微流体设备,该微流体设备被连接到载体上,并且多个腔室的至少部分腔室与载 体内的多个入口相连接。该系统包括:接口板,该接口板适于与载体中的至少一个入口相接合;被连接到接口板上的流体源,所述流体源适于向载体内的至少一个入口提供压力流体;以及控制器,其与流体源和接口板相连接,用于引导流体从流体源流向载体。

在另外的实施例中,微流体设备还包括多个阀管线,并且流体在控制器的控制下被导入至少一些阀管线中;该控制器还适于打开和关闭至少一些阀管线;该载体还包括多个井孔,其中至少一些井孔与多个入口的相应入口相连接,相应入口适于接受流体,以便在该微流体设备中进行分析;为了驱动井孔内的流体流入多个腔室中的至少一些腔室内,该控制器适于通过接口板向多个井孔中的至少一些井孔施加压力;该接口板包括两个或多个分隔开的接口板,每个接口板适于与载体内的至少一个入口相接合;该载体包括积蓄腔,该积蓄腔具有积蓄口,并且其中接口板包括与积蓄腔流体连通的孔口;该积蓄腔还包括用于控制流体通过积蓄口流入积蓄腔的阀,该阀与积蓄口流体连通;该阀允许流体通过积蓄口流入积蓄腔,同时限制流体通过积蓄口流出积蓄腔;当该阀受致动时,该阀允许流体流出积蓄腔;该阀被机械致动;该阀为单向阀;接口板包括阀致动器,该阀致动器适于在接口板与载体相连接时与阀相接合;积蓄腔还包括液体;积蓄腔还包括气体,或气体和液体;该气体相对于积蓄腔外部的气压而被压缩;接口板还包括密封垫片;积蓄腔室适于压力使其保持高于所需压力水平,以便维持微流体设备内的阀处于关闭状态;并且该关闭的阀持续至少两天。

本发明还提供一种用于在蛋白质结晶条件筛选中实施步骤的方法。在一个实施例中,该方法包括提供微流体设备并执行下述步骤之一:利用机器人向微流体设备的井孔中注入试剂,利用机器人将微流体设备从机器人液体分配站移到另一不同的地点,利用机器人将该微流体设备放入装置中;将微流体设备从该装置中移除,利用机器人将该微流体设备放入光学检查站,并且利用自动成像系统光学探查微流体设备。利用机器人是指通过在计算机或电子控制器控制下的机械设备移动微流体设备。

本发明提供用于结晶蛋白质的方法。在一个实施例中,该方法包括提供微流体设备,该微流体设备具有尺寸在1000μm到1μm之间的第一腔室、 尺寸在1000μm到1μm之间的第二腔室,以及尺寸在1000μm到1μm之间的通道。该第一和第二腔室通过通道彼此流体连通。沿着通道设置有阀,当受致动而打开或关闭时,该阀控制第一和第二腔室之间的流体连通。该方法包括向第一腔室内导入结晶剂,向第二腔室内导入蛋白质溶液,打开阀,使得第二腔室内的蛋白质溶液与第一腔室内的结晶剂流体连通,以及在一段时间之后关闭阀,以便中断第一和第二腔室之间的流体连通。

在一些实施例中,该方法包括:阀受到自动的阀致动设备的控制;自动的阀致动设备进一步受到计算机的控制;阀打开和关闭两次或多次;微流体设备是多层的微流体设备;多层的微流体设备包括至少一个弹性层并且阀包括可偏转的隔膜;多层微流体设备的两个层包括弹性材料并可以粘合到一起形成弹性块;多层微流体设备的两层或更多层包括在第一层内的第一通道,以及在第二层内的第二通道,其中第一通道的一部分和第二通道的一部分在重叠区域相重叠;第一和第二通道通过位于重叠区域内的通路孔流体连通;重叠区域还包括可以偏转进入第一或第二通道的可偏转隔膜,以便控制流体沿着第一或第二通道流动;并且可偏转隔膜与第一或第二层是整体的。

在一个方面中,本发明提供一种微流体设备,包括:具有凹槽的第一弹性层,其宽度尺寸在0.1μm到1000μm之间;具有凹槽和顶表面的第二弹性层,其宽度尺寸在0.1μm到1000μm之间,其中第一弹性层与第二弹性层的顶表面相粘合,以便形成内部具有可偏转部分的弹性块,该弹性块具有限定表面区域的底表面,并且该弹性块具有高度;其中具有凹槽且具有第一表面的基片,该基片具有在基片的第一表面上的孔口,该孔口与基片的凹槽流体连通,其中弹性块被连接到基片上,以便形成弹性块不阻塞孔口的微流体设备。

在一些实施例中,孔口是在基片的第一表面上具有开口的井孔,当弹性块与基片相连接时,弹性块不会堵塞井孔开口;该基片还包括与基片第一表面不同的第二表面,并且其中弹性块被连接到基片的第二表面上,第一表面是基片的顶表面而第二表面是基片的底表面,弹性块以不堵塞孔口的方式被连接到基片的第一表面上,该孔口为井孔,并且当弹性块与基片相连接时该井孔壁的高度延伸到基片的第一表面之上,井孔壁的高度与弹 性块的高度相同,井孔壁的高度小于弹性块的高度,井孔壁的高度大于弹性块的高度;凹槽是多个凹槽,并且孔口是多个孔口,其中每个孔口与基片的多个凹槽的至少一个流体连通,多个孔口中的至少一个是井孔,井孔限定的容积在0.1μl到400μl之间,井孔限定的容积在0.1μl到250μl之间,井孔限定的容积在0.1μl到100μl之间,井孔限定的容积在0.1μl到10μl之间,基片的多个凹槽中的至少一个凹槽至少有一个区域的截面尺寸在0.1μm到1000μm之间,基片的多个凹槽中的至少一个凹槽至少有一个区域的截面尺寸在0.1μm到500μm之间,基片的多个凹槽中的至少一个凹槽至少有一个区域的截面尺寸在0.1μm到100μm之间,基片的多个凹槽中的至少一个凹槽至少有一个区域的截面尺寸在0.1μm到10μm之间;和/或基片包括聚合物;基片包括从由聚甲基丙烯酸甲酯、聚苯乙烯、聚丙烯、聚酯、含氟聚合物、聚四氟乙烯、聚碳酸酯、多晶硅、以及聚二甲硅氧烷组成的群组中选出的聚合物;基片包括玻璃或石英;基片还包括连接到基片上的密封层,该密封层用于密封凹槽,以便形成与凹槽隔离的通道;该密封层包括薄膜,该薄膜通过粘合剂而被粘结;该薄膜是粘合剂薄膜,该粘合剂薄膜在薄膜粘合到基片之前其上具有粘合剂;弹性块还包括通路孔,该通路孔在基片的凹槽和第一弹性层的凹槽之间提供流体连通;该通路孔是通过对弹性块钻芯形成的;该通路孔是通过对弹性块钻孔形成的,该通路孔是通过熔蚀弹性块形成的,该熔蚀是采用激光束实现的,该激光束是借助受激准分子激光器产生的,该通路孔是通过蚀刻第一或第二弹性层之一而形成的,该通路孔是在形成弹性块之前在第一或第二弹性层上形成的,弹性层上的凹槽与第二弹性层上的凹槽重叠,其中弹性块的可偏转部分是由第二弹性层形成的,并位于第二弹性层的凹槽与第一弹性层的凹槽相重叠的位置,从而形成分隔第一弹性层的凹槽和第二弹性层的凹槽的可偏转隔膜,基片的凹槽以及第一弹性层的通路孔和凹槽内含有流体,当该流体的压力与第二层的凹槽内的第二流体压力不相同时,致动可偏转隔膜,引起可偏转隔膜偏转进入第一弹性层的凹槽或第二弹性层的凹槽内,通路孔是通过可沿着x和y方向二维移动的机器人设备加工形成的,该机器人设备包括可沿x,y方向移动的工作台,第一和第二弹性层中的至少一个包括杨氏模量在1000Pa到1,000,000Pa之间的弹性材料,第一和第二弹 性层中的至少一个包括杨氏模量在10,000Pa至1,000,000Pa之间的弹性材料,第一和第二弹性层中的至少一个包括杨氏模量在100,000Pa到1,000,000Pa之间的弹性材料,第一和第二弹性层中的至少一个包括杨氏模量在360,000Pa和870,000Pa之间的弹性材料;至少一个弹性层包括聚二甲硅氧烷,至少一个弹性层包括由二元聚合物形成材料制得的聚合物,至少一个弹性层被等离子蚀刻,弹性块接触基片,弹性块被粘结到基片上,在弹性块和基片之间还包括垫片,弹性块被胶粘到基片上,孔口与积蓄腔流体连通,积蓄腔具有向积蓄腔内导入流体的积蓄口,积蓄腔还包括用于控制流体通过积蓄口流入积蓄腔的阀,该阀与积蓄口流体连通,该阀允许流体通过积蓄口流入积蓄腔同时限制流体通过积蓄口流出积蓄腔,当阀被致动时该阀允许流体流出积蓄腔,该阀被机械地致动,该阀是单向阀,该积蓄腔还包括液体,该积蓄腔还包括气体,该积蓄腔还包括气体和液体,该气体相对于积蓄腔外的气压被压缩,孔口为多个孔口,并且基片上的凹槽是多个凹槽,多个孔口中的每一个与多个凹槽中的至少一个流体连通,多个孔口的每一个与多个井孔中的一个流体连通,每个井孔具有在第一表面上的开口,弹性块与基片相连接时并不堵塞井孔开口,井孔开口具有中心点,并且多个井孔间隔地布置,致使各井孔的中心到中心的间距为微量滴定板的中心点间距,该微量滴定板的形式可以选自96井孔微量滴定板、384井孔微量滴定板、864井孔微量滴定板、1536井孔微量滴定板、6144井孔微量滴定板;井孔开口具有中心点,并且多个井孔间隔布置,使得中心点到中心点的间距大约为4.5mm。

本发明的另一方面提供一种微流体设备,包括其中具有第一凹槽的第一层;具有第二层顶表面并且其中具有第二凹槽的第二层;具有顶表面的基片,其中第一层与第二层相粘结,从而由第一凹槽和第二层顶表面形成第一通道;并且第二层与基片相粘结从而由第二凹槽和基片顶表面形成第二通道,并且第一通道的一部分与第二通道的一部分相重叠,从而形成通道重叠区域;并且,在通道重叠区域处第一通道-第二通道的通路孔在第二通道和第一通道之间形成流体连通,其中第一通道-第二通道的通路孔是在第一层和第二层粘结到一起以形成微流体块之后制造的。

在另一方面中,第一通道-第二通道的通路孔从第二通道开始延伸,穿 过并超出第一通道;第一通道一第二通道的通路孔是通过激光熔蚀形成的;至少一个或至少两个层包括弹性体;基片包括聚合物、玻璃或石英;聚合物从聚甲基丙烯酸甲酯、聚苯乙烯、聚丙烯、聚碳酸酯、多晶硅以及塑料组成的群组中选出;第二层还包括由第二层上的第三凹槽和基片的顶表面形成的第三通道,其中第三通道的一部分和第一通道的第二部分相重叠而形成第二重叠区域,第三通道和第二通道通过位于第二重叠区域处的第一通道-第三通道通路孔流体连通;第一通道-第二通道通路孔是在第一层和第二层粘结在一起之后制造的;基片还包括基片凹槽,基片凹槽的一部分与第一通道的一部分相重叠而形成第一通道-基片通道重叠区域;密封层的顶表面与基片相粘结,使得至少一个基片凹槽形成基片通道;第一通道-基片通道通路孔位于第一通道-基片通道重叠区域,其中第一通道和基片通道通过第一通道流体连通。

本发明的另一方面通过相互连接位于微流体设备的不同层内的通道而增加该微流体设备内的反应密度,其中所述相互连接是通过通路孔形成的,优选这些通路孔是在两个或更多个包含通道的层被粘结在一起之后制成的,更优选采用激光熔蚀工具制造通路孔。

本发明在一个方面中提供一种用于保持微流体设备的载体,包括:外壳,该外壳在其中限定腔室并且具有用来接受微流体设备的接受部分;用于保持该微流体设备的连接块(connection block),其中连接块可以通过一个或多个管脚与微流体设备相连接,并且该微流体设备在被连接块保持后可以插入外壳的接受部分。

其他实施例包括:一个或多个管脚是指两个或多个管脚,一个或多个管脚中的至少一个是管子;接受器具有至少一个槽,用于在微流体设备被插入接受部分之后引导并保持该微流体设备;接受器还包括一个或多个吸移管支架,用于在微流体设备被插入接受部分之后引导吸移管的末端进入该微流体设备,包括用于在微流体设备被插入接受部分之后向该微流体设备提供压力流体的一个或多个积蓄器,优选至少一个积蓄器还包括单向阀;外壳包括外壳底座和外壳盖,优选其中积蓄器与外壳相连并且优选外壳盖和外壳底座借助垫片而被密封在一起,包括在外壳内的湿度控制材料,用于提供适度控制,优选湿度控制材料选自海绵、凝胶基体材料、干 燥剂、以及编织材料;外壳优选由聚合物制造,更优选该聚合物为聚碳酸酯或丙烯酸酯或聚苯乙烯,优选积蓄器与连接块通过一个或多个积蓄器-连接块管流体连通,其中积蓄器-连接块管优选为软管,一个或多个管的第一管与微流体设备相连通,用来控制一个或多个第一阀,优选其中一个或多个管的第二管与微流体设备相连通,用于控制一个或多个第二阀,例如但并不局限于,其中第一阀是接口阀和/或其中第二阀是密封阀。

在另一实施例中,本发明提供了一种用于在能量射束中定位蛋白质晶体的设备,包括:用于将晶体保持在其内部的芯片,该芯片是由内部设置有可偏转隔膜的弹性块制成的。该设备包括用于连接芯片和柱体的适配器,该芯片与适配器通过一个或多个穿入芯片的柱体相连,以及测角仪,其中柱体与柱体相连,用于在射束中定位晶体。在其他方面中,适配器板可平移移动,从而在垂直于射束的轴线上进一步定位晶体,并且测角仪可以围绕垂直并相交于射束的轴线旋转,并且该芯片可以围绕射束的轴线旋转,从而将晶体的不同晶面暴露给射束。

附图说明

图1A-1C是现有技术中的弹性块的简化剖视图;

图2是现有的载体和微流体设备的分解图;

图3是根据本发明实施例的载体和微流体设备的分解图;

图4表示根据本发明实施例的载体的透视图;

图5表示图3和图4所示载体的平面图;

图6表示图3-5所示载体的积蓄腔的剖视图;

图7是根据本发明实施例的另一载体的透视图;

图8A表示微流体设备的基片,该微流体设备具有根据本发明实施例的一体的积蓄井孔;

图8B表示图8A所示微流体设备的分解透视图,并且还包括弹性块;

图8C是图8B所示微流体设备的整体视图;

图8D是图8B所示的微流体设备的平面图;

图8E表示图8B所示的微流体设备的平面图;

图8F表示图8B所示的微流体设备的底视平面图;

图8G表示图8B所示的微流体设备的剖视图;

图9A和9B是根据本发明实施例的流体界面的近视图;

图9C是用于本发明的微流体设备的一些实施例中的通路孔的剖视图;

图9D是用于本发明的微流体设备的一些实施例中的通路孔的放大视图;

图10是与本发明一同使用的芯片的一个实施例的平面图;

图11A-D是根据本发明实施例的典型的计量单元的近视平面图,其中所述计量单元处于各种阀状态下;

图11E是典型的计量单元形式的照片;

图11F表示根据本发明实施例的用于多个试样进行反应的高密度形式;

图11G是与本发明一同使用的芯片的一个实施例的平面图;

图12A是用于致动根据本发明实施例的微流体设备的工作站的透视图;

图12B和12D分别是图12A的工作站处于压板压下位置的透视图和侧视图;

图12C是图12A的工作站处于压板抬起位置的侧视图;

图12E表示图12A的压板的近视图;

图12F表示图12A的压板的剖切侧视图;

图12G是根据本发明实施例的作用在单向阀上的清洗致动器的近视图;

图12H表示被压在根据本发明实施例的微流体设备的上表面上的压板的剖切视图;

图13是在根据本发明实施例的板界面内或压板内的流动路线的后视平面图;

图14A是根据本发明实施例的载体的透视图;

图14B是根据本发明实施例的结合为一体的载体和芯片的顶视图;

图15A根据本发明实施例的系统的简化整体视图;

图15B是图15A所示系统内的接受站的透视图;

图15C是在根据本发明另一实施例的板界面内或压板内的流动路线的后视平面图;

图16A和16B是表示根据本发明实施例的接口板与载体相配合的剖面侧视图;以及

图17是可由图15A的系统获得的屏幕拍照实例。

具体实施方式

本发明的系统对于靶材料结晶过程中按量分配小体积的材料特别有用。在这样的结晶筛选过程中可以改变许多参数。这些参数包括但并不局限于:1)结晶试验的体积,2)靶溶液对结晶溶液的比值,3)靶浓度,4)靶与辅助的小分子或高分子材料的共结晶;5)水合作用;6)培育时间;7)温度;8)压力;9)接触表面;10)对靶分子的变型;11)重力;以及12)化学变异性。结晶试验的体积可以是任何可想到的体积,从皮升到毫升范围。

用于结晶试验的时间长度可以从几分钟或几小时到几周或几个月。大多数对生物系统的实验通常会在24小时至两周内显现结果。可以借助根据本发明实施例的微流体设备来调节培育时间的长短。

结晶实验的温度对于成功率或失败率具有重要的影响。对于生物样品尤其如此,其中结晶实验的温度可以在0-42℃的范围内。一些最常用的结晶温度为:0,1,2,4,5,8,10,12,15,18,20,22,25,30,35,37以及42。根据本发明实施例的微流体设备能够被储存在上述温度中,或者可以与小的温度控制结构热接触,比如电阻加热器或珀耳帖制冷结构。此外,根据本发明的实施例的小占用面积和短的准备时间能够更快到达所需靶温度的温度平衡并且可以在所述温度范围内保存在较小的培养箱内。

根据本发明的微流体结构的实施例可以用于结晶筛选之外的其他用途。这种用途的实例包括PCT申请PCT/US01/44869所公开的,该申请于2001年11月16日递交,发明名称为“Cell Assays and High Throughput Screening”,该申请在此全文引入并且用作所有目的的参考。适用于这些用途的微流体结构的实例包括本文所介绍的,以及美国专利申请 No.10/118466所公开的,该申请的发明名称为“Nucleic Acid Amplification Utilizing Microfluidic Devices”、于2002年4月5日递交,其全部内容在此引入并用作所有目的的参考。

制造根据本发明的微流体设备的方法的实施例包括:蚀刻玻璃基片的顶表面,以便制造多个井孔;模制弹性块,使得底表面具有被制成图案的凹槽;安放模制弹性块,使其底表面接触玻璃基片的顶表面,使得图案化的凹槽对准井孔而形成井孔之间的流体通道。

用于形成靶材料晶体的方法的实施例包括:向弹性微流体设备的第一腔室内注入第一预定体积的靶材料溶液。向弹性微流体设备的第二腔室内注入第二预定体积的结晶剂。第一腔室与第二腔室流体接触,以允许靶材料和结晶剂之间发生扩散,从而改变靶材料的环境以便引起晶体形成。

在另一方面中,可以在第一弹性体层内形成腔室或计量单元,所述腔室或计量单元通过流体通道流体连通,并且第二层具有在内部形成的控制通道,其中在第一和第二层之间的可偏转隔膜可以偏转进入第一层,以便控制流体流经流体通道。基片可以与第一和第二层相配合,以便提供刚性或提供附加的流体互连。微流体系统随后可以与用来提供过程控制的载体和/或系统结合使用,下文会对此进行详细介绍。

本发明提供微流体设备及其使用方法。本发明还提供使用本发明的微流体设备的装置,在该微流体设备内执行的分析反应,以及用于生成、存储、组织和分析由微流体设备所产生的数据的系统。本发明的设备、系统以及方法特别适于与各种微流体设备一同使用,这些微流体设备包括但并不局限于可以从Fluidigm,Corporation of South San Francisco,Califurnia购得的 系列设备。本发明还可以用于使用弹性材料的其他微型制造流体设备,包括基本如下列美国专利申请所描述的设备:09/826583,申请日为2001年4月6日,发明名称为“Microfabricated Elastomeric Valve and Pump Systems”;09/724784,申请日为2000年11月28日,发明名称为“Microfabricated Elastomeric Valve and Pump Systems”;09/605520,申请日为2000年6月27日,发明名称为“Microfabricated Elastomeric Valve and Pump Systems”。这些专利申请在此引入作为参考。

通过同时将已知浓度的靶材料溶液导入微流体设备的多个腔室,能够 实现靶材料结晶的高产量筛选,或借助再结晶来提纯靶材料的小剂量试样。随后,控制微制造流体设备来改变腔室内的溶液条件,借此同时提供多种的结晶环境。可以由各种技术来产生对改变的溶剂条件的控制,包括但不局限于:通过体积排斥、通过截留由微制造结构的尺寸所确定的液体体积、或者通过交叉通道注射入由垂直交叉的流体通道所限定的节点矩阵,来测量进入腔室的结晶剂的体积。

根据本发明实施例的结晶所产生的晶体可以用于x光晶体学来确定三维的分子结构。或者,如果根据本发明实施例的高产量筛选没有产生可直接用于x光晶体学研究的足够大小的晶体,则该晶体可以用作籽晶,供进一步的结晶试验使用。有希望的筛选结果还可以作为基础,用于以模拟使用标准稀疏矩阵技术的方式来进行关注结晶条件的较窄光谱的进一步筛选。

根据本发明实施例的系统和方法特别适用于结晶较大的生物大分子或其聚合体,比如蛋白质、核酸、病毒,以及蛋白质/配位体复合体。然而,根据本发明的结晶并不局限于任何特殊种类的靶材料。此外,尽管所讨论的本发明实施例采用液相结晶剂的扩散,但是气相扩散是可以用来引发晶体形成的另一种技术。

根据本发明的微流体设备的实施例可以采用芯片上的储液池或井孔。然而,在需要装入较多数量溶液的微流体设备中,如果流体设备的尺寸相对较小,则使用在数量上与用于分界每个井孔的单独管脚相对应的输入管是不切实际的。此外,自动地使用吸移管来分配小体积液体已是现有技术,并且使用这种技术来直接将溶液移到芯片表面的井孔内是最容易的。

毛细作用可能不足以将溶液从芯片上的井孔中吸入芯片的活性区,特别是该活性区的盲端腔室没有注入材料时。在这样的实施例中,向芯片内装入材料的一种方式是采用外部加压。但是,与大量的可能的材料源相连的设备的较小尺寸使得通过管脚或管子来将压力施加到各个井孔是不现实的。

现在参照图3,根据本发明实施例的将被描述的微流体设备具有一个或多个集成的流体压力储存腔或积蓄器,用于向微流体设备内的一个或多个可偏转隔膜提供流体压力源。图3表示载体323与集成压力积蓄器的优 选实施例。载体323包括载体底座301,该底座301具有用于接受微流体设备305并保持微流体设备305在载体323内的位置的接受区域300。微流体设备305可以是在本发明范围内的多种设备,包括可以从Fluidigm公司购得的 1.96和 4.96芯片。

微流体设备305包括一个或多个井孔排306,其具有一个或多个入口井孔307,该入口井孔307与微流体设备305内的通道、密封阀入口320、接口阀入口321以及试样入口324流体连通。载体顶部309包括压力空腔310和311,它们与井孔排306相接触以便对应每个井孔排306在每个井孔307上形成共同的压力腔。当每个压力空腔接触微流体设备305的表面时,压力腔入口313和314用于向每个压力腔提供气体压力。

载体305还包括压力积蓄器324,该积蓄器324优选通过将积蓄器顶部303连接到载体底座301的一部分上而形成,借此在积蓄器324的内部形成积蓄腔304。流体,优选为气体,通过与积蓄腔304流体连通的积蓄器入口317被导入积蓄腔304。优选地,积蓄器单向阀302被串联设置在积蓄器入口317和积蓄腔304之间,以便维持积蓄腔304内的流体压力,即使在流体压力源(未示出)与积蓄器入口317分离之后。优选地,当使用气体为积蓄腔304增压时,积蓄器单向阀302被容纳在积蓄腔304内的“干井”内,同时积蓄腔304的一部分包含有液体,以便借助所盛装的液体形成液压。处于液压之下的液体能够通过积蓄器出口316施加液压来致动微流体设备305内的可偏转部分,比如隔膜,优选为阀隔膜,其中所述积蓄器出口316与积蓄腔304以及微流体设备305内的至少一个通道流体连通的。

在图3所示的实施例中,载体顶部309通过一个或多个螺钉309拧入载体底座301上相应的一个或多个螺钉孔333而与载体底座301相连接,从而在载体顶部309和微流体设备305的顶表面之间保持压力,致使压力空腔310和311围绕井孔排306形成紧密的流体密封。接口压力供应管路入口318与接口压力供应管路319相连,后者被插入微流体设备305的接口阀入口321内,以便向微流体设备内的第二通道提供压缩流体(优选为气体)源或液压源,用以致动微流体设备305内的至少一个第二可偏转部分,优选为第二接口阀的可偏转隔膜。微流体设备305内的一个或多个计 量单元308与井孔入口307和试样入口334流体连通。在一些实施例中,设置有蛋白质结晶计量单元,比如Hansen所介绍的,其中第一和第二腔室通过它们之间的一个或多个接口通道而流体连通,其中接口通道还包括用于控制各腔室之间的扩散或流体流动的接口阀。每个腔室还与用来将流体导入每个腔室的入口相流体连通,所述入口通过微流体设备内的通道与腔室流体连通。

下面介绍根据本发明的载体323的使用方法。在拆掉载体顶部309的情况下,井孔307被注入试剂。利用微型吸移管将试样溶液注入试样入口334。每个计量单元308内的接口阀借助通过接口压力供应管路319向接口阀入口321施加压力而被关闭。通过向试样入口334内进一步施加压力(例如以气压的形式),试样溶液可以被进一步推入流体设备35内,以便推动试样溶液进入计量单元308的试样试剂中。液压液体,优选为水,更优选为油,再优选为Krytox(R)GL100(tm),其为聚六氟氧丙化烯氧化物,或者是油和其它溶剂(比如水)的混合物,被导入接口阀入口320和密封阀入口321内,优选通过微型吸移管导入。密封管路300和控制管路319被分别插入入口320和321,并且载体顶部309被固定到载体底座301上,微流体设备305被夹在二者之间。

图4表示图3所示载体323的透视图。图5表示图3和图4中所示载体的平面图;图6表示积蓄器324内的积蓄腔304的剖视图,示出了相对于积蓄腔盖303向下倾斜的倾斜腔底,该倾斜腔底使得液体流向管线300,并且还示出了能够被卸下的访问螺钉335,以用于加入或取出流体,该液体优选如图所示部分地占据积蓄腔304。单向阀302的侧视图表示出该单向阀302位于由干井壁340.1限定的干井340内。

图7表示与图3-6所示载体相似的载体,但是该载体集成有两个分隔开的积蓄器303.1和303.2,而不是一个积蓄器。在优选的使用方式中,第二积蓄器被用于致动、并且保持微流体设备的第二可偏转部分的动作,该第二可偏转部分优选为第二可偏转隔膜阀。在特别优选的实施例中,第一积蓄器被用于致动计量单元内的接口阀,并且第二积蓄器被用于致动计量单元内的密封阀,第一和第二积蓄器彼此独立。在另一实施例中,可以包括多个积蓄器,以便提供对附加阀系统的独立致动或者用来驱动流体流 过微流体设备。

在本发明的备选实施例中,图8A表示微流体设备的基片800,该基片300集成有压力积蓄器井孔801和802,每个井孔801和802在内部具有用于容纳阀的干井803,804,所述阀优选为连接在盖子上的单向阀(见图8B)。基片800还包括一个或多个井孔岸区806a,b,c,d,每个井孔岸区内具有一个或多个井孔805。基片800的每个井孔805具有由井孔805通往基片800内的弹性块位置807的通道,以用于连接弹性块,所述弹性块优选是由具有形成在其中的微制造凹槽或通道的两个或多个弹性材料层制成的弹性块。

图8B表示整个微流体设备899的分解图,该设备包括图8A所示的部件,并且还包括与基片800的弹性块位置807相连接、优选相粘结、更优选直接相粘结、优选不使用粘合剂地进行粘结的弹性块807,以便形成完整的微流体设备899(见图8C)。在弹性块808内有一个或多个通道与一个或多个通路孔814相流体连通,通路孔814在弹性块内的通道和基片内的通道之间提供流体连通,基片内的通道随后通向井孔排806a-d的井孔805,以便使基片800的井孔805和弹性块808内的通道之间流体连通。积蓄器井孔顶部809和810被连接到积蓄器井孔801和802上,以便形成积蓄腔815和816。积蓄器井孔顶部809和810分别包括阀812和811,所述阀优选为单向阀,用于向积蓄腔815和816导入压力气体并保持气体。阀811和812位于干井802和804内,当积蓄腔815和816内存在液体时,干井用于防止液体接触阀811和812。优选通过压优选单向阀内的薄片、销针或类似物来克服单向阀的自封力、而机械地打开阀811和812,这使得积蓄腔能够释放压力,以便降低积蓄腔内的流体的压力。

图8D表示微流体设备899和井孔805的平面图,其中孔口位于井孔的基底附近,优选底部或井孔805的侧壁,用于使流体从井孔流入形成在基片800内的通道,优选在基片800的与井孔805相对的一侧。在特别优选的实施例中,基片800被模制成带有凹槽,凹槽通过密封层而被制成进入通道,该密封层优选是粘合膜或密封层。

基片800及其相关的部件可以用聚合物制造,比如聚丙烯、聚乙烯、聚碳酸酯、高密度聚乙烯、聚四氟乙烯PTFE或Teflone(R),玻璃、石英、 或金属(例如铝)、透明材料、多晶硅或类似材料。积蓄器井孔顶部809和810还可以包括访问螺钉812,该螺钉可以被拆下,以便向积蓄腔815和816内导入或从积蓄腔815和816内去除气体或液体。优选地,阀81和811能够被致动以释放压力,否则会保持积蓄腔815和816内的压力。凹口817用于帮助将微流体设备正确定位到其他装置内,例如,用来操作或分析微流体设备或微流体设备内实施的反应的装置。图8D还表示围绕弹性块区域807的水合腔850,该水合腔850可以被水合盖851覆盖,以便形成湿润腔,以有助于弹性块周围的湿度控制。通过浸湿吸液材料或海绵向湿度腔851添加挥发性液体,比如水,能够增加湿度。可以优选使用聚乙烯醇。可以通过改变聚乙烯醇和水的比例来控制湿度,优选用于浸湿吸液材料或海绵。还可以通过使用湿度控制设备,比如HUMIDIPAKTM润湿包装来控制水合作用,例如,该包装使用可透水蒸汽但不透液体的封套来保持盐溶液,该盐溶液具有适于保持所需湿度水平的盐浓度。参见Saari等人的美国专利No.6244432,该专利在此引入作为所有目的的参考,其中包括湿度控制设备和方法的特殊目的。水合盖850优选是透明的,避免妨碍使用者在使用过程中观察弹性块内发生的情况。类似地,优选基片800在弹性块区域807下面的一部分基片800是透明的,但是也可以为不透明或反光。

图8E表示基片800及其内部通道的平面图,该通道提供了井孔805和弹性块808(未示出)之间的流体连通,该弹性块808通过通道872与基片800相连并位于弹性块区域807内。积蓄腔810和802通过通道870与弹性块区域807流体连通,并最终和弹性块808相流体连通。

图8F表示基片800的平面底视图。在特别优选的实施例中,在基片800的底部形成有凹槽,该凹槽位于第一孔口890和第二孔口892之间,其中第一孔口890穿过基片800延伸到形成有井孔805的相反一侧,第二孔口892穿过基片800与弹性块808(未示出)内的通路孔流体连通。

图8G表示基片800的剖视图,该基片800带有位于弹性块区域807内的弹性块808和密封层881,该密封层881被连接到基片800的与弹性块808相反的一侧上。井孔805通过第一孔口890、通道870和第二孔口892与弹性块808流体连通并且进入弹性层808的凹槽,该弹性层808被 基片800的顶表面897密封,以便形成通道885。密封层881形成从基片800的底表面898上模制或机械加工出的凹槽起的通道870。密封层881优选是透明材料,例如,聚苯乙烯、聚碳酸酯或聚丙烯。在一个实施例中,密封层881是柔性的,比如是胶带,并且可以通过粘合(比如通过粘合剂或加热密封)或机械连接(比如压合)而与基片800相连接。优选用于制造密封层881的材料能够对应每个凹槽形成流体密封,以便形成泄漏最小的流体通道。密封层881还可以被刚性的附加支撑层支撑(未示出)。在另一实施例中,密封层881是刚性的。

图9A表示弹性块808和基片800的弹性块区域807之间的流体界面的近视详图。如Unger和Hansen所介绍,弹性块可以是由多层弹性材料粘结到一起而形成的弹性块。该弹性块优选至少两层具有凹槽。例如,内部具有凹槽的第一弹性层和内部具有凹槽的第二弹性层相粘结,以便形成内部具有凹槽的弹性块。第一弹性层的凹槽被完全或部分地封闭,以便形成第一弹性层内的通道。类似地,形成在第二弹性层内的凹槽也被完全或部分地封闭,以便在该弹性层被粘结到基片上时在第二弹性层内形成通道,借此形成具有多个层的微流体设备,而在多个层中形成有通道。

参照图9A和9B,第一弹性层920具有底表面,底表面上形成有第一凹槽901;第二弹性层923具有顶表面和底表面,其内部形成有第二凹槽905;第一弹性层和第二弹性层被粘结到一起而形成具有通道907的弹性块(由第一凹槽901和第二弹性层923的顶表面形成)。基片800与第二弹性层923的底表面相连,从而由基片800的顶表面897和第二弹性层923的底表面形成通道909。孔口892可以连接基片800的通道872和第二弹性层的通道909,该孔口892部分地由基片800的顶表面形成。或者如图9A-9B所示,孔口892通过通路孔950连通基片800的通道872和弹性块808的第一弹性层920的通道907。通路孔950大致垂直于基片表面897,优选在第二弹性层923内形成,在与弹性层920粘结之前形成,并且更优选地在第一和第二弹性层粘结到一起之后形成。参见待审定并且共同转让的美国专利临时申请No.60/557715,该申请的发明人为Unger,申请日为2004年3月29日,该申请在此引入作为所有目的参考,并且用作教导采用自动激光熔蚀系统和方法制造通路孔的特定目的。用于制造通路孔的典 型方法包括在形成第二弹性层923时采用微制造方法,激光钻孔、利用CO2激光器的激光钻孔、利用受激准分子激光器的激光钻孔,机械钻孔以及取芯,优选其中钻孔是通过机器人钻孔系统执行的,优选该机器人钻孔系统具有x,y自动工作台。

图9B表示图9A的微流体系统,其中第一弹性层920的通道907与第二弹性层923的通道909重叠,从而在弹性块内形成可偏转部分,优选为弹性隔膜,优选由第二弹性层923的一部分形成。流体压力从压力流体源(未示出)通过通道872、孔口892和通路孔950被传递到第一弹性层920的通道907,以便引起弹性隔膜990向下偏转,借此控制通过第二弹性层923的通道909的流体流动或扩散。

图9C表示在此所述的微流体设备中的通路孔的另一优选用方式的剖视图。微流体块921包括第一层920和第二层923,其中第一层920内具有第一层凹槽(或连接到第二层上时的通道)907,第二层923内具有第二层凹槽(或连接到基片上时的通道)950。两个第二层通道通过第一层通道并借助两个或更多个通路孔950流体连通。优选地,至少一个通路孔950通过基片凹槽892(或者密封层(未示出)被连接到基片800上时形成的通道)与基片800的井孔999流体连通。至少一个第二层通道909与第一层通道907的一部分重叠,并且并不流体连通。在图9C所示的实施例中,微流体设备的单位面积的较高的反应密度和/或检测区可以实现,因为在一个层内的流体通道能够绕过或位于同一层内的干涉流体通道的下方。熔蚀碎屑腔989被设置用于捕获激光熔蚀通路孔950所产生的碎屑。碎屑腔989可以通过两层铸造方法被铸造于层920内,其中光刻胶的第一层被形成图案并且显影之后,光刻胶的第二层被叠放在第一层图案上,并且在第一光刻胶层的图案上形成第二图案,致使光刻胶图案的区域厚度不同。多个层可以堆叠设置,以便形成不同高度的图案。也可以使用不同的光刻胶材料,例如,使得光刻胶的上层在被加热时能够回流,而下层是由相同的加热温度下基本不会回流的光刻胶制成。

图9D表示通路孔950的放大视图,该通路孔连通两个不同层的通道。微流体块921是由具有通道907的第一层920和具有第二通道909的第二层923形成的。通路孔950将通道907和909相互连接到一起。还表示出 了碎屑腔989,其通过如上所述的多个高度的模制工艺被置入层920内。当通过激光熔蚀形成通路孔950时,来自某一层的碎屑或材料可以滞留在通道907的、形成通路孔位置处的上部。提供腔室供碎屑或材料在熔蚀之后滞留是有助于防止通道907或909被堵塞或变窄的。

本发明的流体通道可以根据所需应用任选地被设计成具有不同的截面尺寸和形状,以提供不同的优点。例如,下流体通道的截面形状可以具有弯曲的上表面,既可以沿着通道的整个长度,也可以在上面交叉通道下面的区域内。这种弯曲的上表面有助于阀密封,如下文所述。本发明可以考虑采用的隔膜厚度轮廓和流体通道截面包括矩形、梯形、圆形、椭圆形、抛物线形、双曲线形以及多边形,以及上述形状的一部分。更复杂的截面形状,比如在流体通道内带有突起的实施例或带有空腔的实施例也在本发明的考虑之内。

此外,尽管本文主要结合实施例来介绍本发明,在这些实施例中流体通道的壁和顶是由弹性材料形成的,并且通道的底是由下层基片形成的,但是本发明并不局限于这种特殊设置。通道的壁和底也可以形成在下层基片(underlying substrate)中,仅有流体通道的顶是由弹性体形成的。该弹性体流体通道顶会响应所施加的致动力而向下突起进入通道,借此控制通过流体通道的材料流动。通常,优选使用单片的弹性体结构用于微流体用途。但是,使用在基片上形成的通道也是有用的,并且这种布置也具有优点。例如,可以构造包括光学波导的基片,使光学波导专门将光导向微流体通道的一侧。

图10表示优选实施例的平面图,在该实施例中,弹性块808内形成有96个单独的计量单元。在优选的实施例中,在每个弹性块入口附近设置有水合管线1010,上述入口连接基片800(未示出)内的孔口和弹性块808内的通道,以便提供具有选定同渗容摩的溶液源,并且向弹性块808的一部分提供水合和/或渗透调节源。

图11A表示用于蛋白质结晶的典型的计量单元的近视平面图,其中在邻近的通道和腔室内流动的流体受到可偏转隔膜阀的控制,优选是反向的“T”形指状阀1100。在优选实施例中,如果一系列的通道或试剂腔室紧密相邻,致使相邻的试剂腔室或通道之间的同渗容摩不同,这可能会导致 通过弹性块的弹性层的流体迁移,典型地以气相形式迁移,当与在每个腔室之间具有较短的流体距离的直线阀管线119相比,采用不连续的阀管线能够用来“渗压地”隔离试剂腔。

图11B表示计量单元的阀状态。在所示的计量单元1101中,试剂腔1103和蛋白质腔1104通过接口阀1106的动作而彼此隔离,同时试剂和蛋白质溶液被分别导入每个腔室。一旦充满,密封阀1109关闭,如图11C所示,并且通过打开接口阀1106而进行自由接口扩散。如图11D所示,通过关闭接口阀1106可以中断扩散,以便在弹性块808附近或内部的环境湿度降低的情况下发生脱水作用。

图11E是典型计量单元形式的照片。

图11F表示用于多个试样与多个试剂进行反应的高密度形式,例如,优选4个试样与96个试剂;8个试样与92个试剂,等等,包括但并不局限于48个试样和48个试剂。每个反应对可以单独混合或组合,例如通过扩散,该形式采用流体通道从上面或下面跨过其他中间流体通道。图11F是通路孔使用实例的近视图,用于增加微流体芯片的反应/检测区域密度。近视图11110具有用于进行反应,比如蛋白质结晶试验的四组计量单元。计量单元11100包括四组腔室,每组腔室具有流体连通的第一腔室和第二腔室,并且二者通过接口阀11020相分隔开。当接口阀11020关闭时,试剂通过孔口,比如与计量单元11100流体连通以用于填充试剂腔11030的孔口11050,以及试样入口11080和11070(它们没有被示出)而被导入;例如,试样可以是蛋白质试样,所述试样通过通道被输送到试样腔11090,上述通道通过通路孔11040而相互连接,其允许试样经过试样支流通道11120。加宽的通道路径,比如11020a,指示可偏转隔膜所在的位置,该隔膜是通过重叠第一层通道和第二层通道而形成的。相比之下,当与其它通道重叠时,较窄的通道部分表示没有形成可偏转隔膜、并且因此不能起到阀的作用的区域。在本用途中所述的结构可以是顺序颠倒的,这对本领域技术人员而言是容易实现的。例如,流体层可以形成在较厚的层的内部,并且较薄的层可以用作控制层,从而每个层内可以具有控制通道和流体通道,并且可以通过通路孔与一个或多个不同的层流体连通。优选地,本文所介绍的设备可以由一个或多个弹性层制成,优选通过两个或多 个层粘结在一起制成。层可以优选通过在两个或更多个层中使用互补化学性质(complimentary chemistries)而被粘结在一起,当这些层接触时则粘结在一起,或者更优选地,其中一个或更多个层在粘结前经过等离子处理,优选采用Ar等离子、并且更优选地采用清洁干燥空气等离子蚀刻处理,并且优选通过粘合剂粘结,优选该粘合剂包括与粘在一起的一个或多个层的化学性质类似或互补(complimentary)的成分。可以通过对层的表面进行旋涂来涂敷粘合剂,或者通过向表面旋涂粘合剂层并且将一个层压在该旋涂粘合剂上,以便在将该层粘结到其它层上之前向该层施加粘合剂、由此来涂敷粘合剂。

图11G表示优选实施例的平面图,其中在弹性块内形成有四组、96个独立的计量单元。

能够通过根据本发明的泵和阀配送的极小的体积具有重要的优点。具体地,能够被人工计量的最小的已知流体体积大约为0.1μl。能够被自动系统计量的最小的已知流体体积大约大10倍(1μl)。利用根据本发明的阀和泵,可以正常地计量和分配10nl或更小的液体体积。通过本发明能够实现的极小体积流体的精确计量在大量的生物用途,包括诊断试验和化验中极具价值。

等式1表示矩形、线性、弹性、各向同性、厚度均匀的板被施加压力而偏转的高度简化的数学模型:

w=(BPb4)/(Eh3),其中:

w=板的偏转量;

B=形状系数(取决于长宽比和板边缘所受的支撑);

P=施加的压力;

b=板宽;

E=杨氏模量;以及

h=板厚;

这样,即使在这个十分简单的表达式中,弹性隔膜响应压力的偏转将是下述参数的函数:隔膜的长度、宽度和厚度,隔膜的柔性(杨氏模量)以及所施加的致动力。由于这些参数的每一个会根据依据本发明的特定弹性设备的实际尺寸和物理组成而发生很大的变化,因此隔膜厚度和弹性、 通道宽度以及致动力的较大变化范围在本发明的考虑之内。

应该理解,所示的方程只是近似算法,由于通常隔膜不具有均匀厚度,因此隔膜厚度并不必须小于长度和宽度,并且偏转量并不必须小于隔膜的长度、宽度或者厚度。尽管如此,该等式对调整可变参数、以便获得偏转相对于所施加力的所需响应提供了有用的指导。

本发明的微流体设备可以用于独立使用的设备,或者优选地,可以用作本发明所提供的系统的一部分。图12A表示用于致动微流体设备的机器人工作站。自动的气动控制和积蓄器加压站1200包括接受体1203,该接受体1203用于保持本发明的微流体设备1205,比如图8A-G所示类型的微流体设备。压板1207适于接触微流体设备1205的上表面1209。压板1207的内部具有与微流体设备1205相对准的孔口,以便向微流体设备1205内的井孔和积蓄器提供流体压力,优选为气压。在一个实施例中,压板1207通过臂1211的运动被压靠在微流体设备1205的上表面1221上,该臂1211铰接在枢轴1213上并且可以被活塞1215推动,该活塞1215的一端与臂1211相连,并且另一端与平台1217相连。沿着活塞1215的传感器检测活塞的移动并且将有关活塞位置的信息传达给控制器,优选是在执行软件脚本的计算机(未示出)控制下的控制器。板检测器1219检测微流体设备1205在接收体1203内的存在,并且优选地能够检测微流体设备1205的合适取向。这可以通过光学检测微流体设备1205的存在和方向来实现,光学检测是利用微流体设备1205的侧面反射光来进行的。压板1207可以通过机器人驱动、气动、电动等而下降。在有些实施例中,压板1207是通过手动下降而与设备1205接合。

图12B表示加压站1200,其中压板1207处于向下位置,压靠在微流体设备1205的上表面1221上,该微流体设备1205被压板1207的罩所遮盖。在一个实施例中,通向压板1207的流体管线位于臂1211内并且与流体压力源,优选为在控制器控制下的自动液压源,相连接。压力源向压板1207的压板表面(未示出)内的孔口提供受控流体压力,以便向微流体设备1205供应受控压力流体。通过在压板与臂1211相连的位置使用万向节1223可以至少部分地实现压板1207的精细定位,从而压板1207可以围绕垂直于微流体设备1205的上表面1221的轴线平衡固定。

图12C和12D分别表示加压站1200处于向上、向下位置的侧视图。图12E表示压板1207处于向下位置的近视图。

图12F表示被压靠在微流体设备1205的上表面1221上的压板1207的剖视侧视图。压板1207被压靠在微流体设备1205的上表面1221上,以便在微流体设备1205和压板表面1227之间,或者在设备1205的一部分和表面1227之间形成流体紧密密封。在一个实施例中,压板表面1227包括或者是由柔软材料,比如弹性体,优选耐化学药品的橡胶或类似物制成。在压板1207内是独立的流体管线,优选为气压管线,其与微流体设备1205的上表面1221上的各个位置配合。该图还示出了单向阀清洁致动器1233,优选该致动器1233是由气压致动的,当该致动器被致动后,推动销针1231向下进入单向阀812并通过克服其打开阻力而打开并且释放流体压力,或者允许流体通过单向阀812进入。在一个实施例中,压板1207具有与单向阀811和812相接合的第一和第二清洁致动器1233(见图8B)。

在另一实施例中,芯片或设备1205具有常关的密封阀和/或接口阀。在本实施例中,在培养过程中并不必须积蓄器来保持阀关闭。当接口阀和/或密封阀根据需要而被打开时,将会有压力施加到载体或设备1205的井孔区域。在所有或部分其他时间内阀会保持关闭,以便彼此隔离各个芯片试验,和/或相互隔离芯片上的试剂井孔和蛋白质井孔。

图12G提供清洁致动器1233的近视图,该致动器1233作用在位于微流体设备1205的基片800内的单向阀812上。

图12H表示被压在微流体设备1205的上表面1221上的压板1207的剖视图,其中通过压板表面1277与上表面1221的凸脊1250相接触而在井孔排806的上方形成压力空腔1255。随后,通过从沿着加压站1200的臂1211向下延伸的压力管线向空腔1255内导入流体来向压力空腔1255施加流体压力,优选为气压。通过与加压站1200相连的压力调节器来调节压力,优选通过电子控制的可变压力调节器来调节压力,该可变压力调节器能够根据加压站控制器(优选在计算机的控制下)所传送来的信号改变输出压力。压力空腔1255内的流体压力驱动井孔805内的液体通过基片800内的通道,并且进入弹性块808的通道和/或腔室,以便填充通道或腔室,或者致动弹性块808的可偏转部分,优选为如上所述的可偏转隔 膜阀。

图13表示根据本发明特定实施例的压板表面1227内的流体路径、以及压板表面1227的每个流体压力孔口的空间位置的后视平面图。在特定实施例中,当压板1207与微流体设备1205相接合时,压板1207的流体接口与流体孔口、井孔805、单向阀等相对准。在特定实施例中,微流体设备1205是集成的载体和微流体芯片,比如 1.96或 4.96芯片。

通过关闭接口阀而中断扩散能够使扩散进行一段时间,这段时间足够引起较少的结晶剂扩散进入含有蛋白质的腔室,同时限制蛋白质反扩散进入结晶剂腔。当接口阀被致动后,接口阀将含有蛋白质的腔室和含有结晶剂的腔室隔离开。

本发明提供设备、系统以及使用该设备和系统的方法、用于保持并操作微流体设备、特别是多层弹性的微流体设备的方法,其中至少一个可偏转隔膜起到阀的作用,用来阻断或隔离微流体通道内的流体,该微流体通道具有大约500微米的截面尺寸。典型的微流体设备用于筛选引发蛋白质从蛋白质溶液通过自由接口扩散(FID)而结晶的条件。在使用时,微流体设备被装入蛋白质溶液和结晶剂,典型地以试剂溶液的形式,其中每种溶液进入各个腔室,各腔室通过内部具有阀的通道而被相互连接。随后,密封阀作为位于通道内并分隔腔室的阀而用于保持各个腔室内的溶液,打开该阀则腔室之间开始扩散。在优选的设备中,该阀通过流体压力的改变而被致动,例如无论液压或气压的改变。因此,用于改变作用到每个阀上的流体压力的装置是非常有帮助的。

在一个方面中,本发明提供一种载体,该载体能够提供受控流体压力的控制途径。图14A表示优选实施例的透视图。图14A所示的载体优选由聚合物、更优选由丙烯酸系聚合物制成,在一个实施例中,该载体的底面积大约为3平方英寸,高度大约为1英寸。根据使用载体所进行的试验的性质以及载体在使用过程中所要接触的溶剂可以选用其他材料来制造载体。例如,可以由聚丙烯来制造载体,以便提供对一些溶剂,比如丙酮的抵抗性。

参照图14A和14B,下面将介绍本发明的特定实施例。图14A表示 的载体1400适于容纳微流体设备或芯片(在图14A中未示出),比如用于培育蛋白质晶体的芯片。该芯片被安装在载体1400内,与载体1400形成一个整体,或者是具有与载体1400相似的尺寸、特征和功能的独立芯片。在一个实施例中,载体1400包括与微流体设备上的相应井孔流体连通的多个孔口或井孔。通过这种方式,被注入载体井孔的流体能够被配送到微流体设备上。此外,通过向载体1400的开口或井孔施加压力,可以将载体或设备井孔内的流体配送到设备内的检测区域。

在特定的实施例中,微流体设备或芯片被容纳在载体1400内的芯片区域1410内,或者一体地形成在其内部。在一个实施例中,载体1400包括适于接受多个试剂的第一井孔区域1420和第二井孔区域1422。在一个实施例中,第一井孔区域1420和第二井孔区域1422分别适于接受多至48个试剂。在一个实施例中,区域1420和1422包括多个井孔,当设备被置于载体1400内时,这些井孔与微流体设备上的相应井孔相连接。例如,可以利用上文所述的载体1400内的通道来实现上述连接。在一个实施例中,载体1400还包括第一蛋白质区域1430和第二蛋白质区域1432。第一蛋白质区域1430包括适于容纳所需蛋白质的多个井孔,并且在特定实施例中是四个井孔或孔口。在另一实施例中,第二蛋白质区域1432适于容纳多达四个蛋白质。在特定实施例中,第二蛋白质区域1432为载体提供通气孔。在其他实施例中,对于区域1420、1422、1430和1432而言,井孔的数量根据多种因素而在文中所提到的范围内发生变化,这些因素包括但不局限于试验或测试的所需次数、所需的井孔或晶体尺寸、载体尺寸等。

在有些实施例中需要控制芯片的湿度。在一个实施例中,在芯片周围形成有水合腔1440,借助水合腔1440来保持流体或流体源。在特定实施例中,海绵、凝胶包装、诸如织物或棉球/棉垫片等编织材料、或适于保持液体的其他材料,被置于水合腔1440内。在特定实施例中,可以将含有流体的材料放置在芯片的两侧,如图14B所示。海绵或其他材料可以吸有水、缓冲剂、结晶剂或溶剂。或者,可以添加干燥材料来从微流体设备中去除水气。载体1400还包括具有单向阀1465的接口积蓄器1460,以及具有单向阀1455的密封积蓄器1450。如上文所述,结合之前的实施例,单向阀1455、1465适于增加或降低积蓄器1450和1460内的压力,适于 向积蓄器1450和1460导入或取走流体,并且还适于操作、维持载体1400内的压力,并且因此向置于载体1400内的微流体设备的合适区域施加或保持压力。具有“同在板上”的受控流体压力源的优点是,如果微流体设备被流体压力致动,则微流体设备能够独立于外部流体压力源保持在致动状态,这样微流体设备和载体能够脱离与外部流体压力源相连的脐带。积蓄器还可以包括用于向连接块传递流体压力的气体增压入口、添液口、以及压力流体出口。

在特定实施例中,集成的载体1400和微流体设备适于利用本发明的系统来执行根据本发明实施例的所需试验。更具体地,如图15A所示,系统1500包括一个或多个接受站1510,每个接受站适于接受载体1400。在特定实施例中,系统1500包括四个接受站1510,但在本发明的备选实施例中可以包括更少或更多的接受站1510。图15B表示载体1400和设备相结合地位于站1510内,并且在接口板1520的下面。在图15B中的接口板1520适于向下移动,从而该接口板1520与载体1400的上表面以及微流体设备相接合。在有些实施例中,站1510和压板1520与站1200和压板1207相似。接口板1520包括一个或多个孔口1525,用于与载体1400内的区域相连接,所述区域适于接受流体、压力等等。在有些实施例中,接口板1520包括两个孔口、三个孔口、四个孔口、五个孔口、六个孔口、七个孔口、八个孔口、九个孔口、十个孔口、等等。在优选的实施例中,接口板1520被连接到用于向载体1400的目标区域提供压力的六条管线、以及为启动单向阀1455和1465提供机构的两条管线上。

图15C类似于图13,表示根据本发明特定实施例的接口板1520的各个区域。在备选实施例中,接口板1520包括与图15C所示孔口的数量或结构有所不同的孔口。

如图15A所示,系统1500还包括处理器,在一个实施例中该处理器是与膝上电脑或其他计算设备相连的处理器。计算设备1530包括存储器,适于运行软件、脚本或类似物,以用于执行本发明的所需处理。此外,计算设备1530还包括显示屏1540,用于显示微流体设备的研究和分析结果,图17表示系统1500显示器的屏幕拍照的一个实施例。系统1500与一个或多个压力源相连接,比如压力流体、压力气体等,用于将压力配送到与 接口板(一个或多个)1520流体地相连接的微流体设备。

图16A和16B表示系统1500的特定实施例,并且更具体地,是接口板1520的特定实施例。在图16A中,接口板1520以流体密封其部分区域的方式被连接到集成的芯片和载体1400上。特别地,流体密封被设置在接口板1520与载体1400和芯片的一个或多个区域之间,比如第一蛋白质区域1430、第二蛋白质区域1432、第一井孔区域1420、第二井孔区域1422、接口积蓄器1460、单向阀1465、密封积蓄器1450和/或单向阀1455。在一个实施例中,接口板1520向区域1420、1422、1430、1432以及积蓄器1450和1460提供流体密封。在一个实施例中,接口板1520提供一个或多个单向阀致动器1570,如图16B所最佳地示出。

在有些实施例中,接口板1520向载体1400和微流体设备提供所有的所需流体密封。这样,接口板1520可以包括密封垫片1580。密封垫片1580可以包括多种材料,包括但并不局限于硅橡胶、弹性体等。在有些实施例中,垫片1580包括柔性材料,以便有助于在目标位置形成流体密封。这样,系统1500能够向芯片和载体1400的适当区域提供所需压力。在其他实施例中,接口板1520是两个或多个板部件。例如,载体1400和微流体设备上的每个区域或孔口都可以与独立板1520相流体接合,该独立板1520适于与开口或区域相配合。因此系统1500包括用于各个孔口或区域的必要数量的接口板1520。此外,在有些实施例中,多于一个的区域或孔口与特殊的接口板1520相连接,而其他区域或孔口则与单独的接口板1520相连接。接口板与载体/芯片区域和孔口的其他组合也落在本发明的范围之内。

在一个实施例中,系统1500的运行包括:将一个或多个载体1400装入接受站(一个或多个)1510。在有些实施例中,载体1400包括与之连接的微流体设备,并且在将载体装入接受站1510之前就向载体井孔内装入所需的试剂和蛋白质。在其他实施例中,载体1400被放入接受站1510,并且随后装载试剂和蛋白质。载体1400还可以装载有水合流体。水合流体可以被装在水合腔1440内。当载体1400被装入系统1500之后,接口板1520被降低或被移动而接合载体1400。板1520可以被手动、机器人驱动或以其他方式降低,以便流体密封芯片/载体1400的部分或全部。水 合流体被提供给接口积蓄器1460和/或密封积蓄器1450,并且通过采用与接口板1520相连接的压力源向积蓄器1450、1460施加合适的压力而被推动进入芯片。在特定实施例中,系统1500自动地执行该过程,在特定实施例中,该过程在向载体1400添加水合流体之后的20小时之内发生。结果,芯片足够地装有水合流体,以便操作芯片的密封阀和/或接口阀,如本文所述,而且在之前引入参考的专利和申请中有更完整的介绍。

通过向适当的入口附近的适当的密封芯片区域施加所需压力而将蛋白质和试剂配送到芯片内。例如,向第一和第二井孔区域1420和1422施加大约1psi到大约35psi之间的压力,用于推动试剂进入芯片。类似地,向第一和第二蛋白质区域1430和1432施加大约1psi到大约35psi之间的压力,以用于推动蛋白质进入芯片。在特定实施例中,这个过程在向芯片装入水合流体之后的大约60分钟内发生。一旦蛋白质和试剂进入芯片内的目标井孔、腔室、储液池等,通过开启接口积蓄器1460内的单向阀1465而打开芯片内的接口阀。在特定实施例中,当系统1500启动与单向阀1465相连的单向阀致动器1570时,单向阀1465开启,从而打开芯片内的接口阀。在有些实施例中,为了释放接口积蓄器1460内的压力,单向阀致动器1570包括能够接合单向阀1465的销针、柱件或类似物。在备选实施例中,单向阀1465被手动开启或打开。

当试剂和蛋白质通过使用自由界面扩散或其他合适过程而混合预定的一段时间之后,接口阀关闭。为了维持接口阀和密封阀关闭,向致动器1450和/或1460施加压力。可以从系统1500上拆下载体1400,以用于培养或储藏。为了防止或有助于防止密封阀和接口阀打开,致动器1450和1460维持一段时间的压力,可以从几小时到几天。在特定实施例中,致动器1450和1460维持芯片内的压力高于足够用来保持密封阀和/或接口阀关闭的所需阈值压力。在一个实施例中,致动器1450和1460维持压力高于阈值压力至少两天,至少7天,等等。致动器1450和1460维持所需压力的时间长度部分地取决于培养温度。部分地取决于所需培养时间长度和/或培养条件,载体1400可以被放回到系统1500,以便增加致动器1450和1460的压力。通过这种方式,可以延长培养时间,以便有助于提供所需晶体生长,或其他的化学或相关过程。

图17表示由如上所述的计算机驱动的站1510所生成的典型图形用户界面计算机屏幕。在所示的优选实施例中,四个不同的加压站能够被独立地致动,如四个独立的屏幕栏所指示的状态所示。软件可以与数据输入设备和数据库相连,以便通过结合唯一的标识符号使实验条件、所用试剂、用户标识、样品特性、阀致动分布、湿度、以及反应之后的分析数据相互关联,上述标识符号优选为本发明的微流体设备所带有的条形光学码或空间点式光学码或编码的无线电频率设备。信息可以由不同的实验室仪器所产生,比如本文所述的机器人配送站、机器人板片控制器、培养箱、加压站,以及光学检查站,比如Lee等人在2003年5月20日提交的待审定的美国临时专利申请No.60/472226,Taylor在2003年7月28日提交的60/490712和60/490584,Quan在2003年7月28日提交的60/490666,上述的后三个申请都转让给了本申请的受让人,在这里引入上述每个申请的全文,用作所有目的的参考。

如上文所述的用来操作加压站的软件还可以提供终端用户脚本,该脚本使得终端用户能够撰写客户脚本,以便致动并控制或操纵本发明的微流体设备。这样的客户脚本还可以与其它计算机程序以及计算机控制的设备相集成,上述设备用于包括本发明的微流体设备的试验中。

实例1:在优选实施例中,通过在一段时间之后(例如60分钟)之后关闭接口阀来控制扩散,由此可以进行蛋白质结晶反应。下面的表1突出显示了以在一段时间之后中断扩散的方式使用本发明的典型蛋白质结晶设备的步骤。

表1

尽管本文参照本发明的特定实施例对本发明进行了说明,但是可以对所公开的内容进行修改、变动以及替换,并且可以想到在一些情况下,在不脱离如上所述的本发明的范围的前提下可以脱离相应的其他特征而单独使用本发明的一些特征。例如,除了上述的以压力为基础的致动系统之外,还可以任选地考虑采用静电和磁致动系统。还可以基于热能的应用来引起控制通道内的流体流动,进而致动该设备,上述热能的应用可以是流体的热膨胀或者由液体产生气体。此外,在另一实施例中,使用离心力来驱动蛋白质和试剂进入芯片。因此,根据本发明的教导,在不脱离本发明的实质范围和精神的情况下,可以做出多种修改来适应特殊的条件或材料。本发明并不意在局限于所公开的特定实施例,这些特定实施例只被认为是执行本发明的最好的实施方式,本发明意在包括落入权利要求范围内的所有实施例以及等同实施例。

以上的公开内容可能包括一个或多个具有独立用途的不同的发明。所有的这些发明都是以其优选形式公开的。这些优选形式包括本文所公开和说明的其具体实施例,并且这些形式并不具有限制意义,这是因为可以作出多种改动。本发明的主题包括本文所公开的多种元素、特征、功能和/或性质的新的以及非显而易见的组合以及进一步组合。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号