首页> 中国专利> 使用对数电阻器衰减器的EDGE功率斜变

使用对数电阻器衰减器的EDGE功率斜变

摘要

一种用在射频(RF)电路的发射路径中的功率斜变电路。该功率斜变电路包括用作对数电阻器衰减器的并联连接的晶体管,用于调节到在发射路径中的混频器电路的电流。并联连接的晶体管可以是大小不同的,并且被顺序关断来逐步增加提供给混频器电路的电流。该斜变控制电路响应于模拟信号或者数字信号来控制并联连接的晶体管。

著录项

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2014-03-05

    授权

    授权

  • 2013-04-10

    专利申请权的转移 IPC(主分类):H03G3/30 变更前: 变更后: 登记生效日:20130319 申请日:20071220

    专利申请权、专利权的转移

  • 2010-04-28

    实质审查的生效 IPC(主分类):H03G3/30 申请日:20071220

    实质审查的生效

  • 2010-02-24

    公开

    公开

说明书

相关申请的交叉引用

【0001】本申请要求在2006年12月21日提交的美国临时专利申请60/871312的优先权的权益,其内容通过引用全部包含在本申请中。

技术领域

【0002】本发明总的涉及射频(RF)电路中的功率控制。更具体地,本发明涉及用在无线收发器中的RF电路中的功率斜变。

背景技术

【0003】无线系统的发展包括增强型数据速率全球演进(EDGE)标准。EDGE标准是全球移动通信系统(GSM)标准的延伸并且是允许增加的数据传输率和提高的数据传输可靠性的数字移动电话技术。EDGE网络可以被用于包括因特网连接的任何分组交换应用。诸如视频服务和其他多媒体的高速数据应用可以从增加的数据容量中获益。然而,新一代无线系统的首次展出给移动手机设计者带来独特的挑战。为了从诸如EDGE的新技术的扩展的容量和数据带宽全面受益,新的手机必须在新系统以及旧系统二者下运行。

【0004】因为移动电话架构已经取得发展,它们的功耗和成本已经降低,而它们的效率和性能已经增加。其间,服务于这些电话的无线基站已经争取与这些改进保持一致。现代基站的功耗的一半以上与功率放大器相关联,使得做出持续的系统级的努力来提高其能量效率。存在于GSM和EDGE系统中的时分多址(TDMA)架构必须能够在功率对时间的规定限制中将其功率包络向上和向下斜变。如果关键性的斜变时间没有被最优管理,可能在发送时隙上丢失信息或者可能由在接收时隙期间的传输导致干扰。

【0005】包括EDGE技术的网络通过每个RF脉冲发送更多位来增加GSM可用的数据率。通过使用基于8-相移键控(8-PSK)的调制方案,在EDGE中发送更多位。这提供了GSM的最小高斯移位键控(GMSK)调制格式上的提高。在EDGE调制方案中,旋转8-PSK星座来避免与零交叉相关的问题。与GMSK的恒定幅值包络对比,EDGE调制方案中的增加的旋转因素导致非恒定幅值包络。这个非恒定幅值包括表现出关于RF功率控制的一些困难。由于期望具有一个发射器可以用于GSM和EDGE标准二者,使得这些问题进一步恶化。EDGE系统标准要求功率放大器以与对于GSM的相同的速度来斜升和斜降。因此,该环路必须具有足够快的响应来提供充足的上升时间,并且足够慢以避免振铃或者不稳定性。

【0006】对于功率斜变的公知的技术包括提供可以与单个运算放大器一起使用的高速电流输出数模转换器(DAC)来产生适合RF增益要求的斜变轮廓。该斜变被应用到可变增益放大器(VGA)的电压控制引脚来控制RF信号的增益。指定偏移量、上升时间、下降时间、振幅轮廓和周期信息允许DAC曲线拟合期望的斜变。该轮廓信息可以被保存在微处理控制逻辑中。然而,该解决方案的实现成本高。

【0007】因而,期望提供一种用于发射在无线应用中使用的信号的RF电路中的节省成本的功率斜变。

发明内容

【0008】本发明的目的是消除或减轻用于发射在包括移动手机终端的无线应用中使用的信号的RF电路中的之前的功率斜变技术中的至少一个缺点。

【0009】在第一方面中,本发明提供用于无线收发器的发射电路。所述发射电路包括用于无线发射数据信号的天线、混频器和功率斜变电路。所述混频器被耦合到所述天线,用于响应预处理数据信号来提供数据信号。所述功率斜变电路具有输入晶体管,用于响应输入数据信号来提供预处理数据信号。所述功率斜变电路具有可控的电阻装置,用于通过降低所述电阻装置的电阻值而将所述输入数据信号从最小电压电平斜变到最大电压电平。在本方面的一个实施例中,所述功率斜变电路包括电压到电流转换器和电流镜电路。所述电压到电流转换器提供对应于基带信号的电流。所述电流镜电路具有用于接收所述电流的输入端子并且所述输入晶体管具有用于提供所述预处理数据信号的输出端子。所述可控电阻装置被耦合在所述输入晶体管栅极端子和电压源之间。所述电流镜电路包括并联连接到可控电阻装置的滤波器,其中所述滤波器是包括电阻器和电容器的第一阶滤波器,使得所述电阻器和所述可控电阻装置形成分压器。

【0010】在本方面的另一个实施例中,所述可控电阻装置包括多个并联连接的晶体管。所述多个并联连接的晶体管的每一个都包括耦合到斜变控制电路的栅极端子。所述斜变控制电路顺序关断所述多个并联连接的晶体管的每一个,用于将所述输入数据信号从所述最低电压电平斜变到所述最大电压电平。所述斜变控制电路包括模数(A/D)转换器和数字译码器。所述A/D转换器提供对应于模拟控制信号的数字输出。所述数字译码器响应来自所述A/D转换器的数字输出,选择性地关断所述多个并联连接的晶体管的每一个。替代地,所述斜变控制电路包括计数器和数字译码器。所述计数器提供对应于振荡信号的计数边沿的数字输出。所述数字译码器响应来自所述计数器的数字输出而选择性地关断所述多个并联连接的晶体管的每一个。在另一个替代实施例中,所述多个并联连接的晶体管的每一个包括耦合到所述斜变控制电路的栅极端子,其中所述斜变控制电路包括连接到电压源和模拟控制信号之间的分压器电路。所述分压器电路具有电压抽头,每一个电压抽头耦合到多个并联连接的晶体管的每一个。

【0011】在第二方面中,本发明提供用于无线发射电路的功率斜变电路。所述功率斜变电路包括电压到电流转换器、电流镜和多个受控电阻元件。所述电压到电流转换器提供对应于基带电压信号的输入电流。所述电流镜提供具有对应于所述输入电流的最大量值的电流的数据信号。所述多个受控电阻元件并联耦合到电流镜,用于当每一个受控电阻元件关断时将数据信号的电流从最小量值斜变到最大量值。在本方面的实施例中,所述电流镜包括二极管连接晶体管和输入晶体管。所述二极管连接晶体管耦合在所述电压到电流转换器和电压源之间,用于接收所述输入电流。所述输入晶体管与所述二极管连接晶体管一起被布置在电流镜配置中。所述输入晶体管具有用于提供所述数据信号的漏极端子,和耦合到所述电压源的源极端子。所述多个受控电阻元件被耦合到所述电压源和所述输入晶体管的栅极端子之间。所述电流镜可以包括具有连接在所述输入晶体管的栅极端子和所述二极管连接晶体管之间的电阻器的第一阶滤波器,和耦合在所述输入晶体管的栅极端子和所述电压源之间的电容器。

【0012】根据本方面的另一个实施例,所述多个受控电阻元件包括多个并联连接的晶体管,其中所有的所述多个并联连接的晶体管彼此大小不同。更具体地,所述多个并联连接的晶体管的每一个的大小为具有不同的W/L尺寸,其中W和L分别是所述多个并联连接的晶体管的每一个的宽度和长度,其可以按尺寸增加的顺序被关断。在本实施例的一个方面中,所述多个并联连接的晶体管的每一个包括耦合到斜变控制电路的对应栅极控制信号的栅极端子,用于顺序关断所述多个并联连接的晶体管的每一个。所述斜变控制电路可以包括模数(A/D)转换器和数字译码器。所述A/D转换器提供对应于模拟控制信号的数字输出。所述数字译码器响应来自所述A/D转换器的数字输出,选择性地关断所述多个并联连接的晶体管的每一个。替代地,所述斜变控制电路包括计数器和数字译码器。所述计数器提供对应于振荡信号的计数边沿的数字输出。所述数字译码器响应来自所述计数器的数字输出而选择性地关断所述多个并联连接的晶体管的每一个。

【0013】在第三方面中,本发明提供在无线收发器中斜变信号的方法。所述方法包括施加对应于基带信号的电压到输入晶体管;使用并联连接的晶体管将所述电压放电以最小化对应于所述基带信号的电流;并且顺序关断所述并联连接的晶体管的每一个,用于增加由所述输入晶体管提供的电流的量值。所述放电的步骤包括导通所有并联连接的晶体管。在本实施例的方面中,所述顺序关断的步骤包括接收模拟斜变控制信号;并且响应所述斜变控制信号以不同速率并且大体上同时关断并联连接的晶体管中的至少两个。

【0014】根据本方面的实施例,所述顺序关断的步骤包括接收斜变控制信号;将所述斜变控制信号转换为数字输出;并且将所述数字输出译码来关断所述并联连接的晶体管中的至少一个。在本实施例的方面中,所述斜变控制信号是斜变的模拟电压电平并且所述转换的步骤包括执行模数转换来提供对应于在预定频率的所述模拟电压电平的所述数字输出。替代地,所述斜变控制信号是振荡时钟信号并且所述转换的步骤包括使用计数器来计数所述振荡时钟信号的有效边沿以提供对应于所述计数器的值的所述数字输出。

【0015】在第一方面中,本发明提供用于无线收发器的发射路径,所述发射路径包括:用于接收将从天线发送的经由混频器、可变增益放大器和功率放大器的信号的输入;耦合在所述输入和所述混频器之间的功率斜变电路,用于应用线性斜变轮廓到所述信号,使得形成斜变的信号,所述功率斜变电路包括具有耦合到滤波器的输出的电压到电流(V2I)转换器、并联耦合到所述滤波器的多个晶体管、所述多个晶体管驱动的输入晶体管;并且其中所述输入晶体管将斜变的信号馈送到所述混频器。

【0016】在又一个实施例中,提供用于无线收发器的功率斜变电路,所述功率斜变电路包括:用于接收从天线发射的信号的输入;具有耦合到滤波器的输出的电压到电流(V2I)转换器;并联耦合到所述滤波器的多个晶体管;和由所述多个晶体管驱动的输入晶体管;其中所述功率斜变电路应用线性斜变轮廓到所述信号以形成斜变的信号,并且所述输入晶体管将斜变的信号馈送到混频器。

【0017】在又一方面中,本发明提供在无线收发器中斜变信号的方法,所述方法包括:接收从天线发射的信号;将对应于所述信号的电压转换为电流;滤波所述电流;并且通过与所述滤波器并联连接的多个晶体管而根据线性斜变轮廓来增加所述电流以形成斜变的信号。

【0018】通过阅读结合附图的本发明的以下具体实施例描述,对于本领域内的普通技术人员而言,本发明的其他方面和特征将变得明显。

附图说明

【0019】以下参照附图仅通过示例描述本发明的实施例,其中:

图1是根据本发明的发射路径电路的框图;

图2是本发明的斜变功能的图示描述;

图3是根据本发明的斜变电路的电路图;

图4是根据本发明的使用模拟控制电压的斜变控制元件的框图;

图5是根据本发明的使用数字控制电压的斜变控制元件的框图;

图6是斜变晶体管栅极电压相对于模拟斜变控制电压的曲线图;和

图7是用于产生模拟斜变控制电压的斜变控制电路的电路图。

具体实施方式

【0020】通常,本发明提供用于在RF发射电路中功率斜变的方法和设备。用于发射信号的无线收发器的这种发射电路可以被用在用于无线应用的移动手机终端中。更具体地,本发明包括用于功率斜变的对数电阻器衰减器。

【0021】参考图1,示出根据本发明的发射路径电路的总的框图。典型地,该发射路径被设计来提供在最差情况的输出功率电平处的所需要的性能水平。发射信号路径100包括RF电路的领域内普通技术人员公知的作为标准的RF发射部件的一些元件。这样的元件包括混频器102、可变增益放大器(VGA)104、功率放大器106和天线108。这样的特定发射器设计可以有益地使用此处描述的功率斜变技术。但是,应该理解可以对图1中示出的特定的布置做出多种修改。例如,可以在发射信号路径100中提供较少的或者附加的滤波器、缓冲器和放大器级。此外,在发射信号路径100中的元件可以被布置在不同的配置中。进一步,发射信号路径100中的可变增益可以由所示的VGA来提供,或者替代地由可变衰减器、乘法器、其它可变增益元件或者其组合来提供。在替代的发射器设计中,可以使用直接上变频架构,其中功率放大器直接接收调制的RF信号。通常,此处所述的功率斜变技术可以用于发射路径,而与如何产生调制的RF信号无关。

【0022】通常,发射信号路径100的发射电路接收数据信号“IN”并且经由混频器102将这样的信号上变频为载频。随后由VGA 104调节信号增益,并且随后在经由天线108的作为数据信号的载波传输之前通过功率放大器106输出。由于混频器102、VGA 104、功率放大器106和天线108及它们的功能对于RF电路领域内的普通技术人员来说是公知的,所以它们不需要进一步特别详细描述。然而在本发明中,信号“IN”的功率增加的必要的速率以独创的方式被提供到混频器102。

【0023】根据本发明的实施例,基带信号“IN”的功率斜变由功率斜变电路110控制,如图1中所示。功率斜变电路110控制信号的功率增加的速率,从而提供到混频器102的输入端。如图2中所示,示出功率斜变电路110的功能。从图中可以看到,在时间t1之前,功率极小,并且在时间t2,功率斜升到最大功率,此时信号将被发射。因此,功率斜变电路110将逐步地且线性地增加功率,直到达到最大功率时的时间t2

【0024】图3是功率斜变电路110的电路实施例,其可以被认为是用于提供预处理数据信号到混频器102的预放大器电路。功率斜变电路110包括用于将输入信号“IN”转换为电流的电压到电流(V-I)转换器200。该电流被传递通过由二极管连接n沟道晶体管202和电阻器204以及电容器206元件一起形成的第一阶滤波器。输入晶体管208连接到电阻器的另一端,该输入晶体管208连接到图1的混频器102的输入。输入晶体管208的栅极接收对应于由V-I转换器200提供的电流的输入数据信号,其自身对应于输入信号“IN”。n沟道晶体管202和输入晶体管208布置在电流镜配置中,其中晶体管202具有用于接收对应于“IN”的电流的输入端子并且晶体管208具有用于提供输出电流的输出端子。因此,倘若n沟道晶体管202、输入晶体管208的大小相同并且它们栅极上的电压没有改变,则通过n沟道晶体管202的电流将会在输入晶体管208中反映。然而,与电容器元件206并联连接的是比例缩放的斜变晶体管210、212和214,其每一个具有由斜变控制电路216控制的栅极,用于选择性耦合晶体管202和208的栅极到VSS。尽管示出三个晶体管,但是应该理解可以存在任何数量的斜变晶体管,而不会偏离本发明的预期范围。

【0025】晶体管210、212和214用作并联的受控电阻元件,其一起用作单一受控电阻元件。因此,电阻器204和并联的受控电阻元件被布置成分压器配置,用于控制输入晶体管208。通过借助斜变控制电路216来控制晶体管210、212和214的栅极,可以改变晶体管210、212和214的组合的阻值,从而改变输入晶体管208的栅极上的电压。注意到通过使用有效信号驱动晶体管的栅极端子来导通该晶体管,而通过使用无效信号来驱动它们的栅极端子来关断该晶体管。有效信号是具有足以导通晶体管的电压电平的信号。随着电阻值上升,输入晶体管208将逐渐导通,以使得将越来越多的电流馈送给混频器元件102。这可以有效地控制从V1到V2的增益。所以应该很明显地是,定时栅极控制和选择性地导通每一个晶体管210、212和214从而将受控斜变的信号提供给混频器元件102。更进一步,每一斜变晶体管210、212和214能够在尺寸上成比例缩放。例如,斜变晶体管210的大小为具有W1/L1的宽长比(W/L)。晶体管212能够具有W2/L2的大小并且晶体管214能够具有W3/L3的大小。根据本发明,在预定的图形中每一斜变晶体管210、212和214具有不同于其它的尺寸。通过例子,能够存在对于每一连续的斜变晶体管的两个的比例因子。使用本例,W2/L2=2W1/L1。斜变晶体管的长度尺寸可以保持常数,使得L1=L2=L3。

【0026】在本发明的操作中,假设在没有发生信号发射时所有的斜变晶体管210、212和214导通来保持输入晶体管208的栅极接地。当信号发射发生并且信号IN被V-I转换器200接收时,斜变控制电路216将关断第一斜变晶体管210,随后是下一个晶体管212等等,直到所有的斜变晶体管210、212和214都关断。应该注意到每一斜变晶体管210、212和214在线性区域中操作并且被控制来给对数函数提供线性输入控制电压,从而提供线性斜变轮廓的输入信号给混频器102。这个对数函数关联于以分贝(dB)为单位的步长,其中从V1到V2的总衰减是每一dB步的和。使用图3的示例实施例,通过方程1示出从斜变晶体管210到212的以dB为单位的步长

【0027】20*log((W2/L2)/(W1/L1))  方程1

【0028】通过方程2示出从斜变晶体管212到214的以dB为单位的步长。

【0029】20*log((W3/L3)/(W2/L2))  方程2

【0030】通过方程3示出使用三个晶体管的从V1到V2的总衰减。

【0031】(20*log((W2/L2)/(W1/L1)))+(20*log((W3/L3)/(W2/L2)))方程3

【0032】斜变控制电路216可以由模拟或者数字斜变控制信号RAMP_CTL来驱动。响应RAMP_CTL,斜变控制电路216将产生用于导通或者关断斜变晶体管212到214的信号。图4是当斜变控制信号是模拟时的斜变控制电路216的实现实施例的框图;而图5是当斜变控制信号是数字时的斜变控制电路216的实现实施例的框图。

【0033】在通过斜变控制电路216接收模拟控制信号的情况中,斜变控制电路216包括模数(A/D)转换器300和数字译码器302,如图4中所示。应该理解A/D转换器300可以是任意特定的类型。模拟信号RAMP_CTL可以例如是电压,范围可以在低电压电平和高电压电平之间。在一个实施例中,RAMP_CTL可以初始在低电压电平并且逐步斜升到高电压电平。替代地,RAMP_CTL可以初始在高电压电平并且随后逐步斜降到低电压电平。无论哪一种特定情况,A/D转换器300接收模拟控制电压并且将输出n位数字信号,其中n是被选择用于A/D转换器300的期望分辨度的整数。

【0034】对于RAMP_CTL的每一个采样的电压电平,A/D转换器300提供的作为结果的n位数字信号随后被数字译码器302译码。数字译码器302将具有逻辑译码电路,该逻辑译码电路被配置用于响应于n位数字信号的位模式而关断斜变晶体管210、212和108的至少一个。从而,当RAMP_CTL从低到高(或者从高到低)斜变时,与采样时钟(未示)同步地产生不同的n位数字信号。数字译码器302将连续地关断每一斜变晶体管并保持其关断。例如,在图3的特定实施例中,斜变晶体管210、212和214将以此排列的顺序被关断。数字译码以获取该期望的结果在本领域内是公知的,并且将不讨论该实现的细节。当完成发射操作时,RAMP_CTL可以被重置并且所有斜变晶体管210、212和214导通。

【0035】在替代例子中,如果n=3,A/D转换器300提供对应于输入的被采样的电压电平的3位输出,则译码器将被配置成提供2n=23=8的输出信号。如上所建议的,从而应该很明显的是,对于总数为8个的斜变晶体管,来自数字译码器302的每一输出信号控制一个功率斜变晶体管的栅极。在此模拟技术中,A/D转换器300基于时钟信号以预定频率采样并且这样的频率优选快于系统时钟。数字译码器302改变其输出的速率依赖于A/D转换器300采样模拟电压的频率。

【0036】在通过斜变控制电路216接收数字控制信号的情况中,RAMP_CTL可以是用来馈送n位计数器304的数字时钟信号(CLK),如图5中所示。在此实施例中,n是对于要被控制的斜变晶体管的数量所选择的整数,例如2n个斜变晶体管。计数器304将在振荡时钟信号(RAMP_CTL)的每一个上升沿或者下降沿增加n位输出序列。相应地,n位输出序列将随着每一计数的时钟边沿逐步增加数值。如前,随着计数器的二进制值增加,数字译码器306接收n位输出序列并且将其译码以便关断所要求的斜变晶体管。数字译码器306改变其输出的速率依赖于RAMP_CTL的频率。

【0037】对于图4和图5中所示的模拟和数字控制信号技术,在关断的晶体管之间存在最小的交迭。也就是说,设置定时以使得每一晶体管210、212和214被顺序关断,这通过数字译码器306被容易地实现。图4和图5中所示的实施例提供用于控制斜变晶体管210、212和214的数字输出。然而,对斜变晶体管210、212和214的栅极电压上的模拟控制能够被用来控制提供给图3的混频器102的输入信号的功率增加的速率。

【0038】图6是斜变晶体管210、212和214的栅极电压相对于模拟斜变控制电压RAMP_CTL的示例曲线图。该示例曲线图示出当RAMP_CTL的大小增加时应用到斜变晶体管210、212和214的栅极电压彼此不同。这是关断的晶体管之间交迭的例子,意味着至少两个晶体管同时但以不同速率转变为关断状态。如图6中所示,当RAMP_CTL基本为零伏特时,应用到斜变晶体管210、212和214的栅极电压基本上处于最大电平。随着RAMP_CTL增加,晶体管210的栅极电压首先在RAMP_CTL=V1处下降,之后是晶体管212和214的栅极电压。如在RAMP_CTL=V2处可以看到的,所有三个晶体管仍旧导通。当RAMP_CTL达到预定的最大电平时,所有的斜变晶体管将关断。可以使用本领域内公知的不同电路技术来实现该类型的斜变控制。

【0039】图7中示出用于提供控制斜变晶体管210、212和214的模拟输出的示例电路实施例。图7的斜变控制电路包括电阻器网络,或者分压器,该分压器包括连接在电压源和RAMP_CTL之间的串联连接的电阻器元件R1、R2、R3、和R4。R1和R2的公共节点连接到晶体管214的栅极,R2和R3的公共节点连接到晶体管212的栅极,并且R3和R4的公共节点连接到晶体管210的栅极。这些公共节点可以被称为电压抽头。在此配置中,随着RAMP_CTL从VSS增加到一些预定的最大电平,栅极电压将逐渐下降。可以选择电阻器元件R1、R2、R3、和R4的值来获取类似于图6中所示电压曲线的电压曲线。

【0040】本领域内的普通技术人员理解图7的分压器的极性可以被反转,使得R1接收模拟RAMP_CTL电压,而R4连接到VSS。因此通过将RAMP_CTL保持在诸如VDD的高电压电平来导通所有的斜变晶体管,并且随后降低RAMP_CTL来逐步地关断每一个斜变晶体管。相应地,相对于图6中所示的曲线,栅极控制曲线被反转。

【0041】本发明的上述实施例仅用于示例。对于本领域技术人员,在不脱离所附的权利要求所唯一限定的本发明范围之内,可以对具体实施例进行各种改变、修改和变更。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号