首页> 中国专利> OPRM1基因SNP检测特异性引物、液相芯片和检测方法

OPRM1基因SNP检测特异性引物、液相芯片和检测方法

摘要

本发明公开了一种OPRM1基因SNP检测液相芯片,主要包括有:对OPRM1基因的SNP位点分别设计的ASPE引物对,每种ASPE引物由5’端的tag序列和3’端针对目的基因SNP位点的特异性引物序列组成;分别包被有特异的anti-tag序列的微球;用于扩增具有A118G、IVS2+G31A、IVS2+G691C和/或IVS3+A6151G SNP位点的OPRM1基因目标序列的扩增引物。本发明还提供了使用上述液相芯片的检测方法以及OPRM1基因SNP检测的特异性引物。本发明所提供的检测方法与测序法的吻合率高达100%。所制备的OPRM1基因SNP检测液相芯片具有非常好的信号-噪声比,并且所设计的探针以及anti-tag序列之间基本上不存在交叉反应,可实现多个SNP位点的并行检测。

著录项

  • 公开/公告号CN101824476A

    专利类型发明专利

  • 公开/公告日2010-09-08

    原文格式PDF

  • 申请/专利权人 广州益善生物技术有限公司;

    申请/专利号CN201010148416.X

  • 发明设计人 许嘉森;朱泽尧;

    申请日2010-04-09

  • 分类号C12Q1/68(20060101);C12N15/11(20060101);

  • 代理机构44224 广州华进联合专利商标代理有限公司;

  • 代理人万志香;曾旻辉

  • 地址 510663 广东省广州市广州科学城揽月路80号广州科技创新基地B、C区五层

  • 入库时间 2023-12-18 00:44:04

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2015-05-27

    未缴年费专利权终止 IPC(主分类):C12Q1/68 授权公告日:20120822 终止日期:20140409 申请日:20100409

    专利权的终止

  • 2012-10-10

    专利权人的姓名或者名称、地址的变更 IPC(主分类):C12Q1/68 变更前: 变更后: 申请日:20100409

    专利权人的姓名或者名称、地址的变更

  • 2012-08-22

    授权

    授权

  • 2010-10-27

    实质审查的生效 IPC(主分类):C12Q1/68 申请日:20100409

    实质审查的生效

  • 2010-09-08

    公开

    公开

说明书

技术领域

本发明属于分子生物学领域,涉及医学和生物技术,具体的是涉及OPRM1基因SNP检测特异性引物、液相芯片和检测方法。

技术背景

μ阿片受体(mu opioid receptor,MOR)为阿片药物发挥镇痛功效的主要作用位点,阿片类药物通过提高痛阈,从而达到镇痛效果,当前应用于癌痛治疗的阿片类药物有多种,常见的有吗啡、海洛因、芬太尼、杜冷丁、可代因和羟考酮等。编码μ阿片受体的基因(OPRM1)是影响阿片类药物药效反应的主要候选基因。阿片类药物治疗癌痛非常有效,大多数晚期癌症患者的疼痛治疗最终要过渡到第三阶梯,即强阿片类药物治疗,但临床工作中发现不同患者有效镇痛剂量差异很大。有研究表明,疼痛敏感性和阿片类药物镇痛效应、成瘾等的个体间差异与OPRM1多态性密切相关。

目前,OPRM1基因已经鉴定出了40多种单核苷酸多态性,其中有8个氨基酸序列发生改变。OPRM1的多态性与甲基苯丙胺依赖/精神病和酒精中毒相关。Klepstad等观察A118G突变对癌痛病人吗啡需求量的影响,结果表明,A118G突变导致MOR细胞外N末端第40位氨基酸由天冬氨酸取代天冬酰胺,使MOR丢失了一个糖基化位点,携带118G突变纯合子基因型的病人对吗啡的需求量大于118A纯合子和杂合子基因型的病人,这种差异不能用其它的因素如吗啡治疗的时间、病情、病程等来解释。OPRM1多态性不仅在阿片类而且在非阿片类和酒精类药物中也起作用,可能赋予患者甲基苯丙胺上瘾和酒精中毒易感性。同时,OPRM1多态性可能是甲基苯丙胺依赖的精神病预测的因素,其中,IVS2+G691C突变与甲基苯丙胺依赖、精神病/短暂性精神病潜伏期变短之间显著相关,而携带IVS2+G31A突变的海洛因成瘾者,其海洛因吸入剂量比没有携带此SNP突变的吸毒者显著增多,携带A118G和IVS2+G31A的吸毒者比其他吸毒者的药物摄入量要多。A118G和IVS2+G31A多态性作为遗传标志物将直接影响阿片类药物的摄入行为。此外,IVS3+A6151G与酒精中毒也显著相关。

目前国内外几乎没有检测OPRM1基因多态性的产品上市,大部分报道仍处于实验研究阶段,尚未商品化,已有的检测技术主要建立在PCR技术的基础上,如直接测序法,实时荧光定量PCR法等,这些技术存在样品易污染、假阳性率高的缺点,同时,由于检测通量的局限性不能满足临床的需要。此外,基于TaqMan技术的等位基因差异分析法和变性高效液相色谱法也能用于OPRM1多态性的检测,但其一次只能进行一种突变的检测,耗时费力。

发明内容

本发明的目的之一是提供OPRM1基因SNP检测液相芯片。该液相芯片可用于检测OPRM1基因的正常基因型以及四种常见等位基因型A118G、IVS2+G31A、IVS2+G691C和IVS3+A6151G的变异。

实现上述目的的技术方案如下:

一种OPRM1基因SNP检测液相芯片,主要包括有:

(A).针对OPRM1基因的SNP位点分别设计的ASPE引物对:每种ASPE引物由5’端的tag序列和3’端针对目的基因SNP位点的特异性引物序列组成,所述特异性引物序列分别为:针对A118G位点的SEQ ID NO.9及SEQ ID NO.10、针对IVS2+G31A位点的SEQ ID NO.11及SEQID NO.12、针对IVS2+G691C位点的SEQ ID NO.13及SEQ ID NO.14、和/或针对IVS3+A6151G位点的SEQ ID NO.15及SEQ ID NO.16,所述tag序列选自SEQ ID NO.1-SEQ ID NO.8中的序列;

(B).分别包被有特异的anti-tag序列的微球,上述每种微球具有不同颜色编码;所述anti-tag序列选自SEQ ID NO.17~SEQ ID NO.24中的序列,且所述anti-tag序列能相应地与(A)中所选的tag序列互补配对;

(C).用于扩增具有:A118G、IVS2+G31A、IVS2+G691C和/或IVS3+A6151G SNP位点的OPRM1基因目标序列的扩增引物。

优选地,所述扩增引物为:针对A118G位点的SEQ ID NO.25及SEQ ID NO.26、针对IVS2+G31A位点的SEQ ID NO.27及SEQ ID NO.28、针对IVS2+G691C位点的SEQ ID NO.29及SEQ ID NO.30、和/或针对IVS3+A6151G位点的SEQ ID NO.31及SEQ ID NO.32。

优选地,所述ASPE引物对为:由SEQ ID NO.1和SEQ ID NO.9组成的序列及由SEQ IDNO.2和SEQ ID NO.10组成的序列、由SEQ ID NO.3和SEQ ID NO.11组成的序列及由SEQ IDNO.4和SEQ ID NO.12组成的序列、由SEQ ID NO.5和SEQ ID NO.13组成的序列及由SEQ IDNO.6和SEQ ID NO.14组成的序列、和/或由SEQ ID NO.7和SEQ ID NO.15组成的序列及由SEQ ID NO.8和SEQ ID NO.16组成的序列。

优选地,所述anti-tag序列与微球连接中间还设有间隔臂序列。

本发明的另一目的是提供使用上述液相芯片对OPRM1基因SNP进行检测的方法。

一种使用上述液相芯片对OPRM1基因SNP检测的方法,主要包括以下步骤:

(一)PCR扩增待测样品DNA;

(二)PCR反应产物用ExoSAP-IT试剂盒进行酶切处理;

(三)用所述ASPE引物进行引物延伸反应,在反应过程中掺入生物素标记的dCTP,从而使反应后的产物带上多个的生物素标记;

(四)将对应ASPE引物的包被有特异的anti-tag序列的微球与上述延伸反应后的产物进行杂交反应;

(五)杂交反应后的产物与链霉亲和素-藻红蛋白进行反应;

(六)通过荧光检测仪检测。

本发明的另一目的是提供一种用于OPRM1基因SNP检测的特异性引物。

具体技术方案如下:

一种用于OPRM1基因SNP检测的特异性引物,主要包括有:针对A118G位点的SEQ IDNO.9及SEQ ID NO.10、针对IVS2+G31A位点的SEQ ID NO.11及SEQ ID NO.12、针对IVS2+G691C位点的SEQ ID NO.13及SEQ ID NO.14、和/或针对IVS3+A6151G位点的SEQ IDNO.15及SEQ ID NO.16。

本发明的主要优点在于:

1.本发明所提供的检测方法与测序法的吻合率高达100%。所制备的OPRM1基因SNP检测液相芯片具有非常好的信号-噪声比,并且所设计的探针以及anti-tag序列之间基本上不存在交叉反应,可实现多个SNP位点的并行检测,特别符合检测应用需要。

2.本发明设计的ASPE特异性引物具有非常好的特异性,能准确区分各种型别的基因型,且能够在均一的反应条件下进行杂交反应,且各种引物、探针之间基本不存在非特异性结合。

3.本发明的检测方法步骤简单,一步多重PCR即可完成四个具有SNP位点的目标序列的扩增,避免了反复多次PCR等复杂操作过程中存在的诸多不确定因素,因而可大大提高检测准确率,体现了精确的同时定性、定量分析特征,从而使检测的灵敏度进一步得到提高,检测结果更加准确可靠。同时,多种ASPE特异性引物的组合使用使液相芯片和检测方法形成一个检测效果完好的系统。

具体实施方式

实施例1OPRM1基因SNP检测液相芯片,主要包括有:

一、ASPE引物

针对OPRM1的四种常见SNP位点:A118G、IVS2+G31A、IVS2+G691C和IVS3+A6151G,分别设计特异性的引物序列。ASPE引物由“Tag+特异性引物序列”组成。ASPE引物序列如下表所示:

表1ASPE引物序列(Tag+特异性引物序列)

每条ASPE引物包括两个部分,5’端为针对相应微球上anti-tag序列的特异性tag序列,3’端为野生型或突变型特异性引物序列(如上述表1所示)。所有ASPE引物由上海生工生物工程技术服务有限公司合成。合成后的每条引物分别用10mmol/L Tris Buffer配制成100pmol/mL的贮存液。

二、anti-tag序列包被的微球

根据所设计的ASPE特异性引物序列,选择tag序列,最大限度地减少各微球的anti-tag序列之间以及tag与ASPE特异性引物序列可能形成的二级结构,选择的八种微球编号与微球上相应的anti-tag序列如表2所示:

表2微球编号与微球上相应的anti-tag序列

选择的8种微球购自美国Luminex公司,将anti-tag序列包被与微球上。anti-tag序列与微球之间连接有5-10个T的间隔臂序,即在每个anti-tag序列前加上一段5-10个T的间隔臂序列,anti-tag序列由上海生工生物工程技术服务有限公司合成。将合成的anti-tag序列用灭菌ddH2O配成100nmol/ml的贮存液。所述间隔臂为用于将anti-tag与微球表面间隔开来或是将anti-tag置于亲水性环境中的序列。通过在anti-tag序列与微球之间设置适当长度的间隔臂序列,可减少空间位阻,提高杂交反应的效率以及杂交反应的特异性。常见的间隔臂序列包括多聚dT,即poly(dT),寡聚四聚乙二醇以及(CH2)n间隔臂(n≥3),如(CH2)12、(CH2)18等。另外,如果存在poly(dA)干扰,还可以用poly(TTG)作为间隔臂。本发明间隔臂优选为5-10个T。

微球包被的过程如下:

分别取5×106个上述编号的羧基化的微球(购自Luminex公司)悬浮于50ul 0.1mol/L的MES溶液中(pH4.5),加入10ul合成的anti-tag分子(100nmol/ml)。配制10ng/ml的EDC(N-(3-Dimethylaminopropyl)-N-ethylcarbodi imide)(购自Pierce Chemical公司)工作液。往微球悬液中加入2.5ul的EDC工作液,恒温孵育30分钟,再加入2.5ul的EDC工作液,再恒温孵育30分钟。反应结束后,用0.02%的Tween-20洗涤一次,再用0.1%的SDS液洗涤一次。将洗涤后的包被有anti-tag序列的微球重悬于100ul的Tris-EDTA溶液[10mmol/L Tris(pH8.0),1mmol/L EDTA中,2-8℃避光保存。

三、扩增出具有SNP位点的目标序列的引物

目标检测的OPRM1基因常见4种SNP位点的A118G、IVS2+G31A、IVS2+G691C和IVS3+A6151G。其中A118G位于外显子1,IVS2+G31A与IVS2+G691C位于内含子2,IVS3+A6151G位于内含子3。利用Primer5.0设计四对引物(见表3),分别扩增出四条具有SNP位点的目标序列。

表3扩增出具有SNP位点的目标序列的引物

所有引物由上海生工生物工程技术服务有限公司合成。合成后的每条引物分别用10mmol/L Tris Buffer配制成100pmol/mL的贮存液。

实施例2运用实施例1所述的OPRM1基因SNP检测液相芯片对样本的检测

所述各种溶液的配方如下:

50mM的MES缓冲液(pH5.0)配方(250ml):

  试剂  来源  终浓度 每250ml的用量  MES(2[N-Morpholino]  ethanesulfonic acid)  Sigma M-2933  0.05M 2.44g  5M NaOH  Fisher SS256-500  --- 5滴

2×Tm杂交缓冲液

  试剂  来源  终浓度 每250ml的用量  1MTris-HCl,pH8.0  SigmaT3038  0.2M 50ml  5M NaCl  Sigma S5150  0.4M 20ml  Triton X-100  Sigma T8787  0.16% 0.4ml

过滤后贮存于4℃。

ExoSAP-IT试剂盒购自美国USB公司。

生物素标记的dCTP购自上海生工生物工程技术服务有限公司。

一、样本的DNA提取:

参照AxyPrep全血基因组小量提取试剂盒说明,得到待检测的DNA。

二、待测样品的PCR扩增

利用Primer5.0设计四对引物,多重PCR一步扩增出OPRM1的外显子1、内含子2和内含子3中具有SNP位点的目标序列,产物大小分别为322bp、333bp、378bp、395bp。引物序列(SEQNO.25-SEQ NO.32)见上述表3所示。

首先配制多重PCR引物工作液:分别各取SEQ NO.25-32的引物贮存液100ul于1.5ml微量离心管中,混合均匀即为多重PCR引物工作液。多重PCR反应体系如下:

10×缓冲液(含Mg2+)                5ul

dNTP(各2.5mmol/L)                 4ul

Taq酶(5U/ul)                      0.5ul

多重PCR引物工作液(各16.7pmol/mL)  6ul

模板DNA(10ng/ul)                  1ul

ddH2O                             33.5ul

                                                    

共                                50ul

PCR扩增程序为:95℃ 3min;94℃ 20s,56℃ 30s,72℃ 30s,30个循环;72℃ 10min;4℃保存备用。

三、PCR产物的酶切处理

参照ExoSAP-IT试剂盒说明,详细步骤如下:

1.取7.5ul PCR反应后的产物,加入3ul ExoSAP-IT酶;

2.37℃孵育15min。80℃孵育15min,使多余的酶灭活。酶切处理后的产物直接用于后续的ASPE引物延伸反应。

四、位点特异的引物延伸反应(ASPE)

利用上述设计的位点特异性引物进行引物延伸反应,在反应过程中掺入生物素标记的dCTP,从而使反应后的产物带上多个的生物素标记。

首先配制混合的ASPE引物工作液:分别各取A118G、IVS2+G31A、IVS2+G691C和IVS3+A6151G相应的野生型和突变型ASPE引物贮存液10ul于1.5ml微量离心管中,加入10mmol/L TrisBuffer补至200ul,混合均匀即为ASPE混合引物工作液。ASPE反应的体系如下:

10×缓冲液                            2ul

MgCl2(50mmol/L)                       0.5ul

Biotin-dCTP(400umol/L)                0.25ul

dATP、dGTP、dTTP混合液(各100umol/L)   1ul

Tsp酶(5U/ul)                          0.25ul

混合的ASPE引物工作液(各500nmol/L)     1ul

酶切处理的PCR扩增产物                 5ul

ddH2O                                 10.ul

                                                         

共                                    20ul

PCR程序为:96℃ 2min;94℃ 30s,58℃ 1min,72℃ 2min,30个循环;4℃保存备用。

五、杂交反应

1.根据设计的ASPE引物,选择相应的最优的八种微球(微球浓度均为2.5×105个/ml);

2.分别取1ul每种编号的微球于1.5ml的微量离心管中;

3.微球于≥10000g离心1-2min;

4.弃去上清,微球重悬于100ul的2×Tm杂交缓冲液中,涡旋混匀;

5.取25ul上述微球悬液于96孔滤板相应的孔中,对照孔加25ul的ddH2O;

6.取5-25ul的ASPE反应液于相应的孔中,用ddH2O补足至50ul;

7.用锡箔纸包住96孔板以避光,95℃ 60s,37℃ 15min孵育杂交;

8.杂交后的微球于≥3000g离心2-5min;

9.去上清,将微球重悬于75ul的1×Tm杂交缓冲液中;

10.微球于≥3000g离心2-5min;

11将微球重悬于75ul的1×Tm杂交缓冲液中,加入15ul浓度为10ug/ml的链霉亲和素-藻红蛋白(SA-PE);

12.37℃孵育15min,于Luminex仪器上检测。

六、结果检测与数据分析

反应后产物通过Luminex系列分析仪器检测。以聚苯乙烯微球作为反应的载体,以荧光检测仪作为检测平台,对核酸分子进行高通量的多指标并行检测。在微球的制造过程中,掺入不同比例的红光及红外光染色剂,从而形成多至100种不同颜色编码的微球。不同的微球共价结合了针对不同待检测物的核酸分子作为探针分子,报告分子以生物素标记,并用高灵敏的荧光染料染色。这些微球与待测物、报告分子、荧光标记物就形成完整的微球检测体系用于Luminex系统的读取。Luminex阅读系统分别激发红色激光和绿色激光用于微球体系的检测,检测结果如表4和表5所示。

对荧光值(MFI)和数据处理有以下要求:

1.每个位点需至少有一个等位基因MFI大于300而且大于10×PCR阴性对照MFI;

2.NET MFI=样品MFI-PCR阴性对照MFI(NET MFI小于0的以0表示);

3.满足以上两个条件的数据,按下列公式计算突变比值:

突变比值=突变型NET MFI÷(突变型NET MFI+野生型NET MFI)

4.根据经验对每个检测位点的突变比值确定阈值(cut-off值),以划分野生型纯合子、杂合子和突变型纯合子。

使用本方法检测大量样本的OPRM1基因多态性,实验数据符合上述要求,因此可计算得它们的突变比值。阈值(cut-off值)的设置如下:突变比值范围在0%-20%视为野生型纯合子;30%-70%视为杂合子;80%-100%视为变异型纯合子。以测序法检测与液相芯片结果作对照,计算本发明所提供的分型方法检测结果的吻合率。本方法检测20份样本的OPRM1基因型检测结果与测序结果吻合率达到100%。可见本发明所提供的OPRM1基因SNP检测液相芯片能够准确地检测出OPRM1基因的SNP类型,且结果稳定可靠。

表4样本检测结果(MFI)

  序号  NO.  A118G-  w  A118G-  m  IVS2+G3  1A-w  IVS2+G31  A-m  IVS2+G  691C-w  IVS2+G  691C-m  IVS3+A  6151G-  w  IVS3+A  6151G-  m  阴性对  昭  20  22  18  22  15  23  13  19  1  3238  231  2558  238  1816  1670  1227  1149  2  3281  233  2385  234  341  2292  226  2517  3  45  3148  2936  235  232  2327  2265  231  4  2762  258  3191  253  2929  235  1630  1536  5  2792  242  2970  262  1616  1461  221  3406  6  2567  284  2033  245  1562  1304  1719  1653  7  315  2154  2695  285  242  2084  241  2418  8  1284  1368  2457  293  2965  231  1540  1342  9  2565  314  42  2365  259  2021  235  2794  10  2544  240  2338  250  267  2377  1232  1254  11  3419  268  2020  317  2158  145  245  2646  12  2214  273  2219  242  453  2933  224  2024  13  3168  133  3438  337  2496  231  232  3397  14  3302  241  2193  36  230  2772  2785  281

  序号  NO.  A118G-  w  A118G-  m  IVS2+G3  1A-w  IVS2+G31  A-m  IVS2+G  691C-w  IVS2+G  691C-m  IVS3+A  6151G-  w  IVS3+A  6151G-  m  15  3100  237  2028  237  1634  1788  139  2704  16  2886  307  3361  231  233  2420  229  2730  17  3329  230  3368  285  2856  235  268  2514  18  1542  1689  2329  299  143  2246  1556  1372  19  2881  244  2428  240  1836  1628  235  2338  20  2222  263  2151  256  142  2878  237  2265

表5样本OPRM1基因多态性分析结果

实施例3不同的ASPE引物的液相芯片对OPRM1基因SNP检测基因突变的检测

一、液相芯片制备的设计(Tag序列及Anti-Tag序列的选择)

以OPRM1基因A118G位点突变的检测液相芯片为例,针对A118G的野生型和突变型设计ASPE引物3’端的特异性引物序列,而ASPE引物5’端的Tag序列则选自SEQ ID NO.1-SEQID NO.8中的6条,相应的,包被于微球上的与对应tag序列互补配对的anti-tag序列选择SEQ ID NO.17-SEQ ID NO.24。具体设计如下表(表6)所示。ASPE引物的合成、anti-tag序列包被微球、扩增引物、检测方法等如实施例1和实施例2所述。

表6液相芯片制备的设计

二、样品检测

采用上述设计制备的液相芯片,按实施例2所述检测过程和方法对样品21-40进行检测,

检测结果如下:

表7样本检测结果(MFI)与基因多态性分析

以上是针对本发明的可行实施例的具体说明,但该实施例并非用以限制本发明的专利范围,凡未脱离本发明的等效实施或变更,均应包含于本发明的专利范围中。

序列表

<110>广州益善生物技术有限公司

<120>OPRM1基因SNP检测特异性引物、液相芯片和检测方法

 

<160>32

<170>PatentIn version 3.1

 

<210>1

<211>24

<212>DNA

<213>人工序列

<400>1

tcatttcaat caatcatcaa caat                                        24

 

<210>2

<211>24

<212>DNA

<213>人工序列

<400>2

caatttactc atatacatca cttt                                        24

 

<210>3

<211>24

<212>DNA

<213>人工序列

<400>3

aatcttacca attcataatc ttca                                        24

 

<210>4

<211>24

<212>DNA

<213>人工序列

<400>4

taacattaca actatactat ctac                                        24

<210>5

<211>24

<212>DNA

<213>人工序列

<400>5

tcatttacct ttaatccaat aatc                                        24

 

<210>6

<211>24

<212>DNA

<213>人工序列

<400>6

tacatacact aataacatac tcat                                        24

 

<210>7

<211>24

<212>DNA

<213>人工序列

<400>7

tatactatca actcaacaac atat                                        24

 

<210>8

<211>24

<212>DNA

<213>人工序列

<400>8

atactaactc aactaacttt aaac                                        24

 

<210>9

<211>20

<212>DNA

<213>人工序列

<400>9

cttgtcccac ttagatggca                                             20

 

<210>10

<211>20

<212>DNA

<213>人工序列

<400>10

cttgtcccac ttagatggcg                                        20

 

<210>11

<211>18

<212>DNA

<213>人工序列

<400>11

ccagcctgag ggaaggag                                          18

 

<210>12

<211>18

<212>DNA

<213>人工序列

<400>12

ccagcctgag ggaaggaa                                          18

 

<210>13

<211>20

<212>DNA

<213>人工序列

<400>13

tctggtcaag gctaaaaatg                                        20

 

<210>14

<211>20

<212>DNA

<213>人工序列

<400>14

tctggtcaag gctaaaaatc                                        20

 

<210>15

<211>19

<212>DNA

<213>人工序列

<400>15

tgtgcgtgtg atataggca                                        19

 

<210>16

<211>19

<212>DNA

<213>人工序列

<400>16

tgtgcgtgtg atataggcg                                        19

 

<210>17

<211>24

<212>DNA

<213>人工序列

<400>17

attgttgatg attgattgaa atga                                  24

 

<210>18

<211>24

<212>DNA

<213>人工序列

<400>18

aaagtgatgt atatgagtaa attg                                  24

 

<210>19

<211>24

<212>DNA

<213>人工序列

<400>19

tgaagattat gaattggtaa gatt                                  24

 

<210>20

<211>24

<212>DNA

<213>人工序列

<400>20

gtagatagta tagttgtaat gtta                                    24

 

<210>21

<211>24

<212>DNA

<213>人工序列

<400>21

gattattgga ttaaaggtaa atga                                    24

 

<210>22

<211>24

<212>DNA

<213>人工序列

<400>22

atgagtatgt tattagtgta tgta                                    24

 

<210>23

<211>24

<212>DNA

<213>人工序列

<400>23

atatgttgtt gagttgatag tata                                    24

 

<210>24

<211>24

<212>DNA

<213>人工序列

<400>24

gtttaaagtt agttgagtta gtat                                    24

 

<210>25

<211>18

<212>DNA

<213>人工序列

<400>25

ccccacgaac gccagcaa                                            18

 

<210>26

<211>18

<212>DNA

<213>人工序列

<400>26

agagccccac cacgcaca                                            18

 

<210>27

<211>20

<212>DNA

<213>人工序列

<400>27

actccccgaa atgccaaaat                                          20

 

<210>28

<211>23

<212>DNA

<213>人工序列

<400>28

cagagaaatc agaaataaat aga                                      23

 

<210>29

<211>21

<212>DNA

<213>人工序列

<400>29

tttgtcctgc acgaagctta a                                        21

 

<210>30

<211>20

<212>DNA

<213>人工序列

<400>30

catcagtcca tagcacacgg                                        20

 

<210>31

<211>23

<212>DNA

<213>人工序列

<400>31

ttttacaaga catctgtgga gag                                    23

 

<210>32

<211>23

<212>DNA

<213>人工序列

<400>32

ttatgaatag tctaaaagcc aaa                                    23

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号